
Heliyon 9 (2023) e23267

Available online 3 December 2023
2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Comprehensive analysis of mitophagy-related subtypes of breast 
cancer and the association with immune related characteristics 

Yaqing Zhou a, Xing Wei b, Weimiao Li a, Shuqun Zhang a, Yonglin Zhao a,* 

a Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China 
b Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China   

A R T I C L E  I N F O   

Keywords: 
Breast cancer 
Mitophagy 
Subtypes 
Tumor microenvironment 
Precise treatment 

A B S T R A C T   

Breast cancer (BRCA) is a common neoplasm characterized by high levels of molecular hetero-
geneity. Previous studies have noted the importance of mitophagy for the progression and 
prognosis of BRCA. However, little was found in the similarity and difference of mitophagy- 
related gene expression patterns of BRCA. This study intended to investigate the differences in 
functional activation, somatic mutation, and immune-related characteristics among different 
subtypes of BRCA associated with mitophagy. Based on bioinformatics analysis, we systematically 
examined the heterogeneity of breast cancer concerning mitophagy and observed two distinct 
subtypes with different tumor microenvironments and prognoses. BRCA samples from TCGA 
database were divided into two subtypes based on the expression of 29 mitophagy-related genes 
by ConsensusClusterPlus algorithm. Two mitophagy-related subtypes with marked prognostic 
discrepancies were significantly correlated with race, intrinsic subtype grouped based on PAM50 
subtype purity and BRCA Pathology. The results of GSVA and immune microenvironment analysis 
showed significant differences in cancer-related and immune-related features between the two 
subtypes. METABRIC datasets were extracted to validate the immune characteristics scoring and 
the expression of immune checkpoints between different subtypes based on the medium value of 
TCGA-Mitophagy score. It is noteworthy that the present study is the first to demonstrate a new 
classification based on the mitophagy of breast cancer, which comes up with a new perspective 
for the assessment and prognoses of BRCA.   

1. Introduction 

Breast cancer (BRCA) has become the most commonly diagnosed tumor in the world, with the number of new cases around the 
world up to 2.26 million according to the latest global statistical data in 2020. Meanwhile, BRCA has become the leading cause of 
cancer mortality in women worldwide [1]. BRCA has high molecular-level heterogeneity, and tumor heterogeneity is closely asso-
ciated with the tolerance of therapy [2]. Pathological typing combined with molecular markers is the usual diagnostic method for 
BRCA. In clinical practice, BRCA is categorized as luminal A-like, luminal B-like, basal-like and HER2-enriched type according to the 
status of ER, PR and HER2 [3,4]. Compared with other malignant tumors, the diagnosis and treatment for BRCA are more established 
and standardized, but the status of patients with advanced breast cancer is still not optimistic. The improvement of individualized 
treatment for BRCA is partly based on the progression of biological markers and mechanisms, and new subtypes or markers thus need 
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to be further explored [5,6]. 
Autophagy is a self-degradation of cells, most of which are non-selective for cytosolic cargo [7], but some are targeted to engulf and 

degrade specific cargoes, such as mitophagy. Mitophagy is a particular autophagy form, in which mitochondria are selectively 
degraded by autophagolysosome [8]. Generally, mitophagy plays an essential role in removing dysfunctional mitochondria to sustain 
normal function and restrict the generation of ROS. Moreover, mitophagy can also reduce excess mitochondria, improve the adap-
tation to hypoxia and nutrient deprivation, and further limit the production of excessive ROS [9]. Further research has revealed that 
the role of mitophagy in tumor growth, metastasis and therapy resistance is very important, but the function of mitophagy is complex, 
and its pro- or anti-tumor effect may be based on the stage, type, metabolism or microenvironment of the tumor [10]. Although we had 
some realization of the relationship between mitophagy and cancer, the specific mechanisms of every tumor are unclear due to the 
complexity and variety of mitophagy, such as in BRCA. Mitophagy may be a valid and more targeted therapy for BRCA. Depending on 
the differentially expressed genes (DEGs) of mitophagy-related tumor classification, 13-gene signature was built as a novel biomarker 
for the prognosis of BRCA and provided a systemic analysis of therapy response [11]. 

Although prognostic models can provide more direct predictive information and clinical applications for tumors, the challenges of 
model complexity and large sample requirements were not ignored. In the present study, we aimed to further explore the functional 
activity, genetic and immune characteristics of different mitophagy-related subtypes. To assess the similarity and difference between 
BRCA samples in terms of mitophagy-related gene expression and immune-related characteristics, we used consensus clustering al-
gorithm to classify BRCA samples. We divided 1076 BRCA samples into two clusters based on the expression of 29 mitophagy-related 
genes. Then, we analyzed progression, clinical and biological characteristics, and immune features of two subtypes. Finally, we 
assessed the therapeutic sensitivity of the two mitophagy-related subtypes. These results further proved the cluster was reasonable and 
practicable. 

2. Materials and methods 

2.1. Data source 

In the present study, we downloaded the transcriptomic data, copy number variation (CNV) data, and clinical information of 1076 
BRCA samples from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). The somatic mutation data of 988 cases of 
these BRCA samples were also downloaded for mutation analysis. The 29 mitophagy-related genes (MRGs) were extracted from the 
mitophagy (R-HSA-5205647), PINK1-PRKN mediated mitophagy (R-HSA-5205685) and receptor-mediated mitophagy (R-HSA- 
8934903) pathways from the Reactome database after de-duplication according to the previous study [12]. METABRIC dataset 
containing 1980 BRCA samples was downloaded from cBioPortal as an external validation dataset. 

2.2. Identification of mitophagy-related molecular subtypes of BRCA 

Based on the expression profiles of 28 MRGs expressed in TCGA datasets, the 1076 BRCA samples were classified by consensus 
clustering algorithm using the ‘ConsensusClusterPlus’ package (version 1.54.0) K-means clustering algorithm was employed to stratify 
the data into a given number of robust clusters setting ‘maxK’ as 6 [13]. The cumulative distribution function (CDF) curve and CDF 
delta area curve were plotted to determine the optimal number of mitophagy-related subtypes. Consensus matrix heatmap was 
generated for representation of cluster membership. Next, the principal component analysis (PCA) and uniform manifold approxi-
mation and projection (UMAP) analyses were implemented to visualize the distribution of different subtypes of samples. Besides, the 
gene expression of MRGs and survival differences between different subtypes were examined through pheatmap (version 1.0.12) and 
survival (version 3.2–11), respectively. 

2.3. Correlation analysis of clinical characteristics 

The R package ComplexHeatmap (version 2.12.0) was utilized to plot the clinical trait heatmap [14]. Using the R package 
ggstatsplot (version 0.9.1), histograms of the proportion of the number of patients with clinical traits were plotted between different 
mitophagy-related molecular subtypes. The clinical factors that differed in the number of patients between different mitophagy-related 
molecular subtypes were determined by chi-square tests. 

2.4. Somatic mutation and copy number variation (CNV) analysis 

Single-nucleotide polymorphisms (SNPs) mutation analysis was processed with the ‘maftools’ R package (version 2.12.0) [15]. 
CNV analysis was conducted in ‘GISTIC2.0’ (version 2.0.22) [16]. The mutation lanscape and proportions of mutation types between 
the mitophagy gene subtypes was compared. 

2.5. Gene set variation analysis (GSVA) 

The GSVA algorithm in the R ‘GSVA’ package (version 1.42.0) was applied to calculate the pathway and immune signature scores 
for each tumor sample based on the ‘Hallmark gene sets’ downloaded from the MsigDB database (https://www.gsea-msigdb.org/), the 
13 oncogenic hallmarks, epithelial-to-mesenchymal transition (EMT), and cancer stem cell (CSC) signatures provided by Sanchez-Vega 
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et al. [17], and the 3 immune-related functional signatures provided by Bindea and Thorsson, including Immune suppression, Cytolytic 
Activity, and Antigen Processing Machinery [18,19]. The heatmap and box plot were graphed by R ‘pheatmap’ package (version 
1.0.12) and ‘ggpubr’ package (version 0.4.0) respectively. The differences between different subtypes were compared using the 

Fig. 1. The mitophagy-related molecular subtypes of breast cancer. (A) Consensus clustering of 1076 samples in TCGA-BRCA based on mitophagy- 
related genes. The cumulative distribution function (CDF) diagram revealed that the CDF curve remains relatively flat at K = 2, the abscissa is the 
consistency index, indicating the difficulty of clustering. The relative change of the area under the CDF curve between K and K-1 indicates a more 
pronounced slope change after K values of 2 and 3. Therefore, K = 2 were chosen as the optimal number of clusters and consistency matrix was 
exhibited. The numbers on the right is the value of k, the rows and columns of the matrix represent samples, the values of the matrix are represented 
from 0 to 1 in white to dark blue. (B) Principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) diagram of 
the two clusters in TCGA-BRCA. Cluster1: blue; Cluster2: yellow. (C) The expression heatmap of 28 mitophagy-related genes in two clusters. 28 
genes were used as sample annotations, red represents cluster1 and blue represents cluster2. (D) The survival curves of two clusters. 
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Fig. 2. The clinical characteristics of two subtypes. (A) The heatmap of the correlation between clinical factors and autophagy-related subtypes. (B) 
The proportion of samples in two clusters for each clinical data were compared using chi-square tests. 
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Wilcoxon test. Further, Cytolytic (CYT) activity score was calculated based on the geometric mean of TPM expression of GZMA and 
PRF1, Antigen Presentation Machinery (APM) score, Tumor infiltrating lymphocytes (TILs) levels and Tumor Inflammation Signature 
(TIS) were calculated using GSVA method to compare the differences in four immune markers infiltrating profiles. 

2.6. Tumor microenvironment (TME) analysis 

The immune score, stromal score, ESTIMATE score, and tumor purity for each BRCA sample were computed by the ‘ESTIMATE’ R 
package (version 1.0.13) [20]. Through the CIBERSORT algorithm [21], fraction of immune infiltrating cells were calculated for each 
BRCA sample. The differences between different subtypes were compared using the Wilcoxon test. 

2.7. Therapy analysis 

The TIDE website was utilized to infer and assess the sensitivity of each subtype to immune checkpoint blockade (ICB) therapy [22]. 
Via the ‘pRRophetic’ package (version 0.5) [23], we computed IC50 values for 138 chemotherapy drugs for two subtypes of patients to 
speculate on their sensitivity to chemotherapy. The differences between different subtypes were compared using the Wilcoxon test. 

2.8. Verify of the immune related scores via the METABRIC cohort 

METABRIC datasets were extracted to validate the immune characteristics and the expression of immune checkpoints between 
different subtypes. Firstly, using PCA reduction techniques to reduce the dimensionality of the METABRIC datasets and improve the 
classification effect. Next, we defined the sum of the first principal component variable in the TCGA-PCA (PC1) and the second 
principal component variable (PC2) as Mitophagy score. Based on the median value of the TCGA-mitophagy score, the samples in the 
METABRIC dataset were grouped based on the sum of PC1 and PC2 (Mitophagy score) of each sample calculated in METABRIC-PCA. 
Wilcoxon test was utilized to explore the levels of four immune markers and three immune checkpoints. 

2.9. Statistical analysis 

The R programming language was used to conduct all analyses, and the data from different groups were compared by the Wilcoxon 
test and chi-square tests was used for the differences in clinical characteristics. If not specified above, a p-value less than 0.05 was 
considered statistically significant. 

3. Results 

3.1. Recognition of mitophagy-related molecular subtypes of BRCA 

Based on the expression of 29 mitophagy-related genes extracted from the Reactome database, consensus clustering was conducted 
to determine the optimal number of mitophagy-related subtypes. The cumulative distribution function (CDF) diagram revealed that 
the CDF curve remains relatively flat at K = 2, suggesting a high level of clustering consistency. And meanwhile, the area under CDF 
curve diagram indicates a more pronounced slope change after K values of 2 and 3. Therefore, K = 2 were chosen as the optimal 
number of clusters, and 1076 BRCA samples were clustered into two clusters by consistent clustering, with cluster1 containing 816 
samples and cluster2 containing 260 samples, respectively (Fig. 1A). PCA and UAMP dimensionality reduction analysis demonstrated 
that two clusters were located at different positions and could be clearly distinguished, indicating a credible result for clustering 
(Fig. 1B). By observing the gene expression and survival differences between the two groups, the heatmap revealed that mitophagy- 
related genes were highly expressed in cluster1 (Fig. 1C), and survival analysis demonstrated a significant survival discrepancy be-
tween the two subtypes as well (Log-rank test, P = 0.045), with worse survival for cluster1 (Fig. 1D). 

3.2. Clinical features and biological functional characteristics of mitophagy-related subtypes 

To better illuminate the distinctions between subtypes, we examined clinical data of TCGA and GSVA enrichment analysis was 
performed. Using the chi-squared test, it was found that there were a significant differences in the proportions of BRCA cohorts with 
different race (P < 0.001) between cluster1 and cluster2, as well as PAM50 molecular subgroups (P < 0.001), and BRCA Pathology 
subgroups (P < 0.016) (Fig. 2A and B and Table S1). Comparatively speaking, most white people tended to be in cluster1 (70.7 %). The 
percentage of luminal A type was highest in cluster1 (55.8 %). The main pathology of clusters was IDC, but less MBC in cluster2. 

Fig. 3. Gene set variation analysis (GSVA) of mitophagy-related subtypes. (A) Heatmap and boxplot for differences in gene pathway enrichment 
scoring of Hallmark gene sets between two clusters. (B) Heatmap and boxplot for differences in enrichment scoring of 13 oncogenic-related and 
three immune-related functional pathways between two clusters. The statistical differences between the two clusters were tested by the Wilcoxon 
test. (*P < 0.05; **P < 0.01; ***P < 0.001; ****p < 0.0001; ns, non-significant). (C) The immune characteristics of two subtypes, including Cytolytic 
(CYT) activity score, Antigen Presentation Machinery (APM) score, Tumor infiltrating lymphocytes (TILs) levels and Tumor Inflammation Signa-
ture (TIS). 
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Fig. 4. Waterfall plot for the top 20 most frequently altered genes in different subtypes. (A) cluster1, (B) cluster2. Each column represents a sample 
with the stacked barplot on the bottom displaying the clinical data and the fraction of conversions for each sample. The barplot and the percentage 
numbers on the right display the proportion and mutation frequency of each gene in all samples, respectively. 
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For the gene pathway enrichment scoring of Hallmark gene sets between two clusters, 42 distinct Hallmark pathways were 
discovered using GSVA enrichment analysis, and as compared to cluster2, cluster1 was enriched in mitotic spindle (P < 0.001), TGF- 
signaling (P < 0.001), androgen response (P < 0.001) (Fig. 3A). Further elucidating the distinction in malignant pathways and immune 
pathways of subtypes, oncogenic hallmark data and immune-related functional pathways were analyzed, 13 oncogenic pathways and 3 
immune-related functional pathways were all significantly different between two subtypes (Fig. 3B). Among them ‘PI3K’ (P < 0.05), 
‘NRF2’ (P < 0.001), ‘TGF-Beta’ (P < 0.001), ‘TP53 pathway’ (P < 0.05), ‘RTK RAS’ (P < 0.05), ‘NOTCH’ (P < 0.001), and ‘HIPPO’ (P <
0.001) were enriched in cluster1, ‘cell cycle’ (P < 0.01), ‘MYC (P < 0.01)’, ‘WNT’ (P < 0.01), ‘CSCs activity’ (P < 0.001), ‘angiogenesis’ 
(P < 0.001), ‘EMT’ and all of 3 immune-related functional signatures (‘antigen processing machinery’, ‘cytolytic activity’, ‘immune 
suppression’) (P < 0.001) were enriched in cluster2. Considering the enrichement of the immune-related functions in cluster2, the 
infiltration scoring of four immune markers, including the CYT (P < 0.01), APM (P < 0.0001), TILs (P < 0.0001) and TIS (P < 0.0001) 
were analyzed for the immune characteristics of two clusters, cluster2 had noticeably higher grades (Fig. 3C), which implied cluster2 
were more likely to have a higher anti-tumor immune activity. 

3.3. Genomic background analysis of mitophagy-related subtypes 

To further investigate the mutational discrepancy between the two mitophagy-related subtypes, we further proceeded with somatic 
mutation analysis and CNV analysis. The overall somatic mutation landscape of BRCA samples was shown in Fig. S1, and PIK3CA, TP53 
and TTN were genes with the highest mutation frequency. As the waterfall plot of the top 20 mutated genes for two subtypes showed, 
the highest mutated gene in cluster1 was PIK3CA (35 %), and the highest mutated gene in cluster2 was TP53 (48 %) (Fig. 4A and B). 
Further, the proportion of variant classification for the two clusters was displayed as a pie chart in Fig. 5A, where missense mutation 
was the top variant classifications. On the other hand, given that the most predominant variant type of mutation was the SNP (Fig. S1), 
the type and proportion of SNV in two subtypes were analyzed, shere the top three SNV types with the highest incidence for cluster1 
were C > T, C > A, and C > G, as for cluster2, the types were C > T, C > G and C > A (Fig. 5B). In addition, the proportions of 
significantly amplified or deleted genomic regions of CNV of two clusters was visualized using GISTIC 2.0, Compared with cluster2, 
cluster1 had a higher proportion of amplifications and a lower proportion of deletions (Fig. 5C). Besides, the distribution and scores of 
CNVs on chromosomes for the two clusters were shown in Fig. 5D. 

3.4. Analysis of immune characteristics and immune microenvironment of mitophagy-related subtypes 

Moreover, ESTIMATE was used to assess the proportion of immune cell and stromal cell, and tumor purity between clusters using 
Wilcoxon test. As shown in Fig. 6A, cluster2 had a significantly higher ESTIMATE score (P < 0.001) and Immune score (P < 0.0001) 
than cluster1 and a significantly lower tumor purity (P < 0.001) and Stromal score (P < 0.038) than cluster1. 

Utilizing the CIBERSORT method and the LM22 gene signature, we calculated and compared the level of 22 immune cell infiltration 
in the two subtypes using the Wilcoxon test (where the content of naive CD4 T cells is 0) (Fig. 6B). As shown in the violin plot (Fig. 6C), 
the fraction of resting CD4 memory T cells, resting NK cells, M2 Macrophages, activated Dendritic cells, and resting Mast cells were 
elevated in cluster1, while the fraction of Plasma cells, CD8 T cells, activated CD4 memory T cells, follicular helper T cells, regulatory T 
cells (Tregs), gamma delta T cells, and activated NK cells were superior in cluster2 (P < 0.05). 

3.5. The therapy analysis between the two mitophagy-related subtypes 

Considering the importance of immune checkpoint inhibitors represented by PD-1/PD-L1 antibodies and immunotherapy in anti- 
tumor therapy, we examined the sensitivity of mitophagy-related subtypes to immunotherapy and chemotherapy. The expression of 
PD-1, PD-L1 and CTLA-4 between two subtypes were compared and the difference was demonstrated in Fig. 7A, the expressions of PD- 
1 (P < 0.001) and CTLA-4 (P < 0.01) were higher in cluster2 compared with cluster1, while the expression of PD-L1 (P < 0.001) was 
higher in cluster1 (Fig. 7A). TIDE can assess the possibility of tumor immune escape, where the TIDE value of cluster2 was higher 
(Fig. 7B). While, there few difference in response to immunotherapy in two clusters (Fig. 7C). 

Moreover, by utilizing the GDSC database, we predicted the sensitivity of 138 drugs for two subtypes. A total of 118 drugs differed 
in sensitivity between the two subtypes, with cluster1 being more sensitive to 53 drugs and cluster2 being more sensitive to 59 drugs. 
The top 9 drugs with the highest sensitivity differences (sorted by p-value) were shown in Fig. 7D. 

3.6. Validation in immune characteristics in METABRIC dataset based on TCGA-mitophagy score 

Finally, via the PCA results of TCGA datasets in Figrue 1B, the sum of the PC1 and the PC2 in TCGA-PCA is defined as the Mitophagy 
score of the sample. Fig. S2A shows that the Mitophagy score significantly differed in the two autophagy-related clusters of the TCGA 
dataset (P < 0.0001). Then, according to the median value of TCGA mitophagy score, we grouped the samples based on the sum of PC1 

Fig. 5. The landscape of genetic alterations of two subtypes in TCGA-BRCA dataset. (A) The proportion of different mutation types in two 
mitophagy-related subtypes. (B) Comparing of the proportion of point mutation type between two mitophagy-related subtypes. (C) The proportion 
of amplifications and deletions between two mitophagy-related subtypes. (D) The amplification or deletion of regions on chromosomes of 
mitophagy-related subtypes. 
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and PC2 (Mitophagy score) calculated in METABRIC-PCA (Fig. S2B), and obtained cluster 1 and cluster 2 corresponding to METABRIC 
data set. Our findings were replicated in the METABRIC dataset (P < 0.0001) (Fig. S2C). The results of Wilcoxon test indicated that the 
levels of three immune markers (APM: P < 0.0001, TILs: P < 0.05, TIS: P < 0.0001) and three immune checkpoints (PD-1: P < 0.0001, 
PD-L1: P < 0.001, CTLA-4: P < 0.0001) in cluster2 were higher than that in cluster1 except for CYT (P > 0.05) (Figs. S2D–E). 

Fig. 6. The immune correlation analysis of two mitophagy-related subtypes. (A) The immune related scores of two subtypes, including stromal-
score, immunescore, ESTIMATEscore and tumorpurity. (B) The proportion of 22 immune cells for each sample in TCGA-BRCA was assessed by 
CIBERSORT. (C) Violin plot for the fraction of 22 immune cells between two subtypes. The statistical differences between the two clusters were 
tested by the Wilcoxon test, statistical significance was set at P < 0.05. 

Fig. 7. The relationship between mitophagy-related subtypes and immunotherapy and drug sensitivity. (A)The expression of three immune 
checkpoints between two subtypes. Differences in (B) the TIDE score and (C) immunotherapy response of two subtypes. (D) The top 9 drugs with the 
highest sensitivity differences between two subtypes. 
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4. Discussion 

Breast cancer is a highly heterogeneous tumor. The molecular type of breast cancer is increasingly completed and constantly 
updated, and research as well as therapy for breast cancer thus awarded significant progression. Whereas, the problem of advanced 
breast cancer and therapeutic resistance still needs to be resolved. A growing body of evidence has suggested that mitophagy has a 
great relationship with tumor, including breast cancer [2,7]. 

We divided 1076 samples in TCGA-BRCA into two subtypes based on the expression of 29 mitophagy-related genes. Notably, 
cluster1 had a high expression of mitophagy-related genes with worse survival, which implied the close linkage between mitophagy 
and prognosis of BRCA patients. Interestingly, the proportion of triple-negative breast cancer and metastatic breast cancer in cluster2 
was higher compared with cluster1. Given the dual role of mitophagy in cancer and the mechanism of mitophagy in BRCA was unclear, 
we further explored the cause of phenotypic difference between two subtypes, and analyses of biological characteristics, genomic 
background and immune features were done. 

We first analyzed the biological features of subtypes. In the 42 pathways with significant differences, cluster2 was significantly 
correlated with TNFA signaling via NFkb, IL6-JAK-STAT3, p53 pathway and KRAS signaling pathways which play an important role in 
promoting tumor growth, invasion and metastasis [24–26]. Otherwise, cluster2 was characterized by significant activation of hypoxia, 
oxidative phosphorylation, glycolysis and reactive oxygen species pathway, all of which are crucial signaling pathways that regulate 
metabolism and tumor development [27–29]. Based on the above result, we speculated that excess ROS produced in cluster2 may be 
associated with lower expression of mitophagy-related genes. Furthermore, immune-related pathways (notch signaling, interferon 
alpha response, interferon gamma response and inflammatory response) were enriched in cluster2. Interferon, as prototypic immu-
notherapeutics, have resulted in improved outcomes for patients with malignancies of heterogeneous histologies [30]. However, in 
breast cancer, notch signaling played a stimulative role in trans-endothelial tumor cell migration, metastasis and chemotherapy 
resistance [31–33]. Seven pathways were enriched in cluster1, including mitotic spindle, TGF beta signaling, and hedgehog signaling 
pathway, which were linked to proliferation and tumor development [34,35]. Interestingly, in the early cancer cells, the TGF beta 
signaling pathway has functions of cell-cycle arrest and apoptosis as a tumor-suppressor, but it can promote tumorigenesis in the late 
stage, including metastasis and chemoresistance [35]. In addition, cluster1 was also significantly correlated with cancer-related 
malignant signaling pathways, such as HIPPO, NOTH, PI3K, TGF-b, RTK/RAS and TP53. These pathways are crucial pathways that 
can regulate cancer proliferation, invasion, metastasis and immunologic escape, and abnormal activation of them promotes tumor 
malignancy and contribute to poor prognosis [36–38]. 

ESTIMATE was used to estimate the proportion of stromal cells and immune cells in malignant tissue to assess tumour purity which 
was the proportion of tumor cells in tumor tissue. Non-tumor cells in tumor played an important role in tumor growth, progression, or 
drug resistance, such as stromal or interstitial cells that promote tumor growth and affect tumor response [39], while immune cells 
such as cytotoxic T lymphocytes (CTLs) may inhibit tumor growth [40]. In TNBC, high stromal content was related to a relatively poor 
prognosis [41,42]. Cluster2 had higher tumor immunogenicity and lower tumor purity than cluster1, which means cluster1 with a 
stronger invasion ability, may be related to its poor prognosis. Differences in immune cell composition of the microenvironment may 
be the potential immune biomarkers and supplied reference for tumor development and response to immunotherapy. TIDE was used to 
predict the response to immune checkpoint inhibitors and assess sensitivity of immunotherapy. In other words, it can assess the po-
tential for immune escape based on the gene expression profile of cancer samples [43,44]. The result of TIDE indicated that cluster2 
had a higher potential of immune escape and lower response to immunotherapy, and the expression of PD-1, PD-L1 and CTLA-4 
showed that cluster2 may have a lower response to inhibitors of PD-L1, which provided a new reference for BRCA immunotherapy. 
Otherwise, the analysis of chemotherapy provided references for treatments of mitophagy-related subtypes and difficult problems of 
resistance in clinical. 

In summary, our research first proposed a new classification based on the mitophagy of breast cancer and further explored the 
clinical and molecular characteristics of subtypes. The results of analyses simultaneously proved the possibility and validity of this 
typing. Fewer studies explained the relationship between mitophagy and breast cancer, we provided data support and direction for 
deeper research. In addition, the mitochondrial autophagy-related typing in this study is expected to assess the stage and prognosis of 
BRCA and apply anti-autophagic therapy as a possible treatment for BRCA. Although pathway analysis and functional enrichment 
analysis were used to initially explain the biological significance of clustering results, the results could not explain the specific bio-
logical differences between samples, and further experimental validation and clinical data support were needed. 
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