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Background: The functional mechanism behind autism spectrum disorder (ASD) is

not clear, but it is related to a brain connectivity disorder. Previous studies have found

that functional brain connectivity of ASD is linked to both increased connections and

weakened connections, and the inconsistencies in functional brain connectivity may be

related to age. The functional connectivity in adolescents and adults with ASD is generally

less than in age-matched controls; functional connectivity in younger children with the

disorder appears to be higher. As the basis of the functional network, the structural

network is less studied. This study intends to further study the pathogenesis of ASD

by analyzing the white matter network of ASD preschool children.

Materials and Methods: In this study, Diffusion Tensor Imaging (DTI) was used to scan

preschool children (aged 2–6 years, 39 children with ASD, 19 children as controls), and

graph theory was used for analysis.

Result: Enhanced topological network efficiency was found in the preschool children

with ASD. A higher nodal efficiency was found in the left precuneus, thalamus, and

bilateral superior parietal cortex, and the nodal efficiency of the left precuneus was

positively associated with the severity of ASD.

Conclusion: Our research shows the white matter network efficiency of preschoolers

with ASD. It supports the theory of excessive early brain growth in ASD, and it shows left

brain lateralization. It opens the way for new research perspectives of children with ASD.

Keywords: autism spectrum disorder (ASD), DTI, graph theory, network efficiency, preschool children

INTRODUCTION

Autism spectrum disorder (ASD) refers to a range of conditions characterized by abnormalities
in social communication and development and by repetitive behaviors and restricted interests;
it is a set of prevalent disorders (1, 2). ASD is believed to result from an interaction between
genetic, developmental, and environmental factors, and it has a current global prevalence of 1.5%
in developed countries (3). In the last decade, ASD occurrence has increased and currently reaches
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about 1 per 68 children. Therefore, early diagnosis and effective
treatment have become extremely important public health
concerns.

The neuropathological abnormalities that define ASD are
still lacking, but it is obvious that ASD is correlated with
abnormalities in neuroconnectivity (4, 5). However, some results
of neuroconnectivity studies are inconsistent, leaving the exact
role of neuroconnectivity abnormalities in question (6). For
example, the resting-state connection with the cingulate gyrus
has been shown to be enhanced in some cortical areas and
decreased in others in individuals with ASD (7). In addition,
results on the relationship between neuroconnectivity and ASD
features are inconsistent. For example, the poor social ability of
ASD patients is associated with both the decrease (8) and increase
(9) of resting-state connections.

Although it is difficult to reconstruct brain tissue structure, the
ongoing development of neuroimaging has opened the possibility
to conduct some in-depth studies of the brain tissue of ASD
patients. Unlike the case in many other neurodevelopmental
disorders, there is much evidence that early brain development in
children with ASD is accelerated (10–12). This early swift growth
has been thought to affect the interhemispheric and cortico-
cortical connections (13). The process of myelination has not
been completed before the age of 2 years (14). Children older
than 6 years of age have already begun to receive education in
primary school, and different levels of education will inevitably
lead to different brain development, so the early years, including
2–6 years, are an important period of neural network formation,
which is crucial to early intervention and brain development (15).

Diffusion tensor imaging (DTI) is a type of MRI technology
that can detect the macroscopic WM pathways and the
microstructure of WM by measuring the diffusion of water
in the brain (16). DTI tractography reflects the WM fiber of
the brain region and is helpful to understanding the structural
connection (17, 18). Functional magnetic resonance imaging
(fMRI) is another type of MRI technology that measures brain
activity by detecting changes associated with blood flow (19).
When an area of the brain is in use, blood flow to that region
also increases.

Graph theory is the study of graphs, which are mathematical
structures used to model pairwise relations between objects.
It is especially suitable for the comprehensive study of the
characteristics of the whole brain network (20–22). Some
previous studies using DTI or fMRI with graph theory in ASD
patients have been published (22–24), but there are no studies
using graph theory to analyze DTI images of children aged 2–6
years with ASD.

In this study, we hypothesize that ASD has an anomaly in the
topology of the structural network. We collected brain structure
data (i) from 39 outpatient children with ASD who attend special
education institutions and (ii) from 19 normal control children
without ASD. Then, we used DTI technology to establish the
structural network. We defined the nodes as 90 brain regions
and we defined the edges as the mean fractional anisotropy (FA)
value of the paired regions. Finally, we analyzed the topological
properties with graph theory and nonparametric tests, and we
made group comparisons using the topological data.

MATERIALS AND METHODS

Participants
The parents of each child signed consent, and the protocol
was approved by the Children Hospital of Chongqing Medical
University Research Ethics Committee. All of the participants
were from the Children Hospital of Chongqing Medical
University. Of these, 39 were children with ASD (age: 2.89± 0.97
years) and 19 were healthy controls (age: 3.15 ± 1.12 years). A
clinician gave the diagnosis of ASD according to the DSM-IV-
TR criteria (25). The severity of ASD was assessed according to
the Childhood Autism Rating Scale (CARS). All of the children
had reports of normal neurologic examinations in their medical
records. The criteria for exclusion of healthy children included
known diseases of the nervous system and a history of systemic or
neurodevelopment disease or psychosis. Children with ASD did
not receive any central nervous system-active medications before
the MRI studies. Table 1 provides the subjects’ age and gender
and the clinical assessment scores.

MR Data Acquisition
Each subject’s MR data were collected by a 3Tesla Philips Achieva
MR-scanner with an 8-channel head coil.

The T1-weighted images (T1WIs) were acquired using a
sagittal three-dimensional SPGR sequence. The parameters of the
sequence were the following: repetition time (TR), 7.7ms; echo
time (TE), 3.8ms; flip angle, 8◦; field of view (FOV), 256 × 256;
voxel size, 1mm × 1mm × 1mm; slice thickness, 1mm; total
time: 155min.

The diffusion tensor images (DTIs) were acquired using
an axial single-shot echo-planar imaging (EPI) sequence. The
parameters of the sequence were as follows: TR, 9,155ms; TE,
65ms; flip angle, 90◦; FOV, 230 × 230; voxel size, 1.8 × 1.8 ×

2mm; slice thickness, 2mm; b-value, 1,000; total time, 386min.

Network Construction by Graph Theory
The brain network can be described by nodes and edges, where
nodes and edges can be defined in many ways. We used the
following methods to define nodes and edges (26).

Network Node Definition
First, we need to match the space of the DTI with the space of T1
(27). Therefore, each T1WI is first registered with the B0 image of
the DTI through a linear transformation. Then, by applying affine
transformation, the co-registered structure image is mapped to
the Montreal Neurosciences Institute (MNI)T1 template, and

TABLE 1 | Age, gender, and the clinical scales of the two groups of children.

Variables ASD (n = 39) Controls (n = 19) p-value

Average age in years

(mean ± SD)

2.89 ± 0.97 3.15 ± 1.12 0.36a

Gender (M/F) 32/7 13/6 0.24b

CARS (mean ± SD) 33.67 ± 1.49

aThe difference of the two groups was tested by two-sample t-test.
bThe difference of the two groups was tested by chi-square test.
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a series of nonlinear distortion is used to simulate the affine
transformation.

The obtained conversion parameters were retrieved and
applied to the automated anatomical labeling (AAL) regions
from the MNI space to the DTI space (28). Statistical Parametric
Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) was applied
to carry out the preprocessing, through which 90 cortical and
subcortical regions (45 for each hemisphere) have been obtained.

Network Edge Definition
Due to the eddy current distortion, DTIs were geometrically
corrected for their stretches and shears; then we used B0
image affine transformation on the record to reduce mild head
movement. The linear least-squares fitting method was used
to estimate the diffusion tensor model. We used the Fiber
Assignment by Continuous Tracking (FACT) algorithm to track
whole brain fiber for each subject in native diffusion space using
the Diffusion Toolkit. All of the trajectories in the data are
calculated using the seeding element of FA > 0.2. Either when
the FA-value of a voxel is <0.2 or the angle between the current
and the former path segment is over 45◦, the path tracing would
suspend (29).

To determine the edge, two regions are thought to be
connected by the edges if at least one fiber appears between them.
We computed themean FA-value of the connecting fiber between
two regions for each side of the network. The FA-value plays
an important role in evaluating the integrity of WM fiber (30).
Several studies have shown that the mean FA-value of a brain
network is more readily available than that of a fiber bundle of
brain networks, because the mean FA can reflect local damage of
the brain.

Analysis of Network Topology Attributes
Small-World Attributes of the Network
Small-world properties were initially proposed by Watts and
Strogatz (31). We focus on the small-world properties of the
structure network of the brain in this study. The weighted
clustering coefficient of a node i, Cw

i
, was used to measure how

close the node i’s neighbors are to be a clique. It is expressed as
follows:

Cw
i =

1

ki(ki − 1)

∑

j,h∈N

(wijwihwjh)
1/3,

where ki is the number of edges connecting to node i and wijis
the weight between node i and node j in this network. The overall
weighted clustering coefficient, Cw , represents the average of Cw

i
across all of the nodes; its expression isCw = 1

N

∑
i∈N Cw

i , where
N is the number of nodes. The weighted clustering coefficient
represents the local interconnection degree or the partiality of the
network.

The path length between nodes i and j is defined as the
sum of the lengths along this path. In this study, the weighted
structure network is calculated by calculating the reciprocal of
edge weights,1/wij. The shortest path length, Lij, between the
nodes i and j is the shortest path between the two nodes, and
the number of edges is the shortest path length between the two

nodes. The weighted characteristic shortest path length Lw of a
network was measured by the “harmonic mean” length between
pairs. In other words, we have computed the reciprocal of all
nodes to solve the problem of the network components that may
be disconnected, as shown below:

Lw =
N(N − 1)
N∑
i=1

N∑
j 6=i

1/Lij

,

whereN is the number of nodes. The shortest path length reflects
the optimal path of information transferred from one node to
another in the network, and it plays an important role in the
global information transmission within the network (32).

If there is a similar path length, but with a higher clustering
coefficient than a random network, the real world will be
regarded as a small world, that is, γ = Cw/Cw

random
> 1,

λ = Lw/Lw
random

≈ 1 (31). The Cw
random

is the average of the
weighted clustering coefficient. The Lw

random
is the mean weighted

characteristic shortest path length of matched random networks.
We can combine two measurements as scalar quantization
measures, small-worldness, σ=γ /λ, which is typically >1 in the
case of small-world organization (33).

Efficiency of the Network
The global efficiency, Eglobal, is defined by the inverse of the
harmonic mean of the minimum path length between each pair
of nodes. It is expressed asEglobal =

1
N(N−1)

∑
i6=j∈N

1
Li,j

, where N is

the number of nodes of the network and Eglobalis the standard to
measure the global transmission capacity of information (32).

Local efficiency, Elocal, is defined as the average of the local
efficiency of each node. It is expressed asElocal =

1
N

∑
i∈G

Eglobal(Gi),

where Eglobal(Gi) is the global efficiency of the neighborhood
subgraph Gi of the node i and Elocalshows how each subgraph
exchanges information when the index node is eliminated (32).

Characteristics of the Nodes
In order to evaluate the network topological properties of the
local brain regions, three kinds of methods were applied: nodal
strength kwi , nodal efficiency ewi , and betweenness bwi .

The degree of a node i was defined as the number of edges
that are directly connected to the node i. The degree is a simple
measure of network connections between nodes and other nodes.
The total weighted connection strength, Sw , was computed as the
mean of all nodes N in a network (34) as follows:Sw = 1

N

∑
i∈G

kwi .

The nodal efficiency of node i, ewi , is computed as ewi =
1

N−1

∑
i6=j∈G

1
Li,j

. The nodal efficiency represents the ability to

transfer information from one point to another in a network (20).
The betweenness of node I, Bwi , is calculated as the fraction of

all shortest paths through a node’s network. We calculated the
normalized betweenness as bwi = Bwi�〈Bwi 〉 , where 〈Bwi 〉 is the
average betweenness of the network in this study. Betweenness
captures the effect of nodes on the flow of information between
all other nodes in the network (26).
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It is noteworthy that the centrality measurement of the
nodes defined above reflects the importance of network nodes
from different aspects. For example, a high-degree node can
be regarded as the center of information integration; the high-
efficient nodes are related to the information flow; and those
nodes with high betweenness may be used as a network hub.

Statistical Analysis
Differences in the Network Metrics
In consideration of the small sample size of
the current study, graph metrics of the brain
(Cw, Lw, λ, γ , δ, Sw,Elocal,Eglobal, k

w
i , e

w
i , b

w
i ) were compared

between the ASD group and the control group by using a
nonparametric permutation test. Briefly, we first calculated the
intergroup difference of each graph metric. We then randomly
assigned each participant to one of the two groups with the same
size as the original ASD and control groups. This randomization
procedure was repeated for 10000 permutations, which generated
a null permutation distribution. For each permutation, the new
intergroup difference was calculated. We then assigned a P-value
to the intergroup difference by computing the proportion of
differences exceeding the null distribution values. For the metrics
ofCw, Lw, λ, γ , δ, Sw,Elocal,Eglobal, P-values below the statistical
threshold value of P = 0.05 were considered significant. A false
discovery rate (FDR) with Q < 0.05 was employed to correct
multiple comparisons for nodal metrices (kwi , e

w
i , b

w
i ).

Relationships Between the Network Measures

Metrics and CARS
Once the significant differences in network metrics between the
ASD and control groups were found, an exploratory investigation
was conducted to evaluate the linear relationship between those
metrics and the CARS scores of the ASD group using Pearson
correlation analysis. A statistical result of P< 0.05 was considered
to be significant.

RESULTS

Economic Small-World Brain Structural
Networks
The normalized path length of the ASD group and the control
group is approximately 1, the normalized clustering coefficient
is >1 (Figure 1), and it can be considered as a small-world
topology. These results show the economic small-world topology
in the two groups.

Altered Overall Topological Properties in
ASD
Statistical analysis revealed that the ASD group showed
significantly lower Lw (ASD [mean± SD]: 4.17± 0.28; HC [mean
± SD]: 4.35± 0.35; P = 0.024) and higher Eglobal (ASD [mean±

SD]: 0.24 ± 0.02; HC [mean ± SD]: 0.23 ± 0.02; P = 0.034) and
Elocal (ASD [mean ± SD]: 0.37 ± 0.02; HC [mean ± SD]: 0.36 ±
0.01; P = 0.037) (Figure 1). No significant differences (P > 0.05)
were found inCw, γ , λ , σ , andSw.

ASD-Related Alteration in Nodal
Centralities
The ASD group exhibited significantly higher nodal efficiency
(FDR-corrected, Q < 0.05) in the left precuneus, thalamus,
and bilateral superior parietal cortex, compared with controls
(Figure 2). There was no significant difference in nodal strength
and betweenness between the two groups.

Relationship Between the Network Metrics
and the CARS
Seven network metrics in total (Lw, Elocal, Eglobal, and ewi of four
nodes) showed a difference between the groups. Among those
metrics, there was a statistically significant positive correlation (r
= 0.343, P= 0.033) between nodal efficiency of the left precuneus
and the CARS score in ASD patients (Figure 3).

DISCUSSION

This study provides evidence for the altered structural network
in ASD children aged 2–6 years. The topology of the structural
network was found to be disrupted in the children with ASD,
with the decreased values of Lw and increased values of Eglobal and
Elocal. The results showed that there is an interference between
the local specialization and global integration of ASD children.
Additionally, ASD children revealed increased nodal efficiency
of some brain areas, including the left precuneus, thalamus,
and bilateral superior parietal cortex. The nodal efficiency of
the left precuneus is related to CARS, which represents the
severity of ASD. These results provide a structural basis for an
easier understanding of neuropathological abnormalities in ASD
children.

The human brain can be conceptualized as a network.
The small-world model is well suited for complex brain
dynamics because it supports efficient information segregation
and integration with low energy and wiring costs (e.g., a high rate
of information transmission) (31). There are some studies that
show the human brain network is characterized by a small-world
organization (20, 21, 35). We found that both the ASD group
and the control group showed topological small-world network
properties in this study.

Although both groups have small-world properties, there are
still some topological differences. The ASD group exhibited a
significantly decreased Lw and an increased Elocal and Eglobal in
their brain network. This has led some to suggest that there is an
increase in both short-range and long-range brain connectivity
in ASD; it also means that the brain structures of children with
ASD aged 2–6 are overconnected. The overconnectivity may be a
result of early brain overgrowth in ASD children (36–39). Several
scholars have dissected the brain of recently deceased autistic
persons and they found that the frontal lobe shows an increase
inWM fiber tracts. It may be that this structural anomaly leads to
abnormal brain networks (39).

The ASD-related increase in nodal centrality was mainly
found in the left precuneus, thalamus, and bilateral superior
parietal cortex. We found a statistically significant positive
correlation between the nodal efficiency of the left precuneus and
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FIGURE 1 | Different topological properties of the two group’s structural connectivity networks. The asterisks represent a statistically significant difference

(nonparametric permutation test, P < 0.05). The characteristics of the shortest path length (Lw ), the global efficiency (Eglobal ), and the local efficiency (Elocal ) of the

two groups were significantly different. ASD, autism spectrum disorder; HC, healthy control.

FIGURE 2 | The nodal efficiency of the structural network showed a significant (P ≤ 0.05, FDR-corrected) alteration in children with ASD. The result was visualized by

using the BrainNet viewer (NKLCNL, Beijing Normal University). Red balls represent the areas of increased nodal efficiency in ASD children. ASD, autism spectrum

disorder; HC, healthy control.

the CARS score in autism. The precuneus is part of the default
module network (DMN), which has been implicated in many
psychiatric disorders, including ASD and ADHD. The DMN is
a core brain system for processing information about the “self ”
and “other” and has emerged as a key system underlying social
dysfunction in ASD. Other studies reported abnormalities in the
left precuneus in ASD compared with normal controls. Mak-Fan

et al. found a thicker cortex in the left precuneus gyrus (40). Jiang
et al. studied the data of 539 ASD (aged 17.01 ± 8.37) and 573
healthy controls (aged 17.08 ± 7.72), they found that individuals
with ASD show increased ReHo levels in the left precuneus with
age, while typical controls show decreased ReHo levels with age
(41). More importantly, in this study, the nodal efficiency of the
left precuneus increased with an increased severity of autism.
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FIGURE 3 | Statistically significant positive correlation (r = 0.343, P = 0.033)

between the nodal efficiency of the left precuneus and the CARS score in ASD.

Therefore, the left precuneus may be a target region for future
developmental studies of ASD.

The thalamus, a subcortical–cortical relay that had been
mostly ignored in many MRI studies, demonstrated the most
striking of the FC abnormalities. Recently, Schuetze et al. (42)
studied the date of Autism Brain Imaging Date Exchange (373
male participants aged 7–35 years with ASD and 384 typically
developing), and found that ASDmales reveal smaller age-related
increases in thalamic local functional connectivity density, which
were associated with symptoms of autism. Tomasi et al. (43)
found the similar phenomenon. In our study, we found that the
node efficiency of the left thalamus was increased, so we should
pay more attention to the role of the thalamus in ASD research.

The superior parietal cortex is part of the dorsal attention
network (DAN). The DAN is concerned with top-down, goal-
directed attention. Pruett found that children with ASD made
more saccades and had slower reaction times during visual
orienting (44). This means the orienting system, of which the
DAN constitutes a significant part, is impaired in children with
ASD. Farrant found that children (aged 7–13 years) with ASD
show hyper-connectivity in the DAN and that adults (aged 18–
39 years) with ASD show hypoconnectivity in the DAN (45). In
our study, we found the nodal efficiency of the superior parietal
cortex increased in children (aged 2–6 years) with ASD. This also
confirms previous research results from a new perspective.

Lateralization of brain structure and brain function during
brain development is normal. The left-lateralized hubs include
language regions (e.g., the Wernicke Area and the Broca Area)
and the areas from the DMN (posterior cingulate cortex (PCC),
precuneus, medial prefrontal cortex (mPFC), temporoparietal
junction (TPJ), and hippocampus), which processes information
about the “self ” and “other.” The right-lateralized hubs include
regions from the attention control network (e.g., frontal eye fields
and the lateral intraparietal sulcus) (46). Atypical lateralization
in the brain structure or function is relevant to neuropsychiatric

disorders, such as ASD (47, 48). In this study, nodes with higher
node efficiency are located on the left side of the brain, indicating
that the excessive enhancement of the left network efficiency
of children with ASD may be one of the reasons for language
dysfunction and social dysfunction.

Several limitations of this study need to be addressed. First,
the definition of nodes is 90 partitions of the automatic anatomic
labeling (AAL) template whose boundaries are not accurate
enough, so the nodes need more accurate partition templates to
be defined. Second, in the current study a longitudinal aspect of
ASD lacks, and the age was relatively limited (2–6 years), so a
follow-up study is needed to increase the longitudinality of the
study. Third, this study only collected the data of the structure
and failed to combine the structure with the functional network,
so a follow-up study is needed to increase the amount of data on
the brain function data to conduct a comparison study.

CONCLUSION

Our research studied the WM brain network of preschool (aged
2–6 years) children with ASD. The local and global network
efficiency of the WM brain network of children with ASD is
enhanced, which supports the overgrowth theory of the early
brain. At the same time, we found an increased nodal efficiency
of the left precuneus, thalamus, and bilateral superior parietal
cortex; these brain areas are rarely mentioned in other studies.
We also found the nodal efficiency of the left precuneus is
positively correlated with the severity of ASD, which has also
been rarely mentioned before. These findings may provide a new
direction for further study of the mechanism behind ASD.
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