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ABSTRACT

The hepatitis C virus (HCV) NS5B is essential for
viral RNA replication and is therefore a prime target
for development of HCV replication inhibitors. Here,
we report the identification of a new class of HCV
NS5B inhibitors belonging to the coumestan family
of phytoestrogens. Based on the in vitro NS5B
RNA-dependent RNA polymerase (RdRp) inhibition
in the low micromolar range by wedelolactone,
a naturally occurring coumestan, we evaluated the
anti-NS5B activity of four synthetic coumestan
analogues bearing different patterns of substitu-
tions in their A and D rings, and observed a good
structure-activity correlation. Kinetic characteriza-
tion of coumestans revealed a noncompetitive
mode of inhibition with respect to nucleoside
triphosphate (rNTP) substrate and a mixed mode
of inhibition towards the nucleic acid template, with
a major competitive component. The modified order
of addition experiments with coumestans and
nucleic acid substrates affected the potencies of
the coumestan inhibitors. Coumestan interference
at the step of NS5B-RNA binary complex formation
was confirmed by cross-linking experiments.
Molecular docking of coumestans within the
allosteric site of NS5B yielded significant correlation
between their calculated binding energies and ICso
values. Coumestans thus add to the diversifying
pool of anti-NS5B agents and provide a novel
scaffold for structural refinement and development
of potent NS5B inhibitors.

INTRODUCTION

Hepatitis C virus (HCV), a major human pathogen and
causative agent of parenteral non-A non-B hepatitis, is
often associated with the development of malignant
chronic disease, including steatosis, liver cirrhosis and
hepatocellular carcinoma (1-3). Hepatitis C Virus infection
is estimated to be four to five times more prevalent than
HIV-1, with over 200 million cases globally, of which ~4.1
million infections exist in the United States alone (4,5).
There is no vaccine against HCV at present, or any effective
therapy broadly targeting all genotypes of HCV. Treat-
ment options against HCV include pegylated interferon
o (PEG-IFN-a) alone or in combination with ribavirin,
a broad spectrum antiviral agent (6-8). Sustained virolo-
gical response (SVR) rates for the combination therapy are
below 50% for genotype 1 and up to 80% for genotypes
2 and 3, and are associated with severe side effects resulting
in limited patient compliance of these drugs (9-12).
Moreover, HCV undergoes rapid genetic evolution
during replication, resulting in a vast mix of variants,
thereby presenting additional challenge towards eradica-
tion of the virus in infected patients (13—15). Thus, there is
an urgent need to develop improved therapeutic options to
combat HCV infections.

HCV is an enveloped, positive-stranded RNA virus
with a ~9.6kb genome which encodes a single large
polyprotein of 3010 amino acids. Host and viral proteases
process this polyprotein into four structural (Core, El,
E2 and p7) and six nonstructural proteins (NS2, -3, -4A,
-4B, -5A and -5B) (16). Most efforts in the development
of novel HCV antiviral agents have focused on two
viral targets: the NS3 serine protease that cleaves HCV
proteins from the polyprotein precursor and the NS5B
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RNA-dependent RNA polymerase (RdRp), a crucial and
unique component of the viral replication machinery (17).

HCV NS5B is a 66 kDa phosphoprotein with predomi-
nant perinuclear localization. Purification of full-length
NS5B has been challenging due to its hydrophobic
C-terminal membrane anchorage domain. Consequently,
recombinant NS5B with 21 to 55 amino acid C-terminal
truncations has been purified from Escherichia coli or
baculovirus-infected insect cells, thereby facilitating
its structure-function investigations (18-24). Similar to
other polymerases, crystal structures of NS5B have
revealed a classical ‘right hand’ shape, with the character-
istic fingers, palm and thumb subdomains (25-27).
In vitro, NS5B nonspecifically utilizes a wide range of
homo- or heteropolymeric RNA templates in a primer-
dependent or independent (de novo synthesis) fashion
(18,20,22,24,28,29), and its activity is stimulated by GTP
under specified conditions (30). A number of recent
studies have contributed towards establishing some insight
into the mechanism of NS5B inhibition (31-35). This
provides a platform for developing new inhibitors belong-
ing either to the nucleoside analogue class (NI) that
function as rNTP substrate mimics and block the elonga-
tion of new viral RNA strands or the nonnucleoside class
of inhibitors (NNI), which inhibit the RdRp activity by an
alternative mechanism (36,37).

Coumestans belong to the flavonoids category of phyto-
estrogens. Members of this family have been reported to
possess diverse pharmacological properties such as anti-
hemorrhagic, antiproteolytic and antiphospholipase activ-
ities (38). For a long time, traditional and herbal folk
medicines have relied on naturally occurring coumestans
from plants of the family Fabaceae against a variety of
ailments. Wedelolactone, the naturally occurring active
ingredient of herbal medicine derived from Eclipta
prostrata and Wedelia calendulacea, has been extensively
used in South American native medicine as snake anti-
venom (38). In traditional Chinese medicine, coumestans
are used to treat septic shock and in Indian Ayurvedic
medicine as a treatment for liver diseases, skin disorders
and viral infections (39). Coumestans have been shown to
reduce cancer risk (40), potentially due to their structural
similarity to phytoestrogens. A series of coumestan
derivatives were recently reported to inhibit the rat Na ™,
K " -ATPase activity and to bind to the GABA 5 receptors
from the rat brain (41). In another study, wedelolactone
and six coumestan analogues were reported to possess
antihepatotoxic activity (42). More recently, wedelolac-
tone has been shown to inhibit the NF-kB-mediated gene
transcription in cells by blocking the phosphorylation and
degradation of IkBa (43).

To date, the effect of coumestan class of compounds
on any RdRp family of enzymes including HCV NS5B
has not been investigated. In this study, we describe the
identification and characterization of coumestans as a
novel class of anti-NS5B agents. Based on structure-
activity relationship (SAR) investigations on wedelolac-
tone and four synthetic coumestan derivatives and
computer modeling analysis to comprehend the SAR,
we propose that this class of compounds may provide a
new scaffold for developing potent anti-NS5B inhibitors.
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MATERIALS AND METHODS
Materials

Reagents were purchased from the following sources:
nickel-nitrilotriacetic acid (Ni-NTA) agarose and NAP-10
columns were from GE Health care; radiolabeled [o->2P]
rNTPs were purchased from Perkin Elmer; HPLC-grade
nucleoside triphosphate (NTP), RNase Out and glycogen
were from Roche; GF-B filters from Whatman; anti-His
antibody from Santa Cruz Biotechnology, Inc. and T4
polynucleotide kinase was obtained from Invitrogen.
All other chemicals were of the highest available molec-
ular biology grade and purchased from Fisher, Sigma or
Bio-Rad.

Synthesis of inhibitors

Wedelolactone (7-methoxy-5,11,12-trihydroxy-coumestan)
was purchased from EMD Chemicals Inc. and stored
as 50mM stock in 100% dimethylsulfoxide (DMSO).
The coumestan analogues LQBI16, LQB34 (PCALC36),
LQB93 and LQB96 were synthesized as described pre-
viously (41,44). The purity of the synthesized coumestan
derivatives was >95% as assessed by 'H NMR and
13C NMR spectroscopy. These analogues were dissolved
in 100% DMSO as a 30mM stock. All compounds
were stored at —20°C for not more than 2 weeks. Serial
dilutions of the inhibitors were made in DMSO immedi-
ately prior to the assay such that the final concentration of
DMSO in all reactions was constant at 10%.

Purification of recombinant HCV NS5BCA21

Plasmid pThNS5BCA21 was transformed in E. coli
DH5a and used for purification of HCV NS5BCA2I
(45,46). This plasmid carries a hexahistidine tag (His-Tag)
at the N-terminus of NS5BNIHI1b strain and lacks the
C-terminal 21 amino acid membrane-spanning domain.
Purification was carried out following the method of Oh
et al. with minor modifications (45). Briefly, the protein was
induced at 25°C for 16 h by addition of 0.2 mM isopropyl-
B-p-thiogalactopyranoside (IPTG). The sonicated cell
lysates were clarified by centrifugation at 30000g for
45min at 4°C, chromatographed on a Ni-NTA column
(GE Health care) and washed in succession with
three different buffers: NWBI1 (50 mM sodium phosphate
[pH 8.0], 10 mM beta mercaptoethanol, 20 mM imidazole,
2M NaCl, 2% Nonidet NP-40 and 10% glycerol), NWB2
(similar to buffer NWBI except that it contains 1 M NaCl
and 1% Nonidet NP-40), and NWB3 (similar to buffer
NWBI except that it contains 100 mM NaCl and no NP-40)
as described by Vo et al. (46). The bound protein was
eluted in 1 mL fractions with NEB buffer (50 mM sodium
phosphate [pH 8.0, 10mM beta mercaptoethanol,
100 mM NacCl, 10% glycerol and 300 mM imidazole) and
monitored by the Bradford colorimetric assay. The purity
of NS5BCA21 was determined by Coomassie-stained
SDS-PAGE analysis. Fractions enriched in NS5BCA2I
(>95% purity) were pooled and dialysed against buffer A
(50mM Tris—HCI [pH 8.0], 1 mM dithiothreitol (DTT),
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100mM NaCl, SmM MgCl, and 50% glycerol), divided
into aliquots and stored at —80°C.

Purification of Klenow polymerase and HIV-1 RT

Recombinant Klenow fragment of E. coli DNA polymer-
ase I was purified from an overproducing exonuclease
deficient clone (pET-3a-K) expressed in E. coli BL-21
(DE-3) by ammonium sulfate fractionation and Biorex-70
column chromatography as described before (47). Enzyme
stocks were stored in aliquots at —20°C in buffer I (50 mM
Tris—HCI [pH 7.0], ImM DTT, 100 mM NaCl and 50%
glycerol).

Two recombinant plasmids, pET-28a-RT66 and
pET-28a-RT51 encoding p66 and p51 subunits of HIV-1
RT, respectively, with metal binding His-Tag sequences at
their N-terminal region were used for isolating wild-type
heterodimeric HIV-1 RT by Ni-NTA chromatography
as described before (48). The purified enzyme preparation
was found to be greater than 95% pure as judged by
SDS-PAGE and was stable at —20°C for several months.

NS5B RdRp assay

The effect of coumestan on the RdRp activity of NS5B
was evaluated by the standard primer-dependent elonga-
tion reactions employing synthetic homopolymeric
template-primers (TP) according to previously described
procedures with some modification (24,47). Unless other-
wise specified, NS5B and RNA TP were incubated on ice
for 5min before the addition of NTPs. Enzymatic reaction
mixtures containing 20 mM Tris—HCI (pH 7.0), 100 mM
NaCl, 100mM sodium glutamate, 0.5mM DTT, 0.01%
BSA, 0.01% Tween-20, 5% glycerol, 20 U/mL of RNase
Out, 0.5uM of poly rA/U;,, 25uM UTP, 2-5uCi
[0-*P]JUTP, 300-500ng of NS5BCA21 and 0.5mM
MnCl, with or without inhibitors in a total volume of
25 pl were incubated for 1h at 30°C. The concentration of
DMSO in all reactions was maintained constant at 10%.
Reactions were terminated by the addition of ice-cold 5%
(v/v) trichloroacetic acid (TCA) containing 0.5 mM pyro-
phosphate. The quenched reaction mixtures were incu-
bated at —20°C for 1h to precipitate out denatured
polymeric RNA products, transferred to GF-B filters,
washed twice with 5% (v/v) TCA containing 0.5mM
pyrophosphate to remove unincorporated UTP, and
rinsed three times with water and once with ethanol
before vacuum drying (47). The amount of radioactive
UMP incorporated into RNA products was quantified on
a liquid scintillation counter (Packard). Activity of NS5B
in the absence of the inhibitor but containing an equiv-
alent amount of DMSO (control reaction) was sect at
100% and that in the presence of the inhibitor was
quantified relative to this control. The concentration of
coumestans inhibiting 50% of NS5B RdRp activity (ICs)
were calculated from the inhibition curves as a function of
inhibitor concentration and values obtained represent
an average of at least two independent measurements.
N,N-disubstituted phenylalanine derivative # 14, a docu-
mented NS5B inhibitor (33), was included as an internal
standard in each set of experiments.

Reactions involving pre-incubation conditions were
designed as follows: in one set, coumestans were added
to the preformed NS5B-TP complex (45 min at 4°C) and
incubated further on ice for Smin. In a second set, NS5B-
compound complex (45min at 4°C) was preformed prior
to the addition of the TP. In a third set, TP-coumestan
complex (45min at 4°C) was preformed prior to the
addition of NS5B. In all cases, reactions were initiated by
the addition of a mixture of rNTPs, incubated at 30°C for
l1h and quenched by the addition of 5% (v/v) TCA
containing 0.5mM pyrophosphate. Product formation
was determined by GF-B filter binding assay as described
above. For each set, the efficacy of the inhibitor under
modified order of reactions components was evaluated
(49,50).

HIV-1 RT and Klenow enzymatic assay

The specificity of the coumestans as inhibitors of HCV
NS5B was evaluated through HIV-1 RT and Klenow
polymerase counter screen employing standard methods
as described before (47,48) with slight modification.
In brief, assays were carried out in a final volume of
25ul in a reaction mixture containing 50 mM Tris—HCI
[pH 7.8], 1mM DTT, 0.01% BSA, 50mM KClI, 200 nM
poly rA/dTs, 25uM dTTP, 1puCi [¢-**P]dTTP, 10 mM
MgCl, and 10nM enzyme in the absence or presence of
the inhibitor. The concentration of DMSO in all reactions
was kept constant at 10%. Incubations were carried out at
37°C for 20min, and reactions were terminated by the
addition of ice-cold TCA (5%) containing 0.5mM pyro-
phosphate. The reaction mixtures were filtered through
GF-B filters, and radioactivity in the acid insoluble
fraction was determined by scintillation counting.

Gel-based incorporation assay

The incorporation of UMP on poly rA/U;,, TP by
NS5BCA21 at varying compound concentrations was
evaluated by gel analysis of products essentially as
described above for the HCV RdRp assay except that
the elongation time was reduced to 20 min. Reactions were
stopped by the addition of 25mM EDTA and 0.5% SDS.
The RNA products recovered by phenol-chloroform
extraction and ethanol precipitation were dissolved in
formamide gel loading buffer (51). The samples were
heated at 90°C for 5min and approximately one-fifth of
the RNA products were resolved on a denaturing 6%
polyacrylamide gel containing 7M urea. The extent and
pattern of synthesis were visualized by phosphorimager
analysis and quantified using ImageQuant software
(Molecular Dynamics).

Cross-linking of NS5B to TP

For cross-linking of NS5B to RNA, we engaged a
synthetic rA,y/U, TP. The U;,-primer was 5'-end-labeled
with [y-**P] ATP using T4 polynucleotide kinase,
purified on a NAP-10 column as suggested by the
manufacturer, adjusted to the required specific radio-
activity with unlabeled primer and annealed with
equimolar concentrations of unlabeled rA,, template.
Cross-linking reactions as a function of inhibitor



concentration were carried out as described earlier (47).
The reaction mixture, in a final volume of 50 pul contained
20mM Hepes (pH 7.0), S0mM NaCl, 0.5mM DTT,
0.01% BSA, 5% (v/v) glycerol, 20 U/ml of RNase Out,
200nM  of *?P-labeled Uj,/rA5y (15000 c.p.m./pmol),
1.5pug of NS5BCA21 and 0.5mM MnCl,. Reactions
were incubated on ice for 10min in the absence or
presence of the coumestans and were exposed to 254 nm
UV irradiation at a dose of 300mJ/cm® (Spectronic
Corporation). The cross-linked species were resolved by
SDS-PAGE (8%). The dried gel was analysed on a
phosphorimager and the extent of cross-linking was
quantified using ImageQuant software.

Determination of the constant(s) of inhibition (Kj)
and mode of inhibition

The mode of inhibition by the coumestan derivatives
was evaluated essentially in two series of experiments as
described by McKercher et al. (52). The first series
of experiments was performed by varying the TP (poly
rA/U},) and inhibitor concentrations. The concentration
of poly rA/U;; ranged from 0.2 to 2.5uM with a fixed
concentration of UTP at 25uM. In the second set of
experiments, reaction velocities were determined at a fixed
concentration of poly rA/U;, (0.25uM) and varying
concentrations of inhibitor and UTP (ranging from 2.5
to 80 uM). In both series of experiments, the concentration
of inhibitors ranged 0.25-4 times their 1Cs, value. Assays
were carried out in the standard RdRp buffer described
above containing 300-500 ng of NS5BCA21 and 3—6 uCi
[0-**P] UTP. Aliquots were withdrawn at defined times
and terminated by quenching with 5% TCA containing
0.5mM pyrophosphate. The extent of incorporation in
each set was determined by GF-B filter binding
assay. Kinetic results were then plotted according to the
methods of Dixon and Cornish-Bowden (53) in order to
determine the mode of inhibition and the K;. Kinetic
experiments were performed at least twice and values are
averages of at least triplicate samples. Standard deviations
for all K; were <10%.

Molecular modeling

All computations were carried out on a Dell Precision
470n workstation with the RHEL 4.0 operating system
using Glide 4.5 (Schrodinger LLC). For docking experi-
ments all the compounds were constructed using the
fragment dictionary of Maestro 8.0 and geometry
optimized using the Optimized Potentials for Liquid
Simulations-all atom (OPLS-AA) force field (54) with
the steepest descent followed by truncated Newton conju-
gate gradient protocol as implemented in Macromodel
9.5. Water molecules of crystallization were removed
from the complex, and the protein was optimized for
docking using the protein preparation wizard provided
by Schrodinger LLC and the Impact program (First
Discovery v4.5). Partial atomic charges for compounds as
well as protein were assigned according to the OPLS-AA
force field. The extra precision (XP) Glide docking
method as described elsewhere (55-58), was then applied
to dock the coumestans into the HCV NS5B NNI binding
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sites for tetracyclic indole (PDB ID: 2DXS) (59),
N,N-disubstituted phenylalanine (PDB ID: 1INHU) (35)
and benzothiadiazine (PDB ID: 2FVC) (60) inhibitors.
Molecular dynamic (MD) simulations were carried out on
the NS5B-LQB34 complex (obtained by docking LQB34
at the NS5B NNI binding site for tetracyclic indole) using
the OPLS-AA force field and a generalized Born/solvent-
accessible surface areca (GB/SA) implicit water solvent
model with a dielectric constant of 78. The complex was
subjected to 1000 ps MD simulations at 300 K with an
integration step of 1fs. System coordinates were saved
every 2ps for further analysis. 3D structures and
trajectories were visually inspected using the Maestro
graphical interface. Root-mean-square (r.m.s) deviations
from the initial structures were calculated using super-
position option in Maestro. An average structure obtained
from the last 500 ps of MD simulations was refined by
means of 1000 steps of steepest descent followed by
conjugate gradient energy minimization. Conjugate gra-
dient energy minimizations were performed four times
using the positional restraints to_all heavy atoms with
1000, 500, 100 and OkJ/mol A? force constants in
sequence. The maximum number of cycles of minimiza-
tion was 5000 and the convergence criterion for the energy
gradient was 0.001 kJ/mol A.

RESULTS

Expression and purification of recombinant HCV
NS5BCA21

To investigate the influence of selected coumestan family of
compounds on the RdRp activity of NS5B, we employed
the N-terminal His-tagged HCV NS5B polymerase (geno-
type 1b), lacking the C-terminal 21-amino acid membrane-
spanning domain (NS5BCAZ21). Deletion of the last 21
hydrophobic residues of NS5B has been reported to
enhance protein solubility (20), without compromising its
kinetic properties or its ability to perform both de novo and
primer-initiated RNA synthesis (51,61). We expressed the
recombinant NS5BCAZ21 in bacteria (Figure 1, panel A),
and purified it by Ni-NTA affinity chromatography.
In the final step, the protein was batch eluted in 1 ml
fractions with 300 mM imidazole buffer. To ascertain the
purity and homogeneity of the eluted NSSBCA21, aliquots
of eluted fractions were analysed by Coomassie blue
staining of the SDS-PAGE prior to pooling the fractions.
Eluates with the highest purity (>95%) were pooled,
dialysed and stored in aliquots at —80°C. The purified
NS5BCA21 corresponding to a single band of 64kDa
as visualized on a Coomassie blue-stained SDS-PAGE
(Figure 1, panel B), and analysed by western blot with anti-
His antibody (Figure 1, panel C) was used for all the
experiments described in this study. The RdRp activity and
integrity of the stored aliquots of NSSBCA21 was found to
remain intact over a 2-year period.

Identification of coumestans as inhibitors
of HCV NS5B RdRp activity

In a search for novel HCV NS5B inhibitors, we screened
the coumestan class of phytoestrogens for their inhibitory
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Figure 1. Purifications of recombinant NS5B. Recombinant
NS5BCA21 with N-terminal 6X Histidine-epitope tag was purified
from lysates of E. coli DHSa harboring the NS5BCA2I expression
plasmid pThNS5BCA21. The cells grown at 25°C were induced with
IPTG (200 uM). An aliquot of the induced culture was analysed by
SDS-PAGE and visualized by Coomassie blue staining. Panel A depicts
the induction profile of NS5BCA21 (indicated by asterisk). Clarified
lysates of the induced culture were purified by nickel affinity column
chromatography, eluted with 300 mM imidazole containing NEB buffer
and dialysed overnight against buffer A (50mM Tris-HCI [pH 8.0],
ImM DTT, 100mM NaCl, SmM MgCl, and 50% glycerol). The
purified protein corresponding to a single band of 64 kDa is shown in
panel B. Panel C shows the immunoblot of purified NS5BCA21
employing anti-His probe H-3 antibody (Santa Cruz Biotechnology).

potency against HCV NS5BCA21. The assay consisted
of an in vitro nucleotide incorporation assay on a homo-
polymeric poly rA/U;, TP by a functionally active
recombinant NSSBCA21 enzyme. This culminated in the
identification of wedelolactone, a naturally occurring
coumestan with a prototype coumestan scaffold (42), as
an inhibitor of HCV NS5B with an ICs, of 36.1 uM
(Table 1). A positive control consisted of NS5B in
the absence of compound but containing equivalent
amount of DMSO (10%). N,N-disubstituted phenylala-
nine derivative # 14, included as an internal reference
standard in this investigation yielded an ICs, value of
0.3uM versus the reported ICsq = 0.7uM under our
experimental condition. This variance in I1Csy value may
be attributed to the full-length recombinant NS5B
expressed from baculovirus-infected Sf9 insect cells and
a Flash-Plate scintillation proximity assay employed by
Chan et al. (33). The specificity of wedelolactone as
inhibitor of HCV NS5B polymerase was confirmed by
HIV-1 RT (ICs5y>250uM) and Klenow polymerase
(ICs9 > 700 uM) counter screen.

Based on this preliminary investigation, we carried
out SAR analysis and biological characterization of
wedelolactone and four synthetic coumestan derivatives
bearing different patterns of substitution on their
rings A and D (Table 1). All the five coumestans tested
inhibited the RdRp activity of NS5B, but with significant
differences in their potency, with 1Csq values that differed
by up to more than one order of magnitude (Table 1).
Of these, LQB34 and wedelolactone, bearing catechol
group in their D-ring were found to be the most potent,
inhibiting NS5B activity with ICsy values of 18.5uM
and 36.1 uM, respectively. This result suggests that change
in the positions of the hydroxyl and methoxy groups in the
A-ring of these coumestans did not substantially affect

their anti-NS5B activity. Similarly, LQB96 bearing a less
polar cyclic methylenedioxy group in the D-ring and a
different pattern of oxygenation at the A-ring exhibited a
slight decrease in its potency (2-3.5-fold) when compared
to wedelolactone and LQB34. LQBI16, on the other hand,
carrying methylation of the phenol group in D-ring,
in addition to inversion in the position of the hydroxyl
and methoxy groups in A-ring as compared to LQB34,
was the least potent of the five coumestans with a near
20-fold increase in its ICsy value. Interestingly, this
dramatically decreased potency was improved by nearly
two-fold with LQB93, bearing identical D-ring to LQBI16,
but carrying only the hydroxyl group in its A-ring.
Together, these data suggest that the presence of the
hydroxyl substituent in A-ring along with the catechol
group in the D-ring may be important for the anti-NS5B
efficacy of the coumestans.

Gel-based incorporation assay

To determine the effect of the coumestan compounds on
NS5BCA21-mediated incorporation of rNTP substrates
into a growing RNA strand, we carried out gel-based
analyses of the reaction products. These assays are useful
in analysing the nature and pattern of the product synthe-
sized by polymerases family of enzymes and have been
reported by several groups in context of NS5B-inhibition
mechanism on a variety of TP (34,49,52). In our studies,
we employed the poly rA/U;, TP, and monitored
incorporation of radiolabeled [o->*P] UTP substrate by
NS5BCAZ21 in the presence of increasing concentrations
of the coumestans. The products were resolved on a 6%
denaturing urea gel and visualized by phosphorimaging.
As seen in Figure 2, reactions reconstituted with increas-
ing amounts of wedelolactone or LQB34 inhibited full-
length product formation as a function of inhibitor
concentration (Figure 2, lanes 2-5). The reduction in
product formation was higher in case of LQB34 compared
to wedelolactone at similar concentrations of the inhibitor
and is in agreement with their ICsy values. The reactions
containing inhibitors did not appear to produce shorter
products as a result of abortive initiation or premature
termination. As expected, no detectable extension product
was visible at the highest concentration of wedelolactone
(Figure 2, lane 5).

Mode of inhibition

In order to gain insight into the mechanism of NS5B
inhibition by the three most potent coumestans,
we conducted two different series of kinetic analyses of
enzyme inhibition. In the first series, reaction velocities
were determined under conditions of varying concentra-
tions of TP and inhibitor in the presence of a constant
amount of UTP (Figure 3). In the second series, the
concentrations of UTP and inhibitor were varied in the
presence of a constant amount of TP (Figure 4). The data
obtained were analysed by Dixon and Cornish-Bowden
plots to determine the mode of inhibition and evaluate
the K; values. It is clear from Figure 3 that the three
coumestan compounds displayed a mixed mode of
inhibition towards the TP, with a significant competitive



Table 1. Structure—activity relationship of the Coumestan analogues
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Compounds Structure NSS5B inhibition Log P Gscore® Gscore®
(ICso uM)
Wedelolactone 36.1 0.87 —7.34 —6.71
H3CO 0]
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H;CO o}
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LQBY6 63.8 0.98 —6.91 —6.28
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g

The concentration of DMSO in all reactions was kept constant at 10%.

The ICsy values of the coumestan analogues were determined from

dose-response curves using 8—12 concentrations for each compound in duplicate. Curves were fitted to data points and ICs, values were interpolated
from the resulting curves using SigmaPlot 8.0 software. The values represent an average from at least two independent experiments.
N,N-disubstituted phenylalanine derivative 14 (ICso = 0.3 uM) was included as an internal reference standard. The predicted hydrophobicity of
the coumestans was determined from their log P values employing QikProp 3.0 program (Schrodinger software package). Gscore® and Gscore® values
were determined by docking of coumestans into NS5B NNI binding site for tetracyclic indole (PDB ID: 2DXS) and N,N-disubstituted phenylalanine
(PDB ID: INHU), respectively. A more negative Gscore indicates a better fit at the binding site.

component (intercept on the Dixon plot above the x-axis)
and a minor uncompetitive component (intercept extra-
polated from the Cornish-Bowden plot below the x-axis)
which corresponded to K; competitive values of 11.2, 4.5
and 42.6 M and K; uncompetitive values of 43, 37.5
and 342.3uM for wedelolactone, LQB34 and LQB96,
respectively. In contrast, the mode of inhibition by all
three coumestans emerged to be noncompetitive with
respect to UTP as seen in Figure 4, with distinct location
of the intercept on the x-axis in both the Dixon and the
Cornish-Bowden plots. The kinetic constants determined
from these plots corresponded to K; values of 8.4, 4.2 and
42uM for wedelolactone, LQB34 and LQB96, respec-
tively. In all cases, the K; constants correlated with the
1Cs values of the respective coumestans.

Modified order of addition influences potency of coumestans

Given the mixed mechanistic mode towards the RNA
template, we employed the modified order of reagent
addition experiments to identify the mechanistic step at
which this inhibition may be mediated. NS5B was pre-
incubated with either inhibitor or RNA before adding
the remaining components to initiate RNA synthesis. To
exclude the possibility that inhibition may be mediated as
a consequence of direct inhibitor binding to the RNA and
precluding it from the RdRp reaction, we set up another
series of reactions wherein the inhibitor was pre-incubated
with the RNA prior to the addition of the other
components. As seen in Figure 5, both wedelolactone
and LQB34 exhibited a downward shift in their 1Cs
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Wedelolactone
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Figure 2. Effect of coumestan derivatives on the RNA polymerase
activity of NS5B. The RdRp activity of NSSBCA21 at increasing
concentrations of the indicated compounds was determined in a
standard RdRp assay containing poly rA/U, as the TP and Mn*"
as the divalent cation at 30°C for 20min. The RNA product
synthesized was resolved on a 6% denaturing urea gel and visualized
by phosphorimaging. Lane | in each set represents the control reaction
carried out in the absence of the coumestan compound. Panel A: lanes
2-5 represent wedelolactone concentrations of 10, 25, 50 and 100 uM.
Panel B: lanes 2-5 indicate LQB34 concentrations of 1, 5, 10, 25 and
50 uM, respectively. The position of the Uj,-primer is indicated by an
arrow to the left of the gel.

values upon pre-incubation with NS5B. Moreover, under
these conditions, complete inhibition was gradually
reached at higher inhibitor concentrations. Further,
separation of wedelolactone from the NSS5B-inhibitor
pre-incubation complex on a Sephadex G25 column also

decreased the RdRp activity of NS5B (data not shown),
suggesting the direct binding of the inhibitor to NS5B.
Conversely, NS5B-RNA pre-incubation prior to the
addition of the inhibitor resulted in an upward shift of
the ICs values. This increase was approximately four-fold
in case of LQB34 (from 18.5 to 70 uM) against a modest
near two-fold increase seen with wedelolactone (36 to
80 uM). In this scenario, the inhibition curves for LQB34
and wedelolactone depicted an altered trend since a
significant fraction of NS5B activity was not inhibited
even at very high coumestan concentrations, this effect
being more pronounced with LQB34. In addition, the
observation that the ICsy values did not change upon
pre-incubation of coumestans with the RNA suggests that
the inhibitor did not bind the RNA. Cumulatively, the
pre-incubation data is consistent with the kinetic experi-
ments and mode of inhibition and suggests that the
coumestans bind to NS5B directly and exert their inhi-
bitory effect by interfering with an early step in the RARp
reaction such as productive RNA binding to the enzyme.

RNA competes with coumestan for NS5B binding

Similar to other polymerases, NS5B requires multiple sub-
strates, including a TP or a template-initiation nucleotide
complex in a sequential fashion, in which the first
step is formation of the binary complex involving
binding of NS5B to the TP (62). We have earlier
demonstrated the formation of this binary complex by
polymerase-TP cross-linking experiments for the Klenow
fragment of E. coli DNA polymerase I (47), MuLV-RT
(63) and HIV-1 RT (48). The observation that pre-
incubation of NS5B-RNA protected the enzyme from
being inhibited by the coumestans, prompted us to
ascertain whether the coumestans adversely affect
the binding of the TP to NS5B. A direct photochemical
cross-linking of 5-*?P-labeled Uj»/rA,y to NS5B was
performed by UV irradiation of the NS5B-TP complexes
in the presence of increasing amounts of coumestans
under standard RdRp assay conditions. The extent of
NS5B-TP covalent complex formed as a function of
inhibitor concentration was analysed by SDS-PAGE.
Results shown in Figure 6 indicate a reduction in the
E-TP binary complex formation in the presence of
the inhibitor. This reduction directly correlated with the
inhibitor concentration (Figure 6, lanes 2-9) and is in
agreement with the competitive mode of TP binding
as well as the protective effect of RNA TP against
coumestan-mediated inhibition of NS5B. Further, the
reduction of NS5B-RNA binary complex species was
higher in case of LQB34 compared to wedelolactone and
correlated well with their respective ICs values. The binary
complex formation data substantiates our hypothesis that
inhibition may be mediated at the RNA binding step
among others.

Hydrophobicity of coumestans

Hydrophobicity assessment is a valuable index utilized
during drug development since it serves as an excellent
predictor of drug absorption, bioavailability and drug-
receptor interactions. In order to examine the relationship
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Figure 3. K; determination of coumestan compounds and mode of inhibition with regard to template/primer substrate. Reaction velocities were
measured at varying template/primer concentrations (0.2, 0.5, 0.7, 1.0, 1.5 and 2.3 uM plotted as closed circles, open circles, closed triangles, open
triangles, closed squares and open squares, respectively) with fixed concentration of UTP (25uM). Data were analysed by the Dixon and Cornish-
Bowden plots of the reciprocal velocity at indicated concentrations of the individual coumestan derivatives. All three coumestan derivatives displayed
a mixed mode of inhibition towards template/primer with a major competitive component (intercept on the Dixon plot above the x-axis) and a minor
uncompetitive component (intercept extrapolated from the Cornish-Bowden plot below the x-axis). The kinetic parameters corresponded to K;
competitive values of 11.2, 4.5 and 42.6puM and K; uncompetitive values of 43, 37.5 and 342.3uM for wedelolactone, LQB34 and LQBY6,
respectively.
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Figure 4. Evaluation of inhibition kinetic parameters of coumestan compounds with regard to UTP substrate. Reaction velocities were measured at
increasing concentrations of UTP substrate (2.5-80 uM) on poly rA-Ul2 template/primer (0.25uM) in the absence or presence of increasing
concentrations (5-140 uM) of the indicated inhibitor. Panels A, B and C depict the Dixon and Cornish-Bowden plots for wedelolactone, LQB34 and
LQBY6, respectively. Both plots display similar intercept profiles on the x-axis indicating a noncompetitive mode of inhibition with regard to UTP.
The K; values corresponded to 8.4, 4.2 and 42 uM for wedelolactone, LQB34 and LQBY6, respectively.
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Figure 5. NS5B inhibition by wedelolactone (A) and LQB34 (B).
Dependence of inhibition curves on NS5B-RNA (TP + E), NS5B-
Inhibitor (E + I) and RNA-Inhibitor (TP + I) complex formation was
examined by pre-incubating the indicated components for 30 min at 4°C
followed by evaluation of the NS5B RdRp activity as described in
the text. UMP incorporation into product was expressed as percent of
control (no inhibitor) and plotted against increasing concentrations
of the indicated coumestan compounds.

between the coumestan-mediated inhibition of NS5B and
the chemical properties of this group of compounds, we
assessed the relationship between the calculated logP and
ICs5y values. The logP value represents the partition
coefficient, which is a measure of differential solubility of
a compound in octanol/water mixture. The logP values of
the coumestan compounds were calculated using QikProp
3.0 program available in Schrodinger software package
(Table 1) and plotted against their corresponding 1Csq
values (Figure 7). The derived logP values were least for
LQB34 and wedelolactone and highest for LQB16. A plot
of logP versus ICs, values of coumestans shows an inverse
correlation between hydrophobicity and inhibitory
potency of this class of compounds (Figure 7; P <0.02,
Spearman test). This observation may be predictive of a
trend for less hydrophobic coumestans to be better
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primer (200K Cerenkov c.p.m.) in a standard irradiation mixture in the
absence or presence of increasing concentrations of the indicated
coumestan compound and exposed to UV radiation. The cross-linked
species were resolved by SDS-PAGE and visualized on a phosphor-
imager. The extent of NS5B-RNA cross-linked species formed was
quantified using ImageQuant software (Molecular Dynamics). Lane 1
in each set represents the control reaction carried out in the absence of
the inhibitor. Lanes 2-9 represent indicated compounds at concentra-
tions of 1, 5, 10, 15, 30, 50, 100 and 200 puM, respectively.
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Figure 7. Correlation between hydrophobicity and potency of coume-
stans. The predicted hydrophobicity of the coumestans was determined
from their logP values employing QikProp 3.0 program (Schrodinger
software package) and plotted against their ICs, values to establish
a correlation between the potency and hydrophobicity of the
coumestans (P <0.02, Spearman test).

inhibitors of NS5B and may assist in efforts to design
better coumestan-based inhibitors.

Binding mode of the most potent coumestan (LQB34)

To further understand SAR and investigate the potential
binding mode of the coumestan derivatives to HCV NS5B,
we performed molecular modeling studies employing
Glide docking software. To rule out any bias, each
of the three reported HCV NS5B NNI binding site
represented by tetracyclic indole (59), N,N-disubstituted
phenylalanine (35) and benzothiadiazine (60) inhibitors
was examined for coumestan binding. As a preliminary
step, we validated the accuracy of our docking approach
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by determining how closely ‘the lowest energy pose
(binding conformation)’ predicted by the object scoring
function, Glidescore (Gscore) in our case, resembles the
experimental binding mode as determined by X-ray
crystallography. Towards this end, we removed the
aforementioned crystallographic bound inhibitors from
their binding sites and then re-docked them into their
respective binding site on HCV NS5B polymerase. We
found a good agreement between the localization of the
inhibitor upon docking and from the crystal structure
as is evident from the 0.827, 0.748 and 0.297 A root
mean square (rms) deviations for tetracyclic indole,
N,N-disubstituted phenylalanine and benzothiadiazine
inhibitors, respectively. This confirms the reliability
of the Glide docking procedure in reproducing the
experimentally observed binding mode for NS5B
inhibitors. Therefore, the parameters set for Glide docking
appear reasonable to provide meaningful insight into the
predicted binding mode for coumestans.

Employing Glide molecular docking, we investigated
the interactions of the coumestan analogues at the HCV
NS5B NNI binding site and analysed the relationship
between their calculated binding energies (Gscore) and
ICso values. As seen in Table 1, docking of coumestans
into NS5B NNI binding site for tetracyclic indole
(allosteric pocket 1) yielded an excellent correlation
between their Gscores and ICsy values. LQB34, the best
inhibitor of this series exhibited the most negative Gscore
in comparison to the other analogues, indicating a better
fit at the binding site, whereas LQBI16, the least potent
coumestan displayed the least negative Gscore, with other
analogues displaying binding scores consistent with their
ICso values. A somewhat similar trend of overall agree-
ment between the binding energies and ICsy values was
also observed upon docking the coumestans at the NS5B
NNI binding site for N,N-disubstituted phenylalanine
(allosteric pocket 2), with the exception that LQB93 and
LQB96 which exhibited a three-fold difference in their
ICsy values showed near similar Gscores. Further
comparison revealed that the coumestans exhibited a
better fit in allosteric pocket 1 versus allosteric pocket 2, as
deduced from the relatively more negative Gscores in the
former pocket. In contrast, binding of coumestans into the
NS5B benzothiadiazine-binding site (allosteric pocket 3)
located adjacent to the active site was ruled out based on
the poor Gscore values derived from the scoring function
at this site (data not shown). Together this analysis
suggests that allosteric pocket 1, represented by the NS5B
NNI binding site for tetracyclic indole may be the
potential site of coumestan binding.

To gain insight into the mechanism of inhibition by the
coumestans, we analysed the interactions of the docked
conformation of LQB34 within allosteric pocket 1
(Figure 8A and 8B). The benzofuran moiety of LQB34
was located in a deep hydrophobic pocket formed by
residues Leu392, Ala395, Ala396, Ile424, Leud425 and
His428 whereas its coumarin moiety interacts with Val494,
Pro495 and Trp500 and was fairly solvent-exposed.
Further, LQB34 was engaged in a series of electrostatic
interactions across the entire shallow-binding pocket of

Pro 495

Figure 8. (A) Docked conformation of the most potent compound
LQB34 in the HCV NS5B NNI binding site for tetracyclic indole
(PDB ID: 2DXS) (54). Hydrogen bonds are shown as dotted yellow
lines. Distances are shown as dotted pink lines. Active site amino acid
residues are represented as sticks while the inhibitor is shown as ball
and stick model. (B) Docked (ball and stick model) conformation of
LQB34 overlaid within the Macromodel surface of the allosteric-
binding site of NS5B. (C) Hydrophilic (green color) and hydrophobic
(white color) surface area of the allosteric-binding site of NS5B (PDB
ID: 2DXS) in the presence of the most potent compound LQB34.

NS5B. Notably, its 8-OH group forms hydrogen bond
with the backbone of Leu392 whereas its 9-OH group was
located at hydrogen bonding distances (3.37 A) from the
backbone of Ile424. Its benzofuran ring oxygen exhibited
electrostatic contact with the His428 ring -NH function
whereas the oxygen atom of its 2-OCH3 group was closely
located (2.34 A) to the guanidine function of Arg503 and



possibly interacts through hydrogen bond. The predicted
binding mode agrees well with the observed SAR. For
instance, conversion of the 8-OH into 8-OCHj; group
results in the loss of hydrogen bond interaction between
the backbone of Leu392 of NS5B and the inhibitor, in
addition to causing steric hindrance with the side chain of
Ala395. This may account for the dramatically reduced
inhibitory potency of LQB16 and LQB93 (Table 1).
Removal of this steric hindrance by modification of 8- and
9-OH function into a methylenedioxy derivative such as in
LQB96 reasonably improved the potency of the inhibitor.
Thus, the predicted pose of LQB34 suggests that extension
of the 8- and 9-OH function may be detrimental to the
potency of the inhibitor.

DISCUSSION

Identification and characterization of several structural
classes of NNIs of NS5B has previously been reported.
In this study, we have identified the coumestan family
of 1isoflavones as novel inhibitors of HCV NS5B
RdRp activity in vitro. Coumestans occur naturally in a
balanced diet, are readily bioavailable, and are not
associated with any type of toxicity (64,65), thus making
them potentially attractive candidates for development as
clinically relevant agents.

The basic structure of the coumestan scaffold including
its coumarin moiety can be modified chemically to
enhance SAR, an aspect corroborated in the present
investigation where LQB34 was the most potent (~2 to
20-fold lower ICs, value) of the five coumestans tested.
The variable potency of these compounds may be
attributed to the different pattern of oxygenation on
their A- and D-ring structures as is substantiated by our
data, wherein LQB16 carrying methoxy groups on both
rings A and D exhibited reduced anti-NS5B activity
in contrast to wedelolactone and LQB34, the two
most potent coumestans of this group, both of which
harbored hydroxyl and catechol groups on their rings
A and D, respectively. Not surprisingly, the anti-NS5B
efficacy of these compounds inversely correlated with
their hydrophobicity, thus providing an important
physicochemical parameter to be considered for future
optimization of coumestan structures.

A number of basic similarities were revealed in the
mechanism of inhibition of coumestans with other
characterized NNIs of HCV polymerase. Kinetic
experiments yielded a noncompetitive mode of inhibition
of the coumestan analogues towards nucleotide sub-
strates, akin to representative compounds of the six
chemically distinct scaffolds of NNIs (i) benzothiadiazine
(31,60), (ii)) benzylidene (49,66), (iii) benzimidazole
(50,67), (iv) N,N-disubstituted phenylalanine (33),
(v) dihydropyranone (68) and (vi) pyrano indole (69),
all of which are noncompetitive inhibitors of NTP incor-
poration and reported to bind directly to NS5B poly-
merase. In the present study, we have no direct evidence
linking coumestan binding to NS5B. However, the
somewhat increased potency of these compounds upon
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pre-incubation with NS5B, in addition to the observation
that the resolved NS5B-inhibitor complex demonstrated
reduced RdRp activity, argues in favor of direct coume-
stan binding to NS5B.

In the modified order of addition experiments, the
coumestans, like the benzylidenes (49) but contrary to the
benzothiadiazines (70), exhibited decreased efficacy under
conditions of NS5B-RNA pre-incubation. Hence, access
to the coumestan-binding site may be partially occluded
either directly by the presence of nucleic acid, or by con-
formational changes that follow RNA binding. Evidence
for RNA-mediated protection of NS5B inactivation is also
indicated by the steady state kinetic data wherein these
analogues exhibited a mixed mode of inhibition towards
the template/primer with a significant competitive com-
ponent similar to that reported for the benzimidiazoles
(52). We believe that the coumestans, similar to the
benzylidene and benzimidazole series, inhibit NS5B at an
early step during initiation of RNA synthesis, possibly
concurrent with NS5B-RNA complex formation step.
This speculation is consistent with our observation that no
abortive or prematurely terminated products were
observed in the primer-clongation reactions containing
the coumestans. Given that NS5B like other polymerases
follows an ordered mechanism of RNA synthesis, wherein
nucleic acid substrate must first bind, followed by
nucleotide substrate in order to form a productive
polymerase complex, evidence that the two most active
compounds, wedelolactone and LQB34, compete with the
RNA/RNA TP in the cross-linking experiments, is
certainly indicative of inhibition of the formation of a
prepolymerase complex. Importantly, the decrease in
formation of binary complex correlates well with the
inhibition of polymerization activity, suggesting that these
compounds inhibit NS5B by binding mostly the free
enzyme rather than a preformed E-RNA/RNA complex.
Hence, the coumestans are likely to bind at an allosteric
site and decrease binding of RNA through an allosteric
mechanism.

Crystallographic studies on NS5B in complex with
allosteric inhibitors have suggested the presence of a
relatively shallow-binding site (59). A shallow-binding
pocket facilitates access to the binding partner (in our
case coumestans) and enhances the on-rate. However, a
shallow interface will also increase access of free water
molecules, which would undermine the stability of
the partnering complex unless the complex is stabilized
by other means. In order to design tight-binding inhibitors
for this site of NSS5B, it is crucial to evaluate the
advantages and disadvantages of the shallow pocket.
For example, NS5B allosteric-binding site is predomi-
nantly solvent-exposed, thus for an inhibitor to approach
and bind to this site requires significant displacement
of solvent molecules while the inhibitor itself can
simultaneously undergo predominant desolvation upon
moving from bulk to the shallow-binding pocket. In case
of coumestans, the coumarin moiety at the binding site
remains solvent-exposed thereby reducing desolvation
penalty to a minimum. Displacement of water molecules
from the binding site usually leads to increase in entropy,



1494 Nucleic Acids Research, 2008, Vol. 36, No. 5

provided lost protein-water contacts are reestablished by
the inhibitor. We propose that the two hydroxyl groups
present in the D-ring form hydrogen bonding network
with the binding site residues. Such interactions can
compensate for the lost water-protein interactions. Our
docking results have shown that free coumestans do not
undergo conformational change upon binding to NS5B
due to the lack of rotatable bonds (except —-OCHj5 groups)
and therefore do not loose entropy thereby reflecting a
strong correlation between their inhibitory activities and
calculated binding energies (Gscore).

Considering protein flexibility in solution, the behavior
of the predicted complex of the most potent inhibitor
LQB34 was studied in a dynamic context. MD simulations
yielded a stable complex reinforcing the validity of the
Gscore. The superposition of the coordinates of an
energy-minimized average structure obtained from the
last 250 trajectories, onto the starting complex yielded
r.m.s.d values of 1.430 and 1.210 A for all atom-based and
ligand atom-based superposition, respectively. The r.m.s.d
value of 1.430A for all atoms of the NS5B-LBQ34
complex suggests that NS5B undergo conformational
changes which might affect the RNA binding to the
enzyme upon coumestan binding. The stability of
the hydrogen bonding network predicted by Glide XP
docking method was examined by monitoring the
percentage occurrence of predicted hydrogen bonds
during simulation time. Analysis of the MD trajectory
suggested the occurrence of Glide-predicted hydrogen
bond in 85% of the complexes. The new hydrogen bond
(9-OH----O 1le424) was predicted in 27% of the
complexes. A detailed investigation on the binding
modes of coumestan inhibitors to NS5B followed by
MD simulations is likely to provide useful guideline to
design future inhibitors with enhanced activity.

The binding mode of LQB34 suggests ways to further
improve upon potency of coumestan derivatives.
For example, the C-7 position of the benzofuran moiety
can be substituted to fit the narrower hydrophobic pocket
formed by Val37, Leu392, Ala393, Leud92 and Val494
(Figure 8B). Structural studies have shown that Arg503
stabilizes the NS5B NNI such as benzimidazole/
indole-based inhibitors (59). Hence, a -COOH modifica-
tion of the C-2 methoxy group located in proximity of
Arg503 would allow a favorable charge—charge interaction
for binding. In addition, the 3-hydroxy group of LQB34,
which i1s not in direct contact with NS5B, can be
modified to attain desired pharmacokinetic profile.
Also, modification of coumestans’ benzofuran and/or
coumarin core structure and peripheral hydroxyl and/or
methoxy groups to better accommodate the hydrophobic/
hydrophilic surface map of NS5B binding pocket
(Figure 8C) may prove instrumental for further SAR
studies on coumestan derivatives.

In conclusion, we have identified and described the
mechanism of inhibition of a new series of NNIs
belonging to the coumestan family. Coumestans represent
novel structural templates of anti-NS5B inhibitors which
can be further modified into very potent drugs against
HCYV through the application of molecular modeling and
SAR analyses. Studies are underway to develop and screen

other coumestan derivatives and evaluate their efficacy in
HCYV replicon system.
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