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The automatic annotation of the protein universe is still an unresolved challenge. Today, there are
229,149,489 entries in the UniProtKB database, but only 0.25% of them have been functionally annotated.
This manual process integrates knowledge from the protein families database Pfam, annotating family do-
mains using sequence alignments and hidden Markov models. This approach has grown the Pfam annota-
tions at a low rate in the last years. Recently, deep learning models appeared with the capability of learning
evolutionary patterns from unaligned protein sequences. However, this requires large-scale data, while many
families contain just a few sequences. Here, we contend this limitation can be overcome by transfer learning,
exploiting the full potential of self-supervised learning on large unannotated data and then supervised
learning on a small labeled dataset. We show results where errors in protein family prediction can be reduced
by 55% with respect to standard methods.
Introduction
The protein families database (Pfam) is

themost widely used repository of protein

families and domains. Pfam uses manu-

ally curated ‘‘seed’’ alignments of homol-

ogous protein regions (named families) to

generate profiles based on hidden Mar-

kovmodels (HMMs). The resultingmodels

are a representation of each profiled fam-

ily and can be used to classify novel se-

quences.1 Even though this approach

is very successful, there still remain

many proteins of UniProtKB2 (z25%)

that have not been annotated yet. More-

over, the number of sequences in this

knowledge base grows at a much faster

rate than its Pfam coverage, introducing

novel sequences that may belong to

completely new families.3

Very recently, deep learning (DL)models

have emerged4 to potentially provide a

powerful alternative to profile-HMMs,

which are the dominant technology for pro-

tein family classification.DL techniquesare

capable of inferring patterns shared across

the family sequences, allowing autono-

mous domain annotation on unaligned se-

quences. This was especially helpful for

accelerating the characterization of se-

quences that do not resemble anything

known.5 However, it is well known that DL

techniques rely on large-scale data to infer

meaningful sequencepatterns. This canbe

a limitation on domain annotation, since
This is an open access ar
manyPfam families comprise few seed se-

quences. Indeed, it has been an important

step toward overcoming this limitation,4

and we show that this issue can be further

significantly reduced with transfer learning

(TL) by transferring representations of pro-

tein sequences already learned without

requiring annotations from large-scale pro-

tein data.6

Transfer learning for protein
representations
Transfer learning (TL) (Figure 1) is a ma-

chine learning technique where one

model is first trained with a big unlabeled

dataset in a self-supervised way, that

is, not using annotations of any specific

task but predicting parts of the same

data fed as input (e.g., masked small sub-

sequences). This step is also named pre-

training, and the result is a task-agnostic

deep model and an output model associ-

ated with the pretext task for self-super-

vised learning, which is then discarded.

In a second step, the task-agnostic deep

model is frozen, and what was learned

by it is ‘‘transferred’’ to another deep ar-

chitecture in order to train a new task-

specific model. Here, another model is

trained with supervised learning on a

small dataset with labeled data for a spe-

cific task (e.g., protein family classifica-

tion). In summary, TL refers to the situa-

tion where what has been learned in one
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setting is exploited to improve generaliza-

tion in another one.7 For proteins,

there are several already available task-

agnostic deep models, which integrate

in their output different types of protein in-

formation in a compact representation

usually named embeddings.

Protein embeddings are becoming

known and required by the community.

Somuch thatUniProtKBnowprovidesem-

beddings aspart of the protein annotations

(https://www.uniprot.org/help/embeddings).

The available protein embeddings were

pre-trained on UniRef50, which provides

clustered sets of sequences from the

complete UniProtKB.2 A recent review

has demonstrated that the evolutionary

scale modeling (ESM)5 is one of the most

outstanding protein embeddings in terms

of representational power.8 ESM was

trained using 220 million (unaligned) se-

quences from UniProtKB. ESM is based

on transformers, which have emerged

as a powerful general-purpose model ar-

chitecture for representation learning,9

out-performing deep recurrent and con-

volutional neural networks. They were

originally designed for natural language

processing,10 where context within a

text is used to predict masked (missing)

words. Themain hypothesis in this pretext

task for self-supervised learning is that the

semantics of words can be derived from

their contexts. ESM makes an analogy
February 10, 2023 ª 2023 The Author(s). 1
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Figure 1. Transfer learning for functional annotation
Transfer learning is a machine learning technique where the knowledge gained by training a model on one
general task is transferred to be reused in a second specific task. The first model is trained on a big un-
labeled dataset, in a self-supervised way (left). This process is known as pre-training, and the result is a
task-agnostic deep model (input layers). Through transfer learning, the first layers are frozen (middle) and
transferred to another deep architecture. Then, the last layers of the newmodel are trainedwith supervised
learning on a small dataset with labeled data for a specific task (right)
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between syllables in text and amino acids

in protein sequences: it learns meaningful

encodings for each residue in a self-su-

pervisedway, bymasking someof the res-

idues in the sequence and trying to predict

them. Thisway, ESMbuildsanembedding

per residue position that encodes the

‘‘meaning’’ of the residue in that context.

Then, the per residue representation can

be collapsed to a per protein embedding.

After this, the ESM learnt representation

from UniProtKB, already trained and

ready-to-use out of the box, can be

‘‘transferred’’ to be used in a specific

downstream task.

Transfer learning for annotating
protein domains
In order to illustrate how the use of TL can

improve a task like protein domain anno-

tation, we trained a new classifier with

Pfam data.4 Expertly curated sequences

from the 17,929 families of Pfam v.32.0

were used to define a benchmark annota-

tion task. Seed sequences from each

family were split into challenging train

and test sets by clustering them based

on sequence similarity. The clustered split

provides a benchmark task for annotation

of protein sequences with remote homol-

ogy, that is, sequences in the test set that

have low similarity to the ones in the

training set. This is useful as an estimation

of how well a model will perform with new

sequences that are quite different from

the ones in the training data. To this end,

single-linkage clustering at 25% similarity

within each family was used. The resulting
2 Patterns 4, February 10, 2023
benchmark has a distant held-out test set

of 21,293 sequences. For this task, au-

thors proposed ProtCNN and ProtENN.4

ProtCNN receives a one-hot coded

sequence and learns to automatically

extract features to predict family mem-

bership. ProtENN is an ensemble of 19

ProtCNNs using a majority vote strategy,

where each model was trained with

different random parameter initializations.

For the TL approach, we have obtained

the ESM embeddings (ESM-1b) of all the

train and test sets for the clustered split

(a total of 1,339,083 seed sequences).

We used two baseline machine learning

classifiers for the supervised downstream

task: k-nearest neighbor (kNN) and

multilayer perceptron (MLP), both trained

with the embeddings collapsed to full

sequence, representing each protein

domain with a vector in R1,280. After

training, these models were tested with

the distant held-out test partition for fam-

ily domain prediction. Finally, we took

advantage of TL to improve ProtCNN by

training this architecture with the embed-

ding as inputs, instead of the (original)

one-hot encoding. The source code is

available at https://github.com/sinc-lab/

transfer-learning-pfam.

Table 1 shows the results when perfor-

mance is evaluated by the error rate and

the number of errors for classifying the

protein domain sequences contained in

a held-out clustered test set. The model

with the fewest errors is indicated by as-

terisks. The first four rows reproduce

the ProtCNN, ProtENN, TPHMM, and
BLASTp results.4 The next rows show

the results obtained when TL is used

with different classifiers. The first inter-

esting result is that TL with a simple

kNN has obtained at least as good results

(27.29% error rate) as ProtCNN (27.60%).

Similarly, when transferred to the MLP

model or an ensemble of 5 MLPs, the

error rate is even lower (19.39% and

18.02%, respectively). This is a very

remarkable result taking into account

that embeddings have not been fine-

tuned for this particular downstream

task. When TL is used as input to a single

ProtCNN, the results improve even

further (15.98%), and the best results are

achieved when it is used as the input

of an ensemble of 10 TL-ProtCNNs

(8.35%). All these cases have achieved

better performance than ProtCNN with

convolutional feature extraction from a

one-hot representation. Moreover, when

comparing only ensemble models, the

TL-ProtCNN ensemble of 10 models

has clearly outperformed the ProtENN

ensemble of 19 models (8.35% vs.

12.20% error rate, respectively). That is,

the error rate has been diminished by

33% thanks to the use of TL for the anno-

tation task. Furthermore, in comparison to

the TPHMM, the improvement is an

impressive 55%.

Closing remarks
In the last few years, several protein rep-

resentation learning models based on

deep learning have appeared, which pro-

vide numerical vectors (embeddings) as a

unique representation of the protein. With

TL, the knowledge encoded in these

embeddings can be used in another

model to efficiently learn new features of

a different downstream prediction task.

This TL process allowsmodels to improve

their performance by passing knowledge

from one task to another, exploiting the in-

formation of larger and unlabeled data-

sets. Protein embeddings has become a

new and highly active area of research,

with a large number of variants already

available in public repositories and easy

to use.

The results achieved in a challenging

partition of the full Pfam database, with

low similarity between train and test

sets, have shown superior performance

when TL is used in comparison to previ-

ous deep learning models. Even in the

case of the most simple machine learning

https://github.com/sinc-lab/transfer-learning-pfam
https://github.com/sinc-lab/transfer-learning-pfam


Table 1. Performance on the clustered

split of Pfam

Method

Error

rate (%)

Total

errors

ProtCNN 27.60 5,882

ProtENN 12.20 2,590

TPHMM 18.10 3,844

BLASTp 35.90 7,639

TL-kNN 27.29 5,816

TL-MLP 19.39 4,132

TL-MLP-ensemble 18.02 3,840

TL-ProtCNN 15.98 3,405

TL-ProtCNN-

ensemble*

8.35* 1,743*

*Model with the fewest errors.
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classifiers, such as kNN and MLP, the

decrease in the error rate was remarkable.

Moreover, the best performance is

achieved when a convolutional based

model is mixed with a pre-trained protein

embedding based on transformers. In

terms of computational power, even half

of ensemble members provided a 33%

of improvement in the classification

performance.

We hope that this comment will make

researchers consider the potential of TL

for building better models for protein

function prediction. On the practical

side, instead of building one’s own em-

bedder for proteins, it is very useful to

reuse all the computation time already

spent building the available learnt repre-

sentations. Leveraging TL for new tasks

with small sets of annotated sequences

is easy to implement and provides signif-

icant impact on final performance.
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