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ABSTRACT

Building clinical natural language processing (NLP) systems that work on widely varying data is an absolute ne-

cessity because of the expense of obtaining new training data. While domain adaptation research can have a

positive impact on this problem, the most widely studied paradigms do not take into account the realities of

clinical data sharing. To address this issue, we lay out a taxonomy of domain adaptation, parameterizing by

what data is shareable. We show that the most realistic settings for clinical use cases are seriously under-

studied. To support research in these important directions, we make a series of recommendations, not just for

domain adaptation but for clinical NLP in general, that ensure that data, shared tasks, and released models are

broadly useful, and that initiate research directions where the clinical NLP community can lead the broader NLP

and machine learning fields.
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INTRODUCTION

As developers and maintainers of the open-source Apache cTAKES

clinical natural language processing (NLP) software, one of the most

common questions we get from new users is “Why didn’t cTAKES

correctly find phenomenon X in my data?” The problem is almost

always that cTAKES’s statistical model for phenomenon X is trained

on data that does not have examples like those in the user’s data. In-

evitably, the next question is, “How can I add this example?” to

which the answer is a politer version of, “Machine learning doesn’t

work that way.” But maybe it should.

The standard machine learning answer to getting a model that

was trained on data from one domain to perform well on data from

another domain is domain adaptation. These algorithms are

designed to work regardless of the definition of domain, whether it

be adapting from one medical specialty to another, adapting from

one institution’s formatting standards to another, etc. In the clinical

domain, it has been widely documented that without domain

adaptation, performance of Clinical NLP systems degrades seriously

in the face of new domains (see Supplementary Appendix A). The vi-

sion of applying domain adaptation is therefore attractive, but the

data sharing restrictions in the clinical domain present significant

obstacles to this vision. Even datasets created for the express pur-

pose of sharing can be difficult to work with, requiring IRB appro-

vals, data use agreements (potentially requiring legal review by the

receiving site), and human-subjects training for all users. There are

several instances where datasets created for shared tasks had to be

withdrawn due to institutional cold feet. In other cases, when fund-

ing dries up, since it is not possible to simply dump the data into the

public domain, the data essentially disappears. The difficulties pre-

sented by clinical text have not received proper attention in the NLP

literature. For example, we found more than 60 publications on do-

main adaptation in the most relevant NLP venues of the last 3 years,
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of which just 15 cover clinical domain and only one1 mentions the

data sharing restrictions that are fundamental to this domain.

In the remainder of this perspective, we first present a taxonomy

of domain adaptation methods which carefully considers data shar-

ing constraints and demonstrates that, while a wide variety of do-

main adaptation algorithms have been proposed, the vast majority

do not apply in realistic clinical settings. We therefore present a se-

ries of recommendations designed to guide machine learning re-

search in directions that satisfy the fundamental data privacy needs

of clinical records.

A TAXONOMY OF DOMAIN ADAPTATION
METHODS

Domain adaptation techniques can be conceptually divided into su-

pervised domain adaptation, where some of the target data is la-

beled, and unsupervised domain adaptation, where none of the

target data is labeled. The supervised version is uncommon in the

clinical domain since creating new labels usually requires a rare

combination of linguistic and medical knowledge. But more criti-

cally, this classical division says nothing about data sharing, and

many supervised and unsupervised domain adaptation techniques

assume that they have simultaneous access to data from both the

source and target sites. This assumption is unrealistic in the clinical

domain, where most datasets cannot be shared across institutions,

and even datasets created with the intention of sharing can carry

onerous restrictions. Some techniques exist for training supervised

models on data from multiple non-sharable sources (eg, federated

learning2 or split learning3 where a single model is trained collec-

tively by multiple devices), but they assume that annotation exper-

tise is easily available for each new domain, which is not true for

clinical NLP problems.

We therefore propose a conception of the space of possible do-

main adaptation methods that takes into consideration the above

factors. We consider three possibilities for what the source site

shares:

1. Labeled text: the target site can see everything at the source site.

2. Labeled feature vectors: the raw text is not shared but features

extracted from the raw text and the labels for those feature vec-

tors are. (This typically precludes neural network models which

learn features from raw text.)

3. Trained models: only a final model is shared.

We consider two possibilities for what type of data is available at

the target site:

1. Raw text: a large amount of unlabeled target site data.

2. Labeled text: a small amount of target site data, labeled in the

same way as the source site, along with a larger amount of raw

text as above.

We consider two possibilities for what the target site might share

back with the source site:

1. Nothing: no data are shared.

2. Models: statistical models of the target data are shared with the

source. This is relevant only when the source shares no labeled

data, since if the source shares labeled data, all models can be

constructed at the target site.

We multiply out the space of these possible adaptation methods, as

shown in Table 1.

The first four rows represent the vast majority of domain adapta-

tion research. We cite some of the most popular algorithms and de-

scribe them briefly in this paragraph, but there are hundreds more

publications in these areas (see the survey in ref.4) When the source

can share data and the target has labeled data, domain adaptation is

at its most effective; some approaches are feature augmentation,5,6

where the feature space is multiplied out to contain versions of each

feature for the source, target, and shared domains; parameter trans-

fer,7–9 where some parameters of the source and target models are

shared and trained jointly; and prior knowledge based10 and in-

stance weighting and selection,11,12 where distributions learned

from the labeled target data form a prior either to train the model or

to weight or select the proper examples in the training set. However,

Table 1. A proposed categorization of the space of domain adaptation algorithms

Source shares Target has Target shares Best methods

Labeled text Labeled text – Neural feature augmentation5

Parameter transfer7–9

Prior knowledge10

Instance weighting and selection11,12

Raw text – Neural feature correspondence learning14

Re-training embeddings19

Bootstrapping20,21

Adversarial training22

Auto-encoders16–18

Labeled features Labeled text – Feature augmentation6

Raw text – Feature correspondence learning13–15

Trained Models Labeled text – Fine-tuning23,24

Adaptive off-the-shelf25

Models –

Raw text – Online self-training21

Models Pseudo in-domain data selection26

Notes: It is assumed that there is always labeled data available in the source domain. “Source shares” describes what the source site is able to share with the tar-

get site. “Target has” describes what data are available at the target site. “Target shares” describes what the target site is able to share with the source site.

“Methods” gives names for the types of methods in each configuration, and citations to examples of such work
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that setting is the least realistic for the clinical setting. A somewhat

more realistic setting for clinical data is where the source can share

data but the target has no labeled data, encompassing, for example,

the i2b2 and n2c2 shared tasks. Methods for this setting are not as

effective but there is substantial research in this direction: feature

correspondence learning13–15 and auto-encoders,16–18 where a

shared feature space between source and target domains is learned;

re-training embeddings,19 where the first layers of a neural network

model are pre-trained on unlabeled data from both the source and

target domains; bootstrapping,20,21 where a source-domain-trained

model is re-trained on its own predictions in the target domain com-

bined with the source domain data, and adversarial learning22;

where a model is trained to be unable to distinguish the source and

target domains while still performing well on the source domain

training data.

The last two rows of the table encompass the part of the space

that is critical for clinical NLP research, where the source cannot

share labeled data or features. Unlike the first four rows, which list

just the most representative methods from the literature, these rows

are an exhaustive list of all research we could find in these areas. As

the table illustrates, there is little research to date on such techni-

ques. Examples include fine-tuning (common in single-domain set-

tings, but rarely studied as a domain adaptation technique), where a

model is pre-trained on the source data, then transferred to the tar-

get domain for continued training; adaptive off-the-shelf frame-

work, where the model is treated as a black-box and the adaptation

is performed at the output level; online self-training, where the

model is re-trained on only its own predictions in the target domain;

and pseudo in-domain data selection, where instances in the source

data are selected according to the perplexity of a language model

pre-trained in the target domain. Each of these approaches have sig-

nificant drawbacks, and many have not been evaluated on any clini-

cal data. We thus see the urgent need for further work in these areas

of domain adaptation research if we want our machine learning

models to be usable in the clinical setting.

PRESCRIPTIONS

To address the urgent need for machine learning methods that can

be applied under the data sharing constraints of the clinical domain,

we assert that generalizable methods should be at the forefront, not

just a consideration of those focusing on domain adaptation re-

search. In that spirit, we make the following recommendations that

we believe should apply to all clinical NLP research:

1. Datasets of annotated clinical language should always be con-

structed from at least two different data distributions—if not dif-

ferent institutions then at least different parts of the same

institution (intensive care unit, oncology, cardiology, etc.). This

ensures that models trained using the annotations can be evalu-

ated for their robustness across the different data partitions.

This change would have a major positive impact on research in

generalizable methods of all sorts but is of course a necessary

prerequisite to the constrained form of domain adaptation we

emphasize here.

2. Shared tasks, where participants develop research systems for a

task and compare them on a shared dataset, should include sce-

narios where the full source data is not available. For example, a

shared task could have two tracks—one traditional generaliz-

ability track with labeled source data and unlabeled target data,

and another where the only available information from the

source is a trained model from a standard toolkit (eg, BERT).

This ensures that the performance reported by such shared tasks

is a meaningful estimate of future performance on new clinical

data, under different possible data sharing constraints.

3. Software containing machine learning models should explicitly

describe the datasets used to train it, especially if the data is not

part of a shared task or publicly available. We also encourage

software design that provides explicit application programming

interfaces (APIs) to domain adaptation algorithms that articulate

the data sharing assumptions and simplify the process of adapt-

ing the distributed models to new domains.

4. Users of clinical NLP software should make sure they know

what data a system has been trained on. Even when the original

data seems compatible with the user’s own data, users should

carefully inspect the system’s output. If the model performs

poorly, in addition to reporting the problems to the developers,

users should try whenever possible to find a source of shareable

data that also demonstrates the problem.

5. Researchers in clinical NLP should treat domain adaptation,

transfer learning, etc. as a first-class problem rather than a niche

area. Research efforts should shift towards methods in the bot-

tom quarter of Table 1. This offers the opportunity for clinical

NLP researchers to take the lead in an area which is underserved

by methods in the general domain, and solve problems in the

most realistic setting. The research community should create

centralized repositories for sharing trained models, so that even

internally created, non-sharable datasets can provide community

benefit.

6. Funders who want clinical NLP research they fund to have

maximum impact should consider novel mechanisms that

would allow for the software development recommendations

described above, especially the implementation of APIs for

adapting models in the face of data sharing constraints. There

is an incentive misalignment, where individual researchers are

reluctant to spend grant money on activities that do not ad-

vance their personal scientific aims, but agencies would like the

tools developed with their funding to be as robust as possible.

Relatively small amounts of funding for these activities could

contribute greatly to the missions of the agencies that typically

fund clinical NLP research. Data sharing policies should take

into account the difficulty of sharing text data and promote

and reward the sharing of statistical models trained on such

data.

The field of clinical NLP should treat this as an opportunity to take

the lead on an important problem that is not well-studied in general

domain machine learning. The unique data sharing challenges of the

clinical domain make a perfect testbed for this research, and the clin-

ical NLP community has a strong motivation to address these chal-

lenges. This is an exciting opportunity for our research community

to develop innovative new machine learning methods that poten-

tially extend even beyond the clinical domain.
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