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Heritability and genetic 
correlations of plasma metabolites 
of pigs with production, resilience 
and carcass traits under natural 
polymicrobial disease challenge
E. Dervishi1, T. Yang1, M. K. Dyck1, J. C. S. Harding2, F. Fortin3, PigGen Canada4*, J. Cheng5, 
J. C. M. Dekkers5 & G. Plastow1*

Metabolites in plasma of healthy nursery pigs were quantified using nuclear magnetic resonance. 
Heritabilities of metabolite concentration were estimated along with their phenotypic and genetic 
correlations with performance, resilience, and carcass traits in growing pigs exposed to a natural 
polymicrobial disease challenge. Variance components were estimated by GBLUP. Heritability 
estimates were low to moderate (0.11 ± 0.08 to 0.19 ± 0.08) for 14 metabolites, moderate to high 
(0.22 ± 0.09 to 0.39 ± 0.08) for 17 metabolites, and highest for l-glutamic acid (0.41 ± 0.09) and 
hypoxanthine (0.42 ± 0.08). Phenotypic correlation estimates of plasma metabolites with performance 
and carcass traits were generally very low. Significant genetic correlation estimates with performance 
and carcass traits were found for several measures of growth and feed intake. Interestingly the plasma 
concentration of oxoglutarate was genetically negatively correlated with treatments received across 
the challenge nursery and finisher (− 0.49 ± 0.28; P < 0.05) and creatinine was positively correlated 
with mortality in the challenge nursery (0.85 ± 0.76; P < 0.05). These results suggest that some plasma 
metabolite phenotypes collected from healthy nursery pigs are moderately heritable and genetic 
correlations with measures of performance and resilience after disease challenge suggest they may be 
potential genetic indicators of disease resilience.

Metabolites are small molecules with molecular size < 1.5 kDa and metabolomics is the study of these small 
molecules to provide a more detailed and comprehensive understanding of how cells function. Metabolites are 
involved in cellular metabolism, such as energy conversion, growth, signaling, and stimulatory and inhibitory 
effects on  enzymes1,2 and can, therefore, be considered as a bridge between genotype and phenotype. Metabo-
lomics has been used in pharmacology studies, drug development, food technology, toxicology, plant biotech-
nology, and human health. In the latter case, metabolomics has been used successfully for disease diagnosis and 
determination of disease state, biomarker discovery, and risk  determination3. Metabolite testing is increasingly 
gaining attention in animal science, including in animal genetics, animal health, and milk and meat  quality4. 
Applications in livestock include discovery of disease biomarkers in dairy  cows5,6, animal  health7, growth 
 performance8, feed efficiency in beef cattle and  pigs9,10, and swine  diseases11.

The large impact of infectious disease in swine on animal welfare and productivity has increased interest 
in selection for pigs that are less susceptible to pathogens and that are more disease resilient, which has been 
defined as the ability to maintain relatively undiminished performance levels when exposed to  disease12,13. It has 
been proposed that resilience can be an effective approach to select for both disease resistance and tolerance in 
 animals13. Results from studies with dairy cows, beef cattle, pigs including human  medicine5,8–10, suggest that 
metabolomics can be useful in helping increase understanding of the processes involved in disease resilience. In 
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addition, metabolomics offers the potential to identify new phenotypes or traits that can be used for selection of 
resilient animals. There is evidence in the literature that blood metabolites in humans and cattle are  heritable14–17. 
Given the similarities that exist between porcine and human, blood metabolites in porcine might be expected 
to be heritable.

Heritability is a prerequisite for the use of a trait in breeding strategies and, ideally, indicators of resilience 
should be expressed in healthy animals, such that they can be measured in high-health nucleus farms to pro-
vide prediction of resilience in commercial  environments18. It is therefore important to understand the genetic 
architecture of these potential new phenotypes.

This study is part of a larger project entitled “Phenomics for genetic and genome-enabled improvement of 
resilience in pigs”, which had identification of predictors of resilience on young healthy pigs as one of its main 
objectives. The project uses a natural polymicrobial disease challenge  model18 with collection of resilience related 
traits, including average daily gain (ADG), feed intake and feed intake duration (ADFI and ADFD), number of 
individual health treatments (nTRT) and mortality, residual feed intake (RFI), and feed conversion ratio (FCR). 
In addition, new resilience traits based on day-to-day variation in feeding patterns were proposed by Putz et al18. 
The overall purpose of the current study was to use data and plasma samples collected on healthy pigs prior to 
pathogen/disease challenge to estimate heritability of 44 metabolites and 2 amino acid indices, the phenotypic 
and genetic parameters of plasma metabolite concentration in relation to their subsequent performance, disease 
resilience, and carcass traits under the natural disease challenge.

Results
Heritability. Table  1 summarizes estimates of heritabilities and variance components of 44 metabolites 
measured in plasma of young healthy pigs and two amino acid indexes. Heritability estimates for 13 metabolites 
were negligible, zero or not estimable. Metabolites with zero or negligible heritability were: glycerol, creatine, 
l-arginine, 3-hydroxybutyric acid, ethanol, formate, acetoacetate, succinate, acetone, methanol and l-acetyl-
carnitine. Among the 33 heritable metabolites, 14 showed low estimates of heritability, ranging from 0.11 ± 0.08 
to 0.19 ± 0.08, while 17 metabolites had moderately high estimates of heritability, ranging from 0.22 ± 0.09 to 
0.42 ± 0.08. Finally, two metabolites, i.e. l-glutamic acid and hypoxanthine, had the highest estimates of herit-
ability, 0.41 ± 0.09 and 0.42 ± 0.08, respectively. Low and moderate estimates of heritability were obtained for two 
amino acid indexes, i.e. ketogenic amino acids (ketoAA) (0.23 ± 0.08) and branched-chain amino acids (BCAA) 
(0.19 ± 0.08).

Phenotypic correlations. In general, phenotypic correlations of the metabolites with performance, resil-
ience, and carcass traits were small (Supplementary Figure S1a). However, there were some significant phenotypic 
correlations. l-Glutamine (0.12 ± 0.04), l-ornithine (0.12 ± 0.04), betaine (0.18 ± 0.04), citric acid (0.21 ± 0.04), 
l-lysine (0.13 ± 0.04) and l-methionine (0.15 ± 0.04) showed positive phenotypic correlation estimates with 
quarantine nursery ADG (qNurADG) (P < 0.05), while creatinine (− 0.21 ± 0.04), l-histidine (− 0.20 ± 0.04) and 
isobutyric acid (− 0.22 ± 0.04) showed negative phenotypic correlation estimates with qNurADG (P < 0.05). In 
addition, l-glutamic acid showed positive phenotypic correlation estimates with ADFI (0.11 ± 0.04; P < 0.05) 
and l-aspartate showed positive phenotypic correlation estimates with ADFD (0.18 ± 0.06; P < 0.05). None of the 
phenotypic correlations of metabolites with challenging nursery ADG (cNurADG), finisher ADG (FinADG), 
treatment, and mortality rates, and carcass traits were significant (Supplementary Table S1; P > 0.05).

Moreover, we estimated the phenotypic correlations between the metabolites that are involved in the same 
pathway (glycine, serine, alanine and threonine metabolism) and the results showed that betaine was positively 
correlated with dimethylglycine and l-serine, and l-serine was positively correlated with l-methionine (Sup-
plementary Table S2). In addition, betaine did have significant positive phenotypic correlations with l-glycine 
(Supplementary Table S3; P < 0.05).

Genetic correlations. Genotypic correlations of the metabolites with performance, resilience, and carcass 
traits were larger than phenotypic correlation (Supplementary Figure S1b) however with larger SE. Estimates 
of genetic correlation between metabolites and ADG in the three phases, qNurADG, cNurADG and FinADG 
are provided in Table 2. Overall, estimates of genetic correlations among plasma metabolites and ADG in the 
three phases were very low, with high SE. However, some metabolites showed significant correlation estimates, 
with the largest negative genetic correlation between plasma creatinine and qNurADG (− 0.60 ± 0.18). Dimeth-
ylglycine, betaine, L-methionine and L-serine showed positive genetic correlation estimates with qNurADG. 
Metabolites that were positively correlated with qNurADG are visualized in a compound network in Fig. 1. 
The metabolites that were genetically positively correlated with qNurADG are involved in metabolic pathways, 
including the glycine and serine, methionine and cysteine, glycerophospholipid, and glycosphingolipid path-
ways. We estimated the genetic correlations between the metabolites that are involved in the same pathway 
(glycine, serine, alanine and threonine metabolism) and the results showed no significant genetic correlations 
between these metabolites (Supplementary Table S2). 

No significant genetic correlations were estimated between metabolites and cNurADG. Only two metabolites 
namely: l-glutamic acid and oxoglutarate were estimated to have significant (positive) genetic correlations with 
FinADG.

Table 3 shows estimates of genetic correlations of metabolites with the feed intake traits ADFI, ADFD, FCR, 
and RFI. l-Glutamic acid was positively correlated with ADFI (P < 0.001), while several other metabolites, includ-
ing dimethylglycine and l-aspartate, tended to be positively genetically correlated with ADFI (0.05 < P < 0.1). Four 
metabolites that were positively correlated with ADFD (Table 3; P < 0.05): dimethylglycine, l-glycine, betaine 
and citric acid were visualized in a compound network (Fig. 2). These metabolites are involved in metabolic 
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pathways such as the TCA cycle and the glycine and serine, methionine, and cysteine pathways but they were 
not significantly genetically correlated with each other (Supplementary Table S3).

In addition, the l-glutamine was positively correlated at the genotypic level with FCR (P < 0.05) and isobutyric 
acid was negatively correlated with RFI (P < 0.05).

Table 1.  Estimates and standard errors (SE) of heritability and litter effects, phenotypic variance SD and 
variance due to pen (σ2

P). Branched-chain amino acids (BCAA) was calculated as the sum of l-leucine, 
l-isoleucine and l-valine and ketogenic amino acids (ketoAA) was calculated as the sum of l-lysine and 
l-leucine. Significance of the heritability is indicated as ***, **, *, corresponding to P < 0.001, P < 0.01 and 
P ≤ 0.05. “–” indicates not estimable.

Metabolite Heritability (SE) Litter (SE) Phenotypic SD (SE) σ2P (SE)

l-Glutamic acid 0.42 (0.08)*** 0.04 (006) 110.73 (3.35) 7023.2 (913.27)

Hypoxanthine 0.41 (0.09)*** 0.15 (0.07) 24.02 (0.75) 337.13 (45.64)

Dimethylglycine 0.39 (0.08)*** 0.07 (0.06) 3.46 (0.10) 7.34 (0.93)

l-Glutamine 0.38 (0.08)*** 0.09 (0.06) 107.41 (3.23) 7045.3 (839.46)

l-Glycine 0.36 (0.08)*** 0.10 (0.06) 367.02 (10.82) 84,876 (10,157)

Oxoglutarate 0.34 (0.09)*** 0.07 (0.06) 18.8 (0.56) 231.34 (27.88)

Creatinine 0.34 (0.08)*** 0.16 (0.06) 12.49 (0.37) 102.65 (11.78)

l-Ornithine 0.33 (0.08)*** 0.07 (0.06) 36.36 (1.07) 886.72 (102.55)

Betaine 0.31 (0.08)*** 0.16 (0.06) 28.09 (0.83) 537.44 (60.07)

Citric acid 0.30 (0.09)*** 0.08 (0.05) 50.04 (1.47) 1745.7 (198.72)

Pyruvic acid 0.29 (0.09)*** 0.22 (0.06) 69.58 (2.09) 3430.1 (395.32)

l-Lysine 0.27 (0.08)*** 0.20 (0.05) 71.61 (2.12) 3699.5 (409.92)

l-Histidine 0.25 (0.08)*** 0.10 (0.06) 9.81 (0.29) 73.02 (9.89)

l-Methionine 0.24 (0.09)* 0.12 (0.05) 16.35 (0.49) 202.36 (25.96)

ketoAA 0.23 (0.08)** 0.18 (0.05) 83.74 (2.46) 5344.9 (563.51)

l-Alpha-aminobutyric acid 0.23 (0.08)** 0.08 (0.05) 0.23 (0.06) 0.14 (1.00)

d-Glucose 0.22 (0.08)** 0.08 (0.05) 961.23 (27.42) 714,670 (70,966)

l-Aspartate 0.22 (0.08)*** 0 6.93 (0.19) 36.9 (72.04)

Isobutyric acid 0.22 (0.09)** 0.11 (0.05) 1.86 (0.05) 3.37 (18.58)

l-Alanine 0.19 (0.08)* 0.03 (0.05) 194.36 (5.62) 30,447 (3014)

BCAA 0.19 (0.08)** 0.08 (0.05) 73.98 (2.10) 4419.5 (424.33)

l-Leucine 0.19 (0.08)** 0.08 (0.05) 25.08 (0.72) 508.72 (50.18)

l-Serine 0.18 (0.08)** 0.14 (0.05) 43.41 (1.23) 1530.2 (148.71)

l-Tyrosine 0.17 (0.08)** 0.09 (0.05) 16.11 (0.45) 214.17 (30.42)

2-Hydroxybutyrate 0.15 (0.07)** 0.09 (0.05) 0.22 (0.06) 0.48 (24.13)

l-Proline 0.15 (0.08)* 0.02 (0.05) 57.66 (1.64) 2796.7 (271.44)

l-Valine 0.14 (0.08)* 0.12 (0.05) 40.63 (1.14) 1411.3 (136.99)

l-Lactic acid 0.14 (0.08)* 0.12 (0.05) 2303.4 (65.34) 4,530,800 (436,890)

l-Phenylalanine 0.13 (0.07)* 0.07 (0.05) 12.21 (0.34) 129.68 (30.07)

l-Asparagine 0.14 (0.07)* 0.08 (0.05) 14.55 (0.40) 182.42 (27.66)

l-Threonine 0.12 (0.07)* 0.20 (0.05) 169.69 (4.77) 25,205 (2237.4)

l-Isoleucine 0.11 (0.08)* 0.17 (0.05) 22.65 (0.63) 456.54 (118.83)

3-Methy l-2-oxovaleric acid 0.11 (0.08)* 0.12 (0.05) 2.03 (0.05) 5.31 (60.02)

Glycerol 0.09 (0.08) 0.03 (0.05) 46.22 (1.29) 1934.9 (3637.9)

Creatine 0.07 (0.04) 0.01 (0.04) 119.35 (3.28) 12,972 (1068.3)

l-Arginine 0.07 (0.07) 0.06 (0.04) 13.29 (0.36) 164.73 (27.47)

3-Hydroxybutyric acid 0.06 (0.06) 0.02 (0.04) 0.21 (0.006) 0.07 (33.2)

Ethanol 0.06 (0.07) – 0.23 (0.06) 1.99 (2166.8)

Formate 0.03 (0.01) 0.05 (0.02) 0.21 (0.006) 7.44 (2.37)

Acetoacetate 0.03 (0.07) 0.09 (0.04) 1.80 (0.04) 0.60 (261.57)

Succinate 0.02 (0.06) 0.11 (0.04) 8.74 (0.23) 75.08 (65.26)

Acetone 0 0.02 (0.04) 1.02 (0.03) 0.69 (587.11)

Methanol 0 0 28.23 (0.75) 7895.6 (631,140)

l-Acetylcarnitine 0 0 – 28.11 (0.00001)

1-Methylhistidine – – 3.24 (0.09) 7.44 (0.90)

2-Hydroxyisovalerate – – – –
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Table 2.  Estimates (SE in parentheses) of genetic correlations between the most heritable metabolites 
and average daily gain in three stages, i.e. the quarantine nursery, the challenge nursery, and the finisher. 
Significance of genetic correlations are indicated in bold as: **, *, x corresponding to P < 0.01, P ≤ 0.05 and 
0.05 < P < 0.10 respectively; “–” indicates not estimable.

Metabolite Quarantine nursery Challenge nursery Finisher

l-Glutamic acid 0.14 (0.16) 0.06 (0.20) 0.72 (0.21)**

Hypoxanthine 0.09 (0.17) − 0.22 (0.20) 0.18 (0.22)

Dimethylglycine 0.28 (0.17)* 0.06 (0.20) 0.36 (0.21)x

l-Glutamine 0.17 (0.16) 0.16 (0.21) 0.52 (0.26)

l-Glycine 0.23 (0.17) 0.08 (0.21) 0.08 (0.22)

Oxoglutarate − 0.07 (0.18) − 0.15 (0.23) 0.46 (0.24)*

Creatinine − 0.60 (0.18)** 0.07 (0.22) –

l-Ornithine 0.16 (0.18) − 0.15 (0.24) − 0.04 (0.25)

Betaine 0.39 (0.17)* − 0.36 (0.23)x 0.19 (0.24)

Citric acid 0.32 (0.20)x − 0.41 (0.25)x –

Pyruvic acid − 0.32 (0.22)x − 0.34 (0.32) 0.12 (0.27)

l-Lysine 0.29 (0.21)x 0.05 (0.25) 0.15 (0.29)

l-Histidine − 0.29 (0.26) 0.10 (0.29) 0.14 (0.31)

l-Methionine 0.45 (0.32)* − 0.12 (0.55) − 0.17 (0.34)

KetoAA 0.30 (0.24) 0.01 (0.30) 0.13 (0.35)

l-Alpha-aminobutyric acid 0.39 (0.44) − 0.13 (0.91) − 0.11 (0.30)

d-glucose 0.22 (0.19) 0.26 (0.39) − 0.21 (0.23)

Isobutyric acid − 0.21 (0.24) 0.05 (0.32) − 0.11 (0.32)

l-Aspartate − 0.07 (0.02) 0.13 (0.02) − 0.21 (3.04)

l-sSrine 0.54 (0.33)* 0.11 (0.31) − 0.04 (0.92)

Figure 1.  A compound network of metabolites that had significant (P < 0.05) genetic correlations with average 
daily gain in the quarantine nursery. Input metabolites are shown in dark red color and chemical reactions are 
represented as edges.
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Estimates of genetic correlations of metabolites with carcass traits are presented in Table 4. The only significant 
estimate was of citric acid with carcass back fat (CBF) (P < 0.05).

Finally, only oxoglutarate had a significant negative genetic correlation estimate with the number of treatments 
across the challenge nursery and finisher (Table 5; P < 0.05), while creatinine had a significant positive genetic 
correlation with mortality in the challenge nursery (Table 6; P < 0.05).

Discussion
The objectives of this study were to estimate (1) heritabilities of metabolites in plasma of young healthy pigs and 
(2) their genetic correlations with production, disease resilience, and carcass traits in growing pigs that were 
exposed to a natural polymicrobial disease challenge. The metabolomics samples were collected from healthy pigs 
at an average of 26 days of age in the quarantine nursery and the traits analyzed included those in the quarantine 
nursery, as well as in the challenge nursery and finisher, and carcass traits at slaughter. This study contributes to 
one of the main overarching objectives of the polymicrobial natural disease challenge model, which is to iden-
tify genetic predictors of resilience using samples from healthy pigs. Such predictors would be very useful for 

Table 3.  Estimates of genetic correlations (SE in parentheses) between the most heritable metabolites and 
average daily feed intake (ADFI), duration (ADFD), feed conversion ratio (FCR) and residual feed intake 
(RFI). Significance of genetic correlations are indicated in bold as: ***, **, *, x corresponding to P < 0.001, 
P < 0.01, P ≤ 0.05 and 0.05 < P < 0.10 respectively. “–” indicates not estimable.

Metabolite ADFI ADFD FCR RFI

l-Glutamic acid 0.62 (0.18)*** 0.62 (0.70) 0.01 (0.20) − 0.03 (0.02)

Hypoxanthine 0.17 (0.19) 0.39 (0.16) − 0.20 (0.27) 0.06 (0.15)

Dimethylglycine 0.31 (0.18)x 0.33 (0.15)** − 0.40 (0.26)x 0.09 (0.20)

l-Glutamine 0.42 (0.69) 0.48 (0.68) 0.47 (0.24)* − 0.1 (0.15)

l-Glycine 0.19 (0.19) 0.30 (0.14)* 0.26 (0.28) 0.12 (0.16)

Oxoglutarate 0.34 (0.22) 0.29 (0.17) − 0.01 (0.31) − 0.17 (0.32)

Creatinine 0.58 (1.03) 0.14 (0.15) − 0.31 (0.26) − 0.14 (0.16)

l-Ornithine 0.10 (0.21) 0.25 (0.17) 0.01 (0.32) 0.34 (0.21)

Betaine − 0.25 (0.46) 0.53 (0.16)*** 0.12 (0.33) 0.16 (0.17)

Citric acid 0.1 (0.39) 0.42 (0.19)* 0.37 (0.29) –

Pyruvic acid 0.07 (0.24) 0.14 (0.19) − 0.03 (0.33) 0.21 (0.20)

l-Lysine 0.26 (0.26) − 0.09 (0.37) 0.23 (0.36) 0.29 (0.19)

l-Histidine 0.04 (0.26) − 0.42 (0.42) − 0.16 (0.35) 0.19 (0.29)

l-Methionine − 0.12 (0.28) 0.22 (0.26) – − 0.24 (0.30)

KetoAA 0.23 (0.29) 0.05 (0.23) – 0.48 (1.05)

l-Alpha-aminobutyric acid log 0.05 (0.27) 0.12 (0.28) 0.63 (0.51) − 0.07 (0.26)

d-Glucose − 0.07 (0.26) − 0.15 (0.30) 0.04 (0.39) 0.05 (0.19)

Isobutyric acid − 0.28 (0.28) − 0.38 (0.29)x − 0.13 (0.61) − 0.38 (0.27)*

l-Aspartate 0.49 (0.37)x 0.52 (0.61) − 0.59 (0.58) − 0.22 (0.32)

Figure 2.  A compound network of metabolites that had significant (P < 0.05) genetic correlation with average 
daily feed duration. Input metabolites are shown in dark red color and chemical reactions are represented as 
edges.
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breeding for disease resilience, as they can be measured in high health genetic nucleus herds as indicator traits 
for disease resilience in commercial farms.

We measured the concentration of a panel of 44 metabolites in plasma, including amino acids, short chain 
fatty acids, sugars, alcohols, organic acids, amines, and TCA cycle intermediates, and urea cycle intermediates. 
Variation in metabolite concentration can be due to environmental effects, diet, gender, age, physiological con-
ditions, and genetic effects. Literature indicates that in humans, approximately 50% of phenotypic differences 

Table 4.  Estimates of genetic correlations (SE in parentheses) between the most heritable metabolites and 
carcass traits: carcass weight (CWT), backfat (CBF) and loin depth (CLD), lean yield (LYLD) and dressing 
percentage (DRS). Significance of genetic correlations are indicated in bold as: *, x corresponding to P ≤ 0.05 
and 0.05 < P < 0.10 respectively. “–” indicates not estimable.

Metabolite CWT CBF CLD LYLD DRS

l-Glutamic acid − 0.11 (0.33) 0.12 (0.5) − 0.20 (0.18) − 0.12 (0.14) − 0.21 (0.31)

Hypoxanthine − 0.29 (0.33) 0.26 (0.16) − 0.22 (0.19) − 0.27 (0.16)x − 0.25 (0.25)

Dimethylglycine 0.24 (0.34) 0.13 (0.16) − 0.23 (0.19) – − 0.01 (0.25)

l-Glutamine 0.17 (0.33) 0.22 (0.15) 0.08 (0.19) − 0.18 (0.15) 0.11 (0.24)

l-Glycine 0.003 (0.34) 0.26 (0.15)x − 0.21 (0.19) − 0.24 (0.16) 0.16 (0.26)

Oxoglutarate − 0.34 (0.40) 0.44 (0.80) − 0.31 (0.21) − 0.08 (0.17) − 0.39 (0.27)

Creatinine 0.27 (0.37) 0.46 (0.42) 0.02 (0.20) − 0.30 (0.17)x 0.45 (0.30)

l-Ornithine − 0.51 (0.50) 0.16 (0.18) − 0.18 (0.22) − 0.16 (0.18) − 0.26 (0.27)

Betaine − 0.24 (0.36) 0.08 (0.17) − 0.09 (0.45) − 0.17 (0.19) − 0.20 (0.28)

Citric acid 0.41 (0.39) 0.34 (0.18)* − 0.70 (0.48)x 0.16 (0.04) 0.19 (0.29)

Pyruvic acid − 0.16 (0.82) 0.04 (0.14) 0.40 (1.12) 0.003 (0.15) 0.16 (1.76)

l-Lysine 0.79 (0.06) 0.72 (0.7) − 0.20 (2.35) − 0.74 (1.06) − 0.01 (0.33)

l-Histidine 0.40 (0.13) 0.40 (1.52) 0.02 (2.66) − 0.31 (2.87) − 0.57 (1.14)

l-Methionine 0.28 (1.35) 0.76 (0.10)x − 0.68 (0.74) − 0.79 (0.11)x 0.22 (0.67)

KetoAA 0.76 (0.06) 0.59 (1.06) − 0.15 (2.20) − 0.81 (0.71) 0.02 (0.36)

l-Alpha-aminobutyric acid log 0.15 (0.51) 0.02 (0.25) − 0.03 (0.26) − 0.03 (0.22) 0.12 (0.66)

D-glucose − 0.40 (0.49) − 0.04 (0.22) − 0.06 (030) 0.03 (0.22) − 0.24 (0.37)

Isobutyric acid 0.90 (1.74) − 0.12 (0.24) 0.25 (0.79) 0.10 (0.25) 0.46 (0.69)

l-Aspartate − 0.04 (0.79) 0.16 (0.30) − 0.33 (0.36) − 0.19 (0.28) − 0.47 (0.87)

Table 5.  Estimates of genetic correlations (SE in parentheses) between the most heritable metabolites and 
number of treatments in the challenge nursery, finisher, and across the nursery and finisher. Significance of 
genetic correlations are indicated in bold as: *, corresponding to P ≤ 0.05. “–” indicates not estimable.

Metabolite Challenge nursery Finisher Nursery finisher

l-Glutamic acid 0.22 (0.23) − 0.53 (0.86) − 0.45 (0.97)

Hypoxanthine 0.06 (0.24) − 0.47 (0.93) − 0.24 (0.35)

Dimethylglycine 0.04 (0.24) 0.11 (0.77) –

l-Glutamine − 0.27 (0.26) − 0.43 (0.88) − 0.08 (0.06)

l-Glycine − 0.08 (0.26) 0.08 (0.87) –

Oxoglutarate − 0.11 (0.26) − 0.90 (1.28) − 0.49 (0.28)*

Creatinine − 0.32 (0.29) − 0.18 (0.70) − 0.34 (0.29)

l-Ornithine − 0.09 (0.31) − 0.71 (1.27) − 0.24 (0.36)

Betaine 0.04 (0.26) 0.05 (1.48) 0.19 (0.33)

Citric acid − 0.09 (0.28) − 0.36 (1.01) − 0.10 (0.32)

Pyruvic acid − 0.30 (0.32) 0.25 (1.16) − 0.16 (0.31)

l-Lysine − 0.19 (0.31) − 0.53 (1.21) − 0.17 (0.40)

l-Histidine 0.05 (0.31) − 0.37 (1.11) − 0.34 (0.77)

l-Methionine − 0.07 (0.52) − 0.08 (1.27) 0.43 (0.51)

KetoAA − 0.03 (0.35) − 0.25 (1.45) 0.03 (0.53)

l-Alpha-aminobutyric acid log 0.41 (0.40) 0.11 (1.09) 0.48 (0.62)

d-Glucose − 0.14 (0.38) − 0.04 (0.02) –

Isobutyric acid 0.14 (0.37) − 0.82 (1.46) − 0.44 (0.75)

l-Aspartate 0.06 (0.38) 0.58 (4.33) − 0.12 (0.46)
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in metabolite levels is due to genetics, but heritability estimates differ across metabolite  classes16. Metabolites 
can be grouped into primary and secondary metabolites. Primary metabolites are directly involved in primary 
metabolic processes, such as normal growth, development, reproduction, and immune response, e.g. amino acids 
and products derived from glycolysis and the TCA cycle. Primary metabolites are highly conserved across spe-
cies and serve as precursors for the synthesis of secondary  metabolites19. For example, amino acids, in addition 
to being the building blocks of proteins, are also regulators of innate and adaptive immune responses in living 
cells. Many studies have demonstrated that glutamic acid, glutamine, histidine, methionine, leucine, isoleucine, 
and valine are functional regulators of macrophages, dendritic cells, and T-cells.20–23. Our results showed that 31 
metabolites had low to moderate heritability and two metabolites had relatively high heritability (> 0.4). In a study 
of beef cattle, only 11 of 33 metabolites measured (29 in common with this study) were reported to be  heritable17. 
Similar heritability estimates to Li et al.17 were reported here for betaine, creatinine, pyruvic acid and citric 
acid. In our study, other metabolites, such as ketone bodies (3-hydroxybutyric acid, acetoacetate and acetone), 
creatine, succinate, formate, and methylhistidine, showed negligible heritability estimates, suggesting that they 
are primarily influenced and manipulated by environmental effects such as diet, and/or age, health status etc.

Branched-chain amino acids, was calculated as the sum of l-leucine, l-isoleucine and l-valine and BCAA 
did not have higher heritability than the amino acids that contributed to the index.

Phenotypic correlations of metabolites with production, disease resilience, and carcass traits were generally 
very low. These results are in line with those reported previously in dairy cows by Buitenhuis et al.15. However, 
genetic correlation analyses found that dimethylglycine (0.28), betaine (0.39), l-methionine (0.45), and l-serine 
(0.54) were positively correlated with ADG in the quarantine nursery, while creatinine (− 0.60) was negatively 
correlated with this trait. These metabolites are involved in glycine, serine, alanine and threonine pathway, which 
suggests that this pathway might be a target to improve ADG in young healthy piglets. Indeed, supplementation 
with dimethylglycine has been shown to improve growth performance, significantly increasing total body weight 
gain and feed intake, and improving feed efficiency in low-birth-weight  piglets24. We found that l-methionine 
(0.15), l-glutamine (0.12) and betaine (0.18), had positive phenotypic correlation estimates with qNurADG. 
Methionine supplementation has been reported to improve growth rate in nursery  pigs25. Positive effects of 
methionine supplementation on intestine structure have also been observed, with greater average daily gain 
from days 7–14 of age and improved feed  efficiency25.

Creatinine was genetically highly negatively correlated (− 0.60) with ADG in the quarantine nursery. Variation 
in creatinine concentration can arise as result of environmental and genetic factors. For example, phenotypic 
variation in creatinine concentration can be expected due to batch, transportation and fighting or re-grouping 
of animals. Creatinine is considered a waste product produced by muscles from the breakdown of creatine and is 
removed from the blood and released into urine by the kidneys. Typically, 95% of creatinine is found in muscle 
and an increase of creatinine concentration in blood is often considered as an indicator of kidney  malfunction27. 
Conversion of muscle creatine into creatinine can reflect protein  degradation28 and serum creatinine concentra-
tion has been proposed as an indicator of protein  deposition29. Animals with low ADG are expected to have lower 
protein or muscle deposition and our results suggest that increased plasma creatinine concentration might be a 

Table 6.  Estimates of genetic correlations (SE in parentheses) between the most heritable metabolites and 
mortality in the challenge nursery, finisher, and across the nursery and finisher. Significance of genetic 
correlations are indicated in bold as: *, corresponding to P ≤ 0.05. “–” indicates not estimable.

Metabolite Challenge nursery Finisher Nursery finisher

l-Glutamic acid – − 0.77 (1.00) –

Hypoxanthine 0.12 (0.35) − 0.67 (0.91) − 0.83 (1.72)

Dimethylglycine − 0.08 (0.55) 0.25 (0.59) 0.18 (0.69)

l-Glutamine − 0.21 (0.44) − 0.14 (0.59) − 0.05 (1.03)

l-Glycine 0.11 (0.35) 0.28 (0.60) 0.24 (0.79)

Oxoglutarate – − 0.76 (1.51) –

Creatinine 0.85 (0.76)* − 0.12 (2.01) − 0.04 (0.28)

l-Ornithine 0.01 (0.54) – − 0.30 (0.73)

Betaine – – 0.09 (0.76)

Citric acid − 0.13 (8.36) 0.12 (0.58) − 0.06 (0.84)

Pyruvic acid 0.12 (0.39) − 0.25 (0.73) − 0.33 (0.88)

l-Lysine 0.39 (0.40) − 0.09 (1.06) − 0.15 (1.54)

l-Histidine 0.68 (0.75) − 0.35 (0.92) − 0.17 (0.96)

l-Methionine − 0.24 (0.98) 0.09 (0.87) − 0.08 (0.72)

KetoAA 0.10 (0.87) − 0.27 (1.04) − 0.35 (1.21)

l-Alpha-aminobutyric acid log 0.24 (0.74) 0.33 (0.83) 0.39 (1.07)

d-Glucose − 0.21 (0.51) − 0.10 (0.78) − 0.16 (1.04)

Isobutyric acid 0.08 (0.70) − 0.21 (0.96) − 0.22 (3.35)

l-Aspartate − 0.50 (1.70) – –
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genetic indicator of low ADG in healthy nursery piglets. In addition, creatinine was phenotypically negatively 
correlated with ADG of young healthy pigs (− 0.21). Moreover, creatinine was genetically positively correlated 
with mortality in the challenge nursery, suggesting that young healthy pigs that have higher plasma creatinine, 
genetically have lower ADG as healthy nursery pigs but are more likely to die when challenged by disease. Further 
research is necessary to validate creatinine as a potential genetic marker for ADG in healthy nursery pigs and as 
an early genetic indicator trait for mortality under disease.

Plasma oxoglutarate concentration in the quarantine nursery was genetically positively correlated with ADG 
in the finisher and negatively correlated with nTRT across the nursery and finisher. Moreover, l-glutamic acid 
showed positive genetic correlation estimates with ADG (0.72) and with ADFI (0.62) in the finisher. Oxoglutar-
ate, also known as alpha-ketoglutarate, is a key organic acid of the TCA cycle and a source of glutamic acid and 
glutamine, and stimulates protein synthesis and inhibits protein degradation in  muscles30,31. Positive effects of 
oxoglutarate on the protein synthesis and skeletal system have been reported in various farmed species, including 
 turkeys32,  pigs33,34, and  sheep35,36. Our results suggest that young healthy pigs that had greater oxoglutarate and 
l-glutamic acid concentration, genetically have greater ADG in the finisher and received fewer health treatments 
across the challenge nursery and finisher. Interestingly, none of the metabolites were genetically correlated with 
ADG in the challenge nursery. For the data used here, Cheng et al.37 reported that the estimate of heritability of 
ADG was lower in the challenge nursery (0.19) than in the quarantine nursery (0.31) and in the finisher (0.30), 
which might have impacted the ability to accurately estimate the genetic correlations of metabolites with ADG 
in the challenge nursery.

Four metabolites (dimethylglycine, l-glycine, betaine and citric acid) had moderate to high positive genetic 
correlation estimates with ADFD (0.30–0.52). These metabolites are involved in the TCA cycle and in glycine, 
serine, alanine, and threonine metabolism. Interestingly, dimethylglycine and betaine were also positively cor-
related with ADG in the quarantine nursery, which suggests that pigs with greater dimethylglycine and betaine 
concentration genetically have greater ADG as young healthy pigs and might spend more time eating in the 
finisher stage.

A moderate positive genetic correlation (0.34) between citric acid and carcass backfat was estimated, which is 
in line with the fact that citric acid is involved in fatty acid metabolism. Citrate, the conjugated base of citric acid, 
is formed from oxaloacetate and acetyl-coenzyme A (acetyl-CoA) by citrate synthase. Once transported to the 
cytosol, citrate is converted to acetyl CoA and oxaloacetate. Acetyl-CoA is then converted to malonyl CoA and 
can be used as a substrate for fatty acid  synthesis38. The genetic correlation observed suggests that young healthy 
pigs that have higher plasma content of citric acid genetically have higher carcass backfat when disease is present.

Interestingly, isobutyric acid was estimated to be negatively correlated, genetically, with RFI (− 0.38), which 
suggests that young healthy pigs that have higher plasma isobutyric acid content genetically have better feed effi-
ciency under disease conditions. Isobutyric acid is a carboxylic or short chain fatty acid (SCFA) that is generated 
via microbial (gut) metabolism. Isobutyric acid has been described and quantified in the faeces of human, rats, 
horses, and  pigs39. It has been reported that SCFAs such as acetic, propionic, and butyric acids, derive mostly from 
carbohydrates, while other SCFAs such as isobutyric acid are mostly derived from  proteins40, specifically from 
degradation of branched-chain amino acids, and greater concentration of isobutyric acid could be indicative of 
better utilization of dietary protein by the  microbiota41. Literature indicates that low RFI animals (efficient) have 
greater ileal isobutyric acid  concentrations42. Thus, our results suggest that low RFI pigs genetically might have 
a better utilization of dietary protein by the microbiota. Further research is necessary to investigate the role of 
isobutyric acid as a potential genetic biomarker of RFI in pigs with or without disease.

In conclusion, the results suggest that some metabolic phenotypes measured in plasma of young healthy 
pigs are moderately heritable. The present work contributes to our understanding of the genetic parameters of 
plasma metabolite concentrations in young healthy pigs and their relationships with production, resilience, and 
carcass traits under disease. To the best of our knowledge, this is the first study to report estimates of heritabilities 
of plasma metabolite concentrations and of their genetic correlations with production, resilience, and carcass 
traits in pigs following polymicrobial disease challenge. Metabolites have the potential to be used in high health 
genetic nucleus herds as indicator traits for disease resilience in commercial farms. Further studies are warranted 
to validate the identified possible genetic indicators of resilience.

Material and methods
Animals, production, resilience and slaughter traits. This study was carried out in accordance with 
the Canadian Council on Animal Care guidelines (CCAC)43. All procedures were carried in accordance with 
the Animal Research: Reporting of In Vivo Experiments (ARRIVE)  guidelines44. The Animal Care protocol was 
approved by the Animal Protection Committee of the Centre de Recherche en Sciences Animales de Descham-
bault (15PO283) and Animal Care and Use Committee at the University of Alberta (AUP00002227).

This study is part of a larger research project which investigates the underlying genetic mechanisms of disease 
resilience in grow-finisher pigs exposed to a natural polymicrobial disease challenge. The details of the polymi-
crobial challenge and phenotypes/traits collected were previously described in Putz et al.18, Cheng et al.37, and 
Bai et al.45. The challenge was established in late 2015 at the Centre de développement du porc du Québec inc 
(CDPQ) test station in Québec, Canada, with the aim to mimic a commercial farm with high disease pressure to 
maximize expression of genetic differences in resilience. For purpose of clarity, here we briefly describe the three 
phases of the experiment, which included a pre-challenge quarantine nursery (19 days on average beginning at 
3 weeks of age), the challenge nursery (27 days on average), and lastly, the finishing phase (100 days on average). 
The natural disease challenge protocol was established by introducing naturally infected animals with known 
diseases into the challenge nursery and finisher barn at CDPQ. Some of the introduced pathogens included: 
viruses (PRRSV and swine influenza virus A), bacterial pathogens such as Brachyspira hampsonii, Haemophilus 
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parasuis, Mycoplasma hyopneumoniae, Salmonella enterica serovar Typhimurium, and Streptococcus suis), and two 
parasites (Ascaris suum and Cystoisospora suis)45. Moreover, environmental enrichment (inedible point source 
objects) was applied in 50% of quarantine nursery pens in some of the batches, with the purpose to evaluate 
the impact of environmental enrichment on disease resilience. Pigs that received enrichment in the quarantine 
nursery, continued to receive enrichment in the challenge nursery and  finisher37. Throughout the study feed 
was available ad libitum (the quarantine nursery, challenging nursery and finisher). In the quarantine nursery 
all pigs were fed the same commercial diet appropriate for pigs’ age and weight (Délice, Nourisson and Premier 
Age (Cie Alfred Couture ltée; Quebec, Canada)).

Production, resilience, and carcass traits were collected from a total of 3205 F1 crossbred (Landrace × York-
shire) barrows. The phenotypes used in this study included: average daily gain recorded in the quarantine nurs-
ery, challenge nursery, and finisher stages. Finisher traits considered in the present study included feed intake 
and duration, feed conversion ratio, and residual feed intake. The number of parenteral treatments provided to 
individual pigs were also tabulated separately for the challenge nursery, finisher and combined challenge nurs-
ery and finisher as the number of treatments per 180 days. Mortality (0 = survived, 1 = died) in the challenge 
nursery, finisher, and across the nursery and finisher were also  included37. Finally, carcass traits included: carcass 
weight, backfat, and loin depth, dressing percentage, and lean yield. Details of the recording and derivation of 
the resilience, production, and carcass traits can be found in Putz et al.18 and Cheng et al.37. Cheng et al.37 used 
two data sets for analysis of traits recorded in the finisher but in the current study we only use the data set that 
included phenotypic finisher data on pigs that survived to slaughter (survivor data), except for mortality. For 
the challenge nursery, phenotypes on all pigs were used. Details of the number of animals and traits considered 
here are described in Cheng et al.37. For purpose of brevity: data from 958 young healthy pigs were included in 
the present study for metabolomics analysis, nearly 3200 animals for nursery traits, around 2500 animals for 
finisher traits, and 2000 animals for carcass traits.

Blood samples. For metabolomics analysis we used blood samples collected from 958 young healthy ani-
mals which were introduced in 15 batches of 60 or 75 pigs. Blood was collected from the jugular vein into K2 
ethylenediaminetetraacetic acid (EDTA) tubes (BD Vacutainer, Blood Collection Tubes, United States), on all 
pigs in the quarantine nursery at an average age of 26 days, 5 days post-arrival from their farm of  origin45. After 
collection, the blood samples were centrifuged at 3000 rpm at 4 °C for 10 min, plasma collected and immediately 
frozen and stored at − 80 °C and only thawed for the metabolomics analysis. Two weeks after the first sampling, 
pigs were transferred to the test station and naturally exposed to multiple pathogens, as described in Putz et al.18 
and Bai et al.45.

All animals (n = 3205) were genotyped using a 650k Affymetrix Axiom Porcine Genotyping Array by Delta 
Genomics (Edmonton AB, Canada). Raw Affymetrix SNP data were processed by Delta Genomics, separately 
for each cycle, with the Axiom Analysis Suite, using all defaults. Details of genotyping and quality control are 
described in Cheng et al.37 and Bai et al.45. After quality control, a total of 417,443 SNPs in 3205 pigs remained 
and were used for analysis.

Nuclear magnetic resonance spectroscopy and quality control. Forty-eight plasma metabolites 
were quantified using NMR, following established protocols at The Metabolomics Innovation Center at Univer-
sity of Alberta (TMIC), AB, Canada (https:// www. metab olomi cscen tre. ca/).

Plasma samples were thawed on ice and a deproteinization step, involving ultra-filtration was performed 
as previously  described46, in order to remove plasma macromolecules. Prior to filtration, 3 kDa cut-off cen-
trifugal filter units (Amicon Microcon YM-3), were rinsed five times each with 0.5 mL of  H2O and centrifuged 
(10,000 rpm for 10 min) to remove residual glycerol bound to the filter membranes. Aliquots of each plasma 
sample were then transferred into the centrifuge filter devices and spun (10,000 rpm for 20 min) to remove mac-
romolecules (primarily protein and lipoproteins) from the sample. The filtrates were collected and the volumes 
for each sample were recorded. If the total volume of the sample was under 250 µL an appropriate amount of 
150 mM  KH2PO4 buffer (pH 7) was added and the dilution factor was annotated and taken into account in the 
analysis. Subsequently, 46.5 µL of a standard buffer solution (54%  D2O:46% 1.75 mM  KH2PO4 pH 7.0 v/v con-
taining 5.84 mM DSS (2,2-dimethyl-2-silcepentane-5-sulphonate), 5.84 mM 2-chloropyrimidine-5 carboxylate, 
and 0.1%  NaN3 in  H2O) was added to the sample.

The plasma samples (250 µL) were transferred in 3 mm SampleJet NMR tubes for spectral analysis. All 1H-
NMR spectra were collected on a 700 MHz Avance III (Bruker) spectrometer equipped with a 5 mm HCN Z-gra-
dient pulsed-field gradient (PFG) cryoprobe. 1H-NMR spectra were acquired at 25 °C using the first transient 
of the NOESY pre-saturation pulse sequence (noesy1dpr), chosen for its high degree of quantitative  accuracy47. 
All FID’s (free induction decays) were zero-filled to 250 K data points. The singlet produced by the DSS methyl 
groups was used as an internal standard for chemical shift referencing (set to 0 ppm) and for quantification all 
1H-NMR spectra were processed and analyzed using an in-house version of the MAGMET automated analysis 
software package using a custom metabolite library. MAGMET allows for qualitative and quantitative analysis 
of an NMR spectrum by automatically fitting spectral signatures from an internal database to the  spectrum48. 
Each spectrum was inspected by an NMR spectroscopist in order to minimize compound misidentification and 
misquantification.

Prior to statistical analysis, a quality control step was applied to the metabolite data. Four metabolites that 
were frequently (> 20%) below the limit of detection or with at least 20% missing values were removed from con-
sideration. A total of 44 metabolites and two amino acid indexes remained in the dataset. Other missing values 
(15 data points) were replaced by the median value of each metabolite in the original data. First, we assessed the 
significance of each fixed  (batch, enrichment), covariable (age), and random effects (pen and litter) using linear 

https://www.metabolomicscentre.ca/
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regression models implemented in R statistical  software49. The residuals of the model were plotted and visually 
inspected for the presence of outliers, which were excluded from the dataset. Data normalization (log10) of 
metabolite concentrations that were not normally distributed (2-hydroxybutyrate, ethanol, 3-hydroxybutyric acid, 
l-alpha-aminobutyric acid, methanol and creatine) was done prior to statistical analysis. Two indexes were also 
computed for statistical analysis: (1) branched-chain amino acids (BCAA), which was calculated as the sum of 
l-leucine, l-isoleucine and l-valine and (2) ketogenic amino acids (ketoAA), calculated as the sum of l-lysine and 
l-leucine. A summary of descriptive statistics of all metabolites after quality control is in Supplementary Table S4.

Variance component analyses. Variance components were estimated by GBLUP using the BLUPF90 
 programs50. The general following mixed linear model was used to estimate the heritability of each metabolite:

where  Yijk is the trait (metabolite); Batchi is the fixed batch effect (i = 1, …, 15); Ageijk is the covariate of age when 
the pig entered the quarantine nursery; Penj is the random effect of pen by batch corresponding the different 
phases (quarantine nursery, challenging nursery, or finisher), with Penj ~ N (0, σ2

P) where σ2
P is pen variance; 

Litterijk is the litter environmental effect, with Litterijk ~ N (0, σ2
L) where σ2

L is the litter environmental variance; 
uijk is the random additive genetic effect, with the vector u ~ N (0, Gσ2

A), where G is the genomic relationship 
matrix and σ2

A is the additive genetic variance; and eijk is the residual effect, with eijk ~ N (0, σ2
e) where σ2

e is the 
residual variance. The genomic relationship matrix, G, was created separately for each of the seven companies 
supplying pigs using the software  preGSf9050 and the method described by  VanRaden51, and then combined into 
one G matrix, with genetic relationships between companies set to zero in order to focus on within-company 
variance components, as described by Cheng et al.37. For six metabolites namely: l-ornithine, l-leucine, l-valine, 
l-asparagine, 3-methyl 2-oxovaleric acid and formate, environment enrichment was included as a fixed effect 
because the effect of enrichment was significant (P ≤ 0.05).

For metabolites with heritability estimates greater than 0.20, genetic correlations with production, disease 
resilience, and carcass traits were estimated using bivariate models. For these traits, phenotypes from batches 
that were not measured for metabolites were also included. Models used for these traits were as described by 
Cheng et al.37.

Heritability was estimated as σ2
a/ (σ2

a + σ2
L + σ2

e) and the standard error (SE) for the heritability estimate was 
calculated according to the Monte-Carlo method suggested by Meyer and  Houle52. The proportion of variance 
explained by sow or maternal effects, referring to effects that are common to individuals with the same mother, 
was estimated as σ2

L/ (σ2
L + σ2

e). Genetic correlations between two traits were estimated as the estimate of the 
genetic covariance from the bivariate analysis divided by the product of the genetic standard deviations for the 
two traits. Significance of estimates of heritabilities and genetic correlations were determined using likelihood 
ratio tests with 1 degree of freedom. For heritability estimates, the resulting P-values were divided by 2 because 
the estimates are restricted to be  positive53.

Network visualization. For exploration and visualization of the biochemical pathway that metabolites are 
involved in, the Metscape  plugin54 in Cytoscape 3.8.255 was used. The metabolites that had significant (P ≤ 0.05) 
genetic correlations with qNurADG and ADFD were used for pathway visualization. The file with the list of 
KEGG elements was loaded into Metscape to generate a compound network. Only metabolites with KEGG IDs 
were considered for compound network and pathway analysis. In a compound network, metabolites are repre-
sented as nodes and reactions are represented as edges. A compound node with an outgoing edge is a substrate, 
while a compound with an incoming edge is the product of a specific biochemical reaction. Finally, we estimated 
phenotypic and genetic correlations among metabolites that belong to the same pathway.

Data availability
The data analyzed in this study are not publicly available, because the data were generated on samples from com-
mercially owned animals, but they can be made available by the corresponding author on reasonable request.
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