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Abstract

During development, morphogens provide extracellular cues allow-
ing cells to select a specific fate by inducing complex transcrip-
tional programs. The mating pathway in budding yeast offers
simplified settings to understand this process. Pheromone secreted
by the mating partner triggers the activity of a MAPK pathway,
which results in the expression of hundreds of genes. Using a
dynamic expression reporter, we quantified the kinetics of gene
expression in single cells upon exogenous pheromone stimulation
and in the physiological context of mating. In both conditions, we
observed striking differences in the timing of induction of mating-
responsive promoters. Biochemical analyses and generation of
synthetic promoter variants demonstrated how the interplay
between transcription factor binding and nucleosomes contributes
to determine the kinetics of transcription in a simplified cell-fate
decision system.
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Introduction

Cell-fate decisions play a key role in crucial processes such as tissue

repair, immune response, or embryonic development. In order to

make choices, cells integrate cues from neighboring cells as well as

from morphogens. Signal transduction cascades relay this informa-

tion inside the cell to translate these extracellular signals into

defined biological responses. The cellular output includes the induc-

tion of complex transcriptional programs where specific genes are

expressed to different levels and at various times (Gurdon et al,

1995; Ashe et al, 2000). Ultimately, these different expression

programs will determine the fate of individual cells. The mating

pathway in budding yeast has often been considered as a simplified

cell-fate decision system, where each cell can either continue to

cycle in the haploid state or decide to mate with a neighboring cell

of opposing mating type. This decision results in an arrest of the cell

cycle and formation of a mating projection and ultimately leads to

the fusion with the partner to form a diploid zygote (Bardwell,

2005; Atay & Skotheim, 2017).

Haploid budding yeast senses the presence of potential mating

partners by detecting pheromone in the medium. This small peptide

elicits the activation of a mitogen-activated protein kinase (MAPK)

cascade (Appendix Fig S1), which can integrate multiple cues such

as stresses, cell cycle stage, or nutrient inputs (Strickfaden et al,

2007; Doncic et al, 2011; Nagiec & Dohlman, 2012; Clement et al,

2013). Once the MAPKs Fus3 and Kss1 are activated, they phospho-

rylate a large number of substrates and induce a new transcriptional

program. Ste12 is the major transcription factor (TF) implicated in

this response and controls the induction of more than 200 genes

(Roberts et al, 2000). Under normal growth conditions, this TF is

repressed by Dig1 and Dig2. Phosphorylation by active Fus3 and

Kss1 relieves this inhibition, such that Ste12 can recruit the tran-

scriptional machinery (Tedford et al, 1997). Ste12 associates with

the DNA via well-established binding sites located in promoters

called pheromone response elements (PRE), with the consensus

sequence ATGAAACA (Kronstad et al, 1987; Hagen et al, 1991).

Although PREs are found upstream of the vast majority of phero-

mone-induced genes (Chou et al, 2006), the number of binding

sites, their orientation, and their position relative to the transcrip-

tion start site vary widely from one gene to the next (Chou et al,

2006; Su et al, 2010).

Promoter sequences are primary determinants of the strength

and kinetics of gene expression. Unfortunately, the basic rules

governing transcription regulation remain poorly understood.

Libraries of synthetic promoter sequences have allowed establish-

ing a few rules in the control of the expression level and the noise

of a promoter sequence (Sharon et al, 2012; Levo & Segal, 2014;

Hansen & O’Shea, 2015). However, the slow maturation time of

fluorescent proteins (FP) precluded thorough investigations of gene

expression kinetics. In a previous paper, we developed the dPSTR,

a fluorescent relocation reporter that converts the expression of a

promoter into a signal of relocation of a fluorescent protein

(Aymoz et al, 2016).
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In this study, we use these dynamic gene expression reporters to

characterize the induction dynamics of a set of promoters activated

in response to yeast mating pheromone. We have identified different

classes of promoters based on the kinetics of their expression.

Deeper analysis of early and late promoters highlighted the interplay

between TF binding and nucleosome positioning as a major deter-

minant of the expression dynamics. In addition, we demonstrate

that under physiological mating conditions, the induction of the

target genes follows a precise chronology and they are sequentially

expressed until fusion occurs.

Results

Interplay between kinase activity and expression dynamics

In multiple MAPK pathways, MAPK activity has been shown to be

tightly linked to the transcriptional process by phosphorylating TFs,

contributing to the recruitment of remodeling complexes, and partic-

ipating in the elongation complex (de Nadal et al, 2011). Therefore,

we wanted to measure, in the mating pathway, how kinase activity

and gene expression were temporally correlated. Using fluorescent

relocation sensors that we previously engineered, we are able to

quantify, in real-time and at the single-cell level, both MAPK activity

and gene expression upon stimulation of MATa cells with synthetic

pheromone (a-factor, 1 lM; Durandau et al, 2015; Aymoz et al,

2016). Signaling activity was quantified using a Ste7DS-SKARS
Y,

which exits the nucleus when the mating MAPKs Fus3 and Kss1

phosphorylate specific residues in the vicinity of a nuclear localiza-

tion sequence (NLS) (Fig 1A; Appendix Fig S2A). In the same cells,

a dynamic protein expression reporter pFIG1-dPSTRR was inte-

grated. FIG1 displays the largest fold induction upon pheromone

stimulation (Roberts et al, 2000). In this assay, the FIG1 promoter

drives the expression of a small peptide, which interacts with a fluo-

rescent protein and promotes its recruitment in the nucleus (Fig 1A,

Appendix Fig S2B, Aymoz et al, 2016). Upon stimulation, the cells

activate the mating MAPKs a few minutes after stimulation, as

previously described (Yu et al, 2008; Nagiec & Dohlman, 2012;

Durandau et al, 2015). Despite this fast signal transduction, the

resulting pFIG1 expression occurs 30 min later (Fig 1A and C). Indi-

vidual yeast cells are known to possess a large diversity in signaling

capacity (Colman-Lerner et al, 2005; Strickfaden et al, 2007).

However, the expression dynamics of pFIG1 is still highly variable

within the sub-population of cells that activate the MAPK within the

10 min following stimulation, suggesting that the heterogeneity in

pFIG1 expression does not result from various kinetics of MAPK

activation (Appendix Fig S3A). This finding suggests an absence of

temporal correlation between kinase activity and the downstream

transcriptional response.

This surprising result led us to test the expression kinetics of

multiple mating-responsive promoters. Among them was AGA1, a

gene reported to be strongly induced upon pheromone stimulation

(Roberts et al, 2000; McCullagh et al, 2010). The pAGA1-dPSTRR

begins to enrich in the nucleus of cells 15 min after stimulation

(Fig 1B and D). Thus, the induction of gene expression from this

promoter is much faster than for pFIG1. In addition, the induction

of pAGA1 in signaling-competent cells is less variable with the

vast majority of the cells inducing the reporter within 30 min

following the stimulus (Appendix Fig S3A). This raises the ques-

tion of how the activation of these two promoters is related in a

same cell.

Direct comparison of two dynamic expression reporters

We used a second protein expression reporter, the dPSTRY, which is

orthogonal to the dPSTRR, to quantify pAGA1 and pFIG1 expression

dynamics in the same strain (Aymoz et al, 2016; Fig 1E and

Appendix Fig S3B). In all expressing cells, the response time for

each promoter was determined based on the time at which the

dPSTR nuclear enrichment reached 20% of its maximum (Fig 1F,

see Materials and Methods and Appendix Fig S4). pAGA1 expression

is relatively homogeneous between cells, with 83% of the cells

inducing the promoter within the first 30 min following stimulation.

In comparison, pFIG1 expression is highly variable from cell to cell.

In cells inducing both promoters, the difference in response times

can be measured (Fig 1F, inset). In 87% of cells, the pAGA1-dPTSRY

is activated prior to the pFIG1-dPSTRR, which on average is delayed

by 23 min. These different dynamics of induction are also well illus-

trated by the absence of correlation between the dPSTR enrichment

seen at early time points (Fig 1G). The cell population becomes first

pAGA1 expressing, as denoted by a shift along the x-axis. Later, a

shift of the cell population is observed along the y-axis, illustrating

the delay in the induction of pFIG1. This delay is not an artifact from

the dPSTRs, since the same results can be obtained when exchang-

ing the promoters on the dPSTRs (Appendix Figs S5 and S6). In

parallel, we have also verified that mRNA production dynamics

▸Figure 1. Interplay between kinase activity and promoter induction in the mating pathway.

A, B Microscopy images of cells stimulated with a saturating pheromone concentration (1 lM) at time 0 min. The cells bear a histone tagged with CFP, a yellow SKARS
reporting on Fus3p and Kss1p activities, and a red dPSTR reporting on pFIG1 (A) or pAGA1 (B) induction. For all experiments, unless stated otherwise, the
stimulation was performed by addition of 1 lM a-factor at time 0 min.

C, D Quantifications of the kinase activity (green, left axis), measured by the ratio of cytoplasmic to nuclear YFP, and of the pFIG1 (C) and pAGA1 (D) expressions,
measured by the difference between nuclear and cytoplasmic fluorescence of the dPSTR (right axis). For all similar graphs, the solid line is the median response
and the shaded area represents the 25th–75th percentiles of the population.

E Microscopy images of a strain carrying pFIG1-dPSTRR and pAGA1-dPSTRY.
F Quantification of the response time of pFIG1 and pAGA1 reporters (see Materials and Methods). The inset is the difference response time between the pAGA1-

dPSTRY and the pFIG1-dPSTRR, for all cells expressing both promoters. The red shaded area represents cells expressing pAGA1 before pFIG1 (87%).
G Correlation of normalized dPSTR nuclear enrichments from all single cells of a representative experiment at different time points after stimulation.
H Northern blot detection of mRNAs from AGA1 and FIG1 after stimulation of the cells with mating pheromone. See also Appendix Fig S15.

Data information: All scale bars on microscopy images represent 2.5 lm.
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from these two promoters correlate well with the expression dynam-

ics we measured with the dPSTR (Fig 1H, Appendix Fig S7).

Together, these data demonstrate that although the MAPK

activity rises quickly in response to pheromone sensing, it does not

lead to a fast and simultaneous transcriptional activation of all

mating genes.

Characterization of mating-induced promoters

Having established that the two promoters pAGA1 and pFIG1 are

induced with different kinetics following pheromone stimulation,

we tested when other mating-induced genes were induced with

respect to pAGA1. Fourteen mating-responsive promoters, previ-

ously described in the literature, were characterized using a dPSTRR

(Fig EV1; Roberts et al, 2000; Chou et al, 2006; Su et al, 2010). We

quantified for each of them their expression output, by measuring

the maximal variation of the nuclear enrichment of the dPSTRR

upon stimulation (see Materials and Methods, Appendix Fig S4).

These promoters display a large variability both in the level of

induction and in the timing of expression (Fig 2A, Dataset EV1).

Some genes are expressed early as AGA1 (FUS1, FAR1, STE12,

etc. . .); others are late responders similar to FIG1 (PRM3, KAR3).

In order to better characterize the dynamics of expression of the

14 promoters, they were compared to the same internal control, a

pAGA1-dPSTRY. The difference in response time relative to pAGA1

induction was calculated (Figs 2B and EV2). In addition, the

comparison of the overall dynamics of induction was visualized by

plotting the mean nuclear enrichment of the yellow and red dPSTRs,

normalized between their basal and maximal expression levels

(Figs 2C and EV2). Each curve represents the correlation of the

normalized expression levels of the two measured promoters and its

evolution in course of the time-lapse, going from the bottom left to

the upper right corner. Promoters which are induced with similar

dynamics as pAGA1 will remain close to the x = y diagonal (dashed

line). Any difference in induction dynamics will cause a deviation

from this line. Based on these measurements, we defined three

classes of promoters: early, intermediate, and late. The early

promoters, with kinetics similar to pAGA1, display a difference in

response time centered around zero and a correlation aligned on the

x = y diagonal (Fig EV2). Late promoters, which behave similarly to

pFIG1, have a response time delayed by at least 15 min and a corre-

lation strongly deviating from the diagonal. Between these two

clearly identifiable groups, a set of promoters display intermediate

kinetics, where the response time is slightly delayed and/or where

the dynamic correlation with pAGA1 is significantly deviating from

the pAGA1/pAGA1 correlation at many time points.

The basal level of expression before stimulus (Appendix Fig S8)

or the maximal expression level reached after pheromone induction

(Fig 2A) does not allow to predict whether a promoter will be fast

or slow. For instance, the STE12 promoter belongs to the early genes

group, but possesses one of the lowest induction levels. However,

there is a clear link between the ability to respond at low phero-

mone concentration and the dynamics of promoter induction

(Fig EV3, Appendix Fig S9). pAGA1 and other promoters from this

category display a graded response as a-factor concentration

increases. In comparison, late promoters behave in a more switch-

like manner (Hill coefficient close to 3), where gene expression

occurs only at high concentrations of a-factor (300 nM).

Variability in gene expression

When focusing on the single-cell responses, a remarkable correla-

tion between the expressions of the fast promoters at various time

points can be observed (pAGA1/pFUS1: Fig 2D and other pairs in

Appendix Figs S10 and S11). This tight correlation can be explained

by the low noise present in the mating pathway and the expression

variability being mostly governed by extrinsic variables such as the

cell cycle stage and the expression capacity (Colman-Lerner et al,

2005). More striking is the fact that two late promoters in the same

cell are also induced with a good correlation. This implies that

despite the fact that the induction of these late genes can occur from

30 to 80 min after the stimulus, these two promoters are activated

synchronously within a given cell (Fig 2E and Appendix Figs S6 and

S11). These data also allow to rule out the presence of a slow

stochastic activation of the late genes and rather argue in favor of a

specific commitment point that the cells reach when they start to

induce the late promoters.

In order to illustrate this better, we defined the correlative

promoter variability (CPV), which allows to quantify the deviation

in the induction of two promoters measured in the same cell, rela-

tive to the overall noise in expression (Fig 2F, Appendix Fig S6 and

Fig EV2, see Materials and Methods). For two promoters well corre-

lated like pAGA1 and pFUS1 (Oehlen et al, 1996), the CPV starts

below 50% and tends to further decrease upon pheromone-depen-

dent induction. Among fast promoters, there can be different types

of behavior, depending mostly on the pre-stimulus levels of the

reporter. The variability between pFAR1 and pAGA1 is a good illus-

tration of this (Fig EV2). The CPV is high in basal conditions,

because pAGA1 and pFAR1 are both transiently expressed during

the cell cycle, although in different phases (Appendix Figs S8 and

S10, Oehlen et al, 1996). However, following stimulation with pher-

omone, the variability decreases quickly as the two promoters are

simultaneously induced. In comparison, the CPV between the late

FIG1 promoter and the early pAGA1 increases during the first

20 min following induction, due to an asynchronous induction of

pAGA1 and pFIG1. Upon activation of the late promoter, the vari-

ability decreases. The CPV value comparing the two slow promoters

pFIG1 and pKAR3 is around 60% before stimulation (Fig 2F, blue

curve). This value is higher than 50% because of the cell cycle

driven induction of pKAR3, leading to various basal levels of this

promoter, whereas pFIG1 is not expressed in absence of stimulation

(Kurihara et al, 1996; Appendix Fig S8). After stimulus, this CPV

level is maintained for roughly 30 min, during which none of these

two promoters are induced and then drops. Overall, these measure-

ments demonstrate that each mating-induced promoter is expressed

with specific dynamics and expression level. Some cells will induce

the early genes few minutes after the stimulus, while in the same

cell, other genes can be expressed up to 40 min after the first wave

of gene expression. Remarkably, the tight co-regulation of early and

late genes within their group strongly suggests that a shared mecha-

nism exists that regulates the early promoters, which is different

from the one controlling the activation of the late promoters.

Architecture of mating promoters

In order to understand how the timing of induction is regulated, we

have mapped all putative Ste12 binding sites in the sequences of the
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fourteen promoters (Appendix Fig S12). We defined consensus PREs

as nTGAAACn, as it was reported that these six core nucleotides

were the most important to promote Ste12 binding in vitro (Su et al,

2010). We also identified several non-consensus PREs that carry

additional mutations within the six core nucleotides. These putative

binding sites possess a decreased affinity for Ste12, but can
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Figure 2. Dynamics of induction of mating promoters after pheromone stimulation.

A Response time versus mean expression output for the 14 mating-dependent promoters. Dots represent the median response times of the cell population, and lines
represent the 25th and 75th percentiles. All promoters were measured with the dPSTRR. The strains also bear the pAGA1-dPSTRY for direct comparison of the
dynamics of promoter induction. The dashed line represents the detection sensitivity of the dPSTRR reporter.

B Distributions of the differences in the response times between the pAGA1-dPSTRY and the dPSTRR in the same cell for pFUS1, pFUS2, and pFIG1.
C Correlation of the population-averaged normalized nuclear enrichment of pAGA1-dPSTRY and a selected set of promoters measured with the dPSTRR at all time

points of the experiments. The curves show the evolution in course of the experiment, from the bottom left to upper right corner, of the expression levels of the
two measured promoters. The dots represent the P-value (10�3 > P > 10�6 for small dots and P < 10�6 for large dots) of the t-test comparing the offset of the
measured promoter relative to the x = y line with the offset of the reference promoter pAGA1.

D, E Correlation of normalized dPSTR nuclear enrichments of single cells of at different time points after stimulation in a strain with pFUS1-dPSTRR and pAGA1-dPSTRY

(D) or pFIG1-dPSTRR and pKAR3-dPSTRY (E).
F Evolution of the correlative promoter variability (CPV) in course of time, for various pairs of promoters. The curve represents the mean of three replicates, and the

error bar represents the standard deviation between replicates. A low CPV corresponds to a similar expression between two promoters in the same cell (see
Materials and Methods).
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contribute to Ste12-mediated expression (Su et al, 2010). As

reported previously, there is a large variability in the number, orien-

tation, spacing, and sequences of PREs among all promoters (Chou

et al, 2006; Su et al, 2010). Therefore, there is no obvious rule that

would allow to predict whether a gene is early- or late-induced, or

expressed at low or high levels. Interestingly, pAGA1 and pFIG1

possess three consensus PREs with relatively similar dispositions

and orientations and respectively four and five non-consensus PREs

(Fig 3A and B). Despite these similarities, we have observed drastic

differences in their expression kinetics. Therefore, we decided to

use pAGA1 and pFIG1 as model promoters of their categories and

decipher their mode of regulation.

Regulation of pAGA1 and pFIG1

In a strain bearing the pFIG1-dPSTRR and the pAGA1-dPSTRY repor-

ters, key regulators of the pathway were deleted. A number of

mutants did not affect the expression from both promoters (group I:

kss1Δ, mot3Δ, tec1Δ, dig2Δ, bar1Δ, and arp8Δ; Appendix Fig S13)

or altered it in a similar fashion (group II: ste12Δ, ste2Δ, ste11Δ,

dig1Δ, and dig1Δdig2Δ; Appendix Fig S14). These mutants provide

the anticipated phenotype except for the dig1Δ strain where a delay

in gene expression is observed for both pAGA1 and pFIG1. We

hypothesize that the strong derepression of filamentous genes in

this mutant (Chou et al, 2006) might limit the number of available

Ste12 molecules needed to activate rapidly the mating-dependent

promoters.

However, the most interesting knockouts are the ones that

perturbed one promoter to a greater extent than the other one

(group III, Fig EV4). In fus3Δ and far1Δ cells, pAGA1 induction is

delayed while pFIG1 is severely reduced. Only a small percentage of

cells induce pFIG1. Cells deleted for a member of the SAGA chro-

matin remodeling complex (gcn5Δ) also displayed a stronger

decrease in pFIG1 induction than in pAGA1, suggesting a higher

requirement for nucleosome modification at the FIG1 than at the

AGA1 promoter. Finally, deletion of the transcription factor KAR4

profoundly affects pFIG1 induction, without noticeable changes in

pAGA1-dPSTRY expression. Kar4 has been identified as a transcrip-

tion factor required for the induction of genes implicated in karyo-

gamy, a late event of the mating (Kurihara et al, 1996). Microarray

measurements have identified a set of genes, such as KAR3 and

PRM3, that depend on Kar4, but FIG1 was not one of them (Lahav

et al, 2007). It has also been suggested that Kar4 forms a hetero-

dimer with Ste12, and therefore, the association of those two

proteins on the promoter allows the transcription of the late genes

(Lahav et al, 2007). Moreover, we found that KAR4 is induced as

early as pAGA1 during the mating response, making it a good candi-

date to regulate late genes.

Ste12 and Kar4 interplay at the promoter

In order to better understand the sequence of events taking place at

these two promoters, we monitored transcription factor binding by

chromatin-IP, chromatin remodeling by MNase assays, and mRNA

production by Northern blot. All these experiments were performed

in the same strain with Ste12-myc and Kar4-HA tags. We noticed

that the presence of these tags slightly influences the dynamics of

transcription although the differential response of the two promoters

is maintained (Appendix Fig S15A and B). On the AGA1 promoter, a

fast enrichment of Ste12 and Kar4 is observed within 5 min after

stimulus. In parallel, the chromatin is remodeled on the locus, as

visualized by the eviction of the �1 nucleosome (Fig 3C,

Appendix Fig S15C and Dataset EV2). The concomitant enrichment

in TF and opening of the chromatin result in a rapid production of

mRNA. In comparison, at the FIG1 locus, all these events happen

more slowly (Fig 3D and Appendix Fig S15D). Ste12 and Kar4 reach

a maximal accumulation at 30 min after the stimulus, a time point

where chromatin remodeling starts to take place. As a consequence,

the resulting mRNA production is delayed at this locus.

The ability of TFs to bind promoter regions is known to depend

on the positioning of nucleosomes on the DNA. MNase protection

assays, in agreement with genome-wide studies (Appendix Fig S15C

and D; Brogaard et al, 2012), allow to predict which PRE could be

accessible under basal conditions. On pAGA1, two consensus bind-

ing sites for Ste12 are present in a nucleosome-depleted region

(Fig 3A). This conformation would allow the formation of a Ste12

dimer under basal conditions. Indeed, both Ste12 and Kar4 are

found associated with AGA1 and FIG1 promoters even before the

addition of a-factor (Appendix Fig S15E). The Ste12 dimer on

pAGA1 could allow a fast induction of transcription as soon as Fus3

activity is present to derepress Dig1 and Dig2. In agreement with

this prediction, mutation of either of these PRE sites delays signifi-

cantly the induction of pAGA1 transcription, and mutation of both

PREs virtually abolishes the induction of this promoter variant

(Appendix Fig S16A–D).

In comparison, only one strong Ste12 binding site is found in a

nucleosome-depleted region of pFIG1 (Fig 3B). This site lies in the

close vicinity of a non-consensus site. Surprisingly, mutation of

either of these two sites completely abolishes the mating-dependent

induction from these promoter variants (Appendix Fig S16E–H).

Note that deletion of either of the two other consensus PREs of

pFIG1 only lead to a mild defect in expression. In order to under-

stand the parameters that control the dynamics of induction of the

late promoters, we performed a series of mutations to test whether

we succeeded to accelerate the dynamics of induction of the pFIG1

promoter. In a first variant, we mutated the non-consensus site of

pFIG1 into a consensus one. This operation could putatively allow

the recruitment of a Ste12 dimer under basal conditions, because

both binding sites fall in a nucleosome-depleted region of the FIG1

locus. This promoter variant was only marginally faster than the

WT promoter. However, this single point mutation in the

non-consensus site renders the induction of this promoter Kar4-

independent (Appendix Fig S16I and J).

To alter the nucleosome landscape on pFIG1, we constructed a

promoter chimera and replaced the 150 bp of the core promoter that

is associated with �1 nucleosome in pFIG1 by the pAGA1 sequence

(Fig 3E green curves, Appendix Fig S16I and J). This promoter

chimera displays an intermediate behavior between pFIG1 and

pAGA1. It is faster and more expressed than the natural pFIG1

promoter and retains a Kar4 dependency. One hypothesis is that the

affinity of the �1 nucleosome for DNA is encoded in this sequence.

Bringing this more labile nucleosome on the pFIG1 promoter accel-

erates the expression of this construct. By combining the two modi-

fications (non-consensus to consensus PRE in the chimera), we

further accelerated the induction of the promoter and rendered it

Kar4-independent (Fig 3E pink curves, Appendix Fig S16I and J).
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The combination of the fast Ste12 dimer formation with the possible

displacement of the nucleosome �1 favors a fast induction of this

promoter, which no longer requires Kar4 presence.

Taken together, these data allow us to infer a model where early

genes possess at least two consensus binding sites for Ste12 in a

nucleosome-depleted region. In the promoters tested in this study,

pFUS1 and pBAR1 do not seem to follow this rule. However, pBAR1

displays a high level of basal expression; therefore, the identified

nucleosome on this promoter must be loosely bound probably

allowing Ste12 binding to its target site. In pFUS1, the second strong
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Figure 3. Influence of promoter architecture on expression dynamics.

A, B Maps of the two promoters pAGA1 and pFIG1. The filled arrows represent the location and orientation of consensus Ste12-binding sites (nTGAAACn). The open
arrows symbolize the non-consensus binding sites that possess mutations within the six core nucleotides of the PREs. The sequences of each binding sites are
detailed above, with capital nucleotides matching the consensus sequences and small nucleotides being mutations from the consensus. The numbers between
sites represent the distance in bp between them or the ATG. Blue arrows represent nucleosomes position (Brogaard et al, 2012).

C, D Quantification of molecular events at the AGA1 (C) and FIG1 (D) loci. Fold increase in Ste12-myc and Kar4-HA binding at the promoter quantified by chromatin-IP
(open markers). Normalized �1 histone occupancy quantified by micrococcal nuclease (MNase) digestion. Transcript levels of AGA1 (C) and FIG1 (D) quantified by
Northern blot (rounds). Each data point is the mean of three biological replicates, and the error bars represent their standard deviation.

E Response time versus mean expression output for various promoters in a WT background (circles, solid lines) or kar4Δ (diamonds, dashed lines) background, as
described in Fig 2A. Red is pAGA1, blue is pFIG1, green is a chimeric construct between pFIG1 and the last 150 bp of pAGA1, cyan is a construct where the free non-
consensus binding site of pFIG1 (�209) was mutated into a consensus one, and purple is a combination of the chimeric construct with the mutation of the non-
consensus binding site into a PRE.

F In vivo binding of Ste12 and Kar4 was assessed by immunoprecipitation of Kar4p-HA and detection of Ste12-Myc in the presence and absence of pheromone.
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binding site is at the border of the nucleosome identified in a

genome-wide study. More detailed measurement should be

performed to assess whether Ste12 can access this site under basal

conditions.

Assuming that a Ste12 dimer can be formed on the early promot-

ers in basal condition, activation occurs rapidly via the inhibition of

Dig1/2 in a manner that is proportional to the pheromone concen-

tration and signaling activity present in the cell. Late genes do not

have the ability to form these Ste12 dimers under basal conditions,

because at most one consensus Ste12 site is found in a nucleosome-

depleted region. Based on the evidences provided here, we postulate

that the formation of a Ste12 dimer using non-consensus sites can

be stabilized by Kar4. Interestingly, Kar4 has been found associated

with the AGA1 promoter in basal condition, but its deletion does

not alter the level of expression or the dynamics of induction of this

early promoter. However, the dynamics of induction of intermediate

promoters are perturbed in a kar4Δ background (Fig EV5). There-

fore, our data demonstrate a more global effect of Kar4 on mating

genes induction than previously thought. We also observed an inter-

action between Ste12 and Kar4 that is strongly enhanced by phero-

mone treatment (Fig 3F). The association between Ste12 and Kar4 is

needed to recruit Kar4 on the promoter, as in ste12Δ cells, Kar4 is

not detected on pAGA1 or pFIG1 (Appendix Fig S15E and F). Kar4

presence could stabilize the TFs complex on the promoter allowing

a recruitment of the chromatin remodelers, so as to evict the nucle-

osomes and induce an efficient transcription of the downstream

ORF. The delay observed in the late gene expression is thus a

combination of the requirement for Kar4 to be transcribed at suffi-

cient levels to allow interaction with Ste12 and slow chromatin

remodeling on these loci. Both Ste12–Kar4 interaction and chro-

matin remodeling are enhanced by MAPK activity (de Nadal &

Posas, 2010), which can explain the requirement for a high phero-

mone concentration, and thus an elevated kinase activity, to

induce the late promoters.

Promoter induction during mating

The characterization of the various mating-dependent promoters

has been performed in well-controlled conditions using synthetic

mating pheromone. We next wanted to verify whether similar

dynamics of gene expression occurred under the physiological

conditions of mating. MATa cells bearing the pFIG1 and the pAGA1

dPSTRs were mixed on an agar pad with MATa cells constitutively

expressing an infrared FP (tdiRFP) (Fig 4A). Strikingly, under these

conditions, we also observed a clear difference in the activation of

the two reporters. The AGA1 promoter is already induced in some

cells at the onset of the time-lapse (~30 min after the mixing of the

mating partners). As time goes by, more cells induce the AGA1

reporter (Fig 4A). In comparison, the pFIG1-dPSTRR is expressed in

fewer cells and its induction precedes the fusion of the partners.

Using an automated image analysis pipeline, fusion events can be

detected in MATa cells by a strong and sudden increase in tdiRFP

fluorescence (Appendix Fig S17). The single cell traces of 455 of

these events recorded in one experiment were aligned temporally to

their fusion time, set to 0. These quantifications reveal very clearly

that the induction of pAGA1 gradually increases until it reaches a

peak prior to fusion (Fig 4B). In comparison, the FIG1 promoter is

not active until roughly 30 min before fusion. The measurements of

the response time relative to fusion confirm the kinetic difference

between pAGA1 and pFIG1. In addition, these new findings indicate

that pFIG1 induction seems to be tightly correlated with the fusion

time, while pAGA1 is expressed earlier and with a larger variability

(Fig 4C). Cells that did not undergo fusion are highly likely to

induce pAGA1, while pFIG1 induction is rare in this sub-population.

It can be sometimes observed in cells in the close vicinity of a set of

engaged mating partners (Appendix Fig S18).

We verified that this difference in dynamics of expression is also

present for other promoters (Fig 4D and E, Appendix Fig S19). In

agreement with our classification based on exogenous stimulations

experiments, early genes are the first ones to be induced in the

mating process, followed closely by intermediate genes. Late genes

induction precedes the fusion time by only 30 min, a time when

cells seem committed to this process. Therefore, these genes are

rarely being expressed in non-fusing cells, which is not the case for

early and intermediate genes.

Discussion

These experiments provide a better understanding of the key steps in

the mating process. As soon as mating pairs are in proximity, the low

level of pheromone constantly produced by the cells is sufficient to

trigger a low activation of the mating pathway and induction of the

expression of early mating genes. Many of these early genes are

implicated in sensing and cell-fate determination and will contribute

to the commitment of the partners to the mating process. If both part-

ners are able to arrest in G1, they will extend a mating projection

toward each other and polarize their sensing and secretory machin-

ery. This will lead to a local increase in pheromone concentration

that will be associated with an increase in signal transduction

(Appendix Fig S20; Conlon et al, 2016). Mating experiments

performed with a mutant unable to degrade pheromone (bar1Δ)

clearly demonstrate that pFIG1 induction is triggered by the concentration

of pheromone sensed by the cells and not by cell–cell contacts. In this

mutant, non-fusing cells activate this promoter because they experience a

high concentration of pheromone independently of their proximity to a

mating partner (Appendix Fig S21). The exogenous stimulation experi-

ments have demonstrated that a step increase in pheromone

concentration leads to a delayed expression of the late genes.

However, in the mating process, the tight synchronization between

the increase in MAPK activity, late gene expression, and fusion

suggests that the early genes expressed during the sensing phase

allow for a precise induction of the late genes when cells detect a

further increase in mating pheromone. Taken together, our results

demonstrate that yeast cells use a temporal gradient of pheromone to

orchestrate the timing of expression of mating genes.

This behavior bears many similarities with morphogen sensing

in development. Concentration of the diffusive signal was thought

to be the key element for cell-fate decision. It is now apparent that

both level and timing of morphogen stimulus dictate early and late

gene expression (Gurdon et al, 1995, 1999; Stamataki et al, 2005;

Dessaud et al, 2007; Harvey & Smith, 2009). A key question is how

this temporal information is encoded to deliver the proper gene

expression profile. In the simple settings offered by budding yeast,

our data show that both the affinity of the TF binding sites and chro-

matin state at the promoter determine the concentration threshold
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Figure 4. Dynamics of gene expression during the mating process.

A Microscopy images of a mating mixture containing the MATa strain (Hta2-CFP, pFIG1-dPSTRR, and pAGA1-dPSTRY) and a MATa (cytoplasmic tdiRFP) at different times
after beginning of the imaging (time 0). Fusion events are marked by a white arrow. Scale bars represent 2.5 lm.

B Quantification of the nuclear enrichment of pFIG1-dPSTRR (blue, left axis) and of pAGA1-dPSTRY (red, right axis). Single-cell traces were synchronized relative to their
fusion time, identified by a sudden increase in tdiRFP signal into the MATa cells.

C Distribution of the response time of pAGA1 and pFIG1 relative to the fusion time.
D Activation dynamics of various promoters prior to fusion as measured by dPSTRR in different mating mixtures.
E Cumulative probability of the response time relative to fusion for nine mating-induced promoters measured in mating conditions.

Data information: In (B and D), the solid line is the median and the shaded area represents the 25th–75th percentiles of the population.
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and the timing of gene expression. This may be a general mecha-

nism of how the timing of gene induction is orchestrated in a wide

variety of cell-fate decision systems.

Materials and Methods

Strains and plasmids

Yeast strains and plasmids used in this study are listed in

Appendix Tables S1 and S2. The dPSTR plasmids were transformed

in a yeast strain from a W303 MATa background, bearing a Hta2-

CFP marker (ySP580).

Each dPSTR is fully carried by a single integration vector (pSIV

Wosika et al, 2016) and integrated in the genome. The red (and

yellow) variants of the dPSTR (dPSTRR and dPSTRY, respectively)

are integrated in the URA3 (resp. LEU2) locus and based on interac-

tion of the SynZips SZ1–SZ2 (resp. SZ3–SZ4) (Thompson et al,

2012), and the mCherry (resp. mCitrine) fluorescent variant (Aymoz

et al, 2016). The relevant promoters of interest (typically �1,000 to

�1) were amplified and cloned upstream of the inducible stable part

of the dPSTR, in pSP360 for the dPSTRR, and pSP363 for dPSTRY,

and checked by sequencing. The inducible part was then further

cloned in the pSIV vector containing the FP part of the dPSTR

(pDA157 for the dPSTRR and pDA223 for dPSTRY).

For the synthetic promoter variants (Fig 3 and Appendix Fig

S16), a synthetic version of pFIG1 or pAGA1 was designed,

containing unique restriction sites (ApaI and ClaI) surrounding the

region containing the PREs. This allowed to obtain dSPTR

plasmids of mutants of each promoter in only one cloning

(Appendix Table S2). Modified fragments of pFIG1 and pAGA1

with sequential mutations of PREs into NdeI (CATATG) or SnaBI

(TACGTA) restriction sites were designed and synthesized by IDT

(gBlocks), and cloned into pDA283 or pDA282 using ApaI–ClaI.

All constructs were verified by digestion and sequencing. The

integrated promoter variant was amplified from genomic DNA and

sequenced for confirmation. We also verified that the presence of

the cloning sites ApaI and ClaI was not altering the induction of

the two promoters (data not shown).

To quantify the kinase activity, SKARS plasmids were trans-

formed in a strain carrying pFIG1- or pAGA1-dPSTRR (Durandau

et al, 2015).

For each transformation, eight clones were screened based on

their fluorescence intensities and four clones with similar fluores-

cence levels were further analyzed by a time-lapse experiment upon

stimulation with 1 lM of a-factor, to discard clones that would

display an aberrant relocation behavior.

Sample preparation

The cells were grown overnight in selective synthetic medium to

saturation (YNB:CYN3801, CSM:DCS0031, ForMedium). They were

diluted to an OD600 of 0.05 in the morning and grown for 4 h before

starting the experiment. All the time-lapse experiments were

performed in well slides, for which selected wells of 96-well plates

(MGB096-1-2LG, Matrical Bioscience) were coated with filtered

solution of concanavalin A in H2O (0.5 mg/ml, C2010-250MG,

Sigma-Aldrich) for 30 min, rinsed with H2O, and dried for at least

10 h. Before the experiments, the cells were diluted to an OD600 of

0.04 and briefly sonicated, and 200 ll of cell suspension was added

to a well. Imaging was started 30 min later, so as to let the cells

settle to the bottom to the well. To stimulate the cells, 100 ll of a
3 lM solution of synthetic exogenous a-factor (gift from M. Peter’s

laboratory) was added in the well to reach a final 1 lM concentra-

tion of pheromone.

Microscopy

Images were acquired on a fully automated inverted epi-fluores-

cence microscope (Ti-Eclipse, Nikon) controlled by Micro-Manager

(Edelstein et al, 2010) and placed in an incubation chamber set at

30°C, with a 40X oil objective and appropriate excitation and emis-

sion filters. The excitation was provided by a solid-state light source

(SpectraX, Lumencor). The images were recorded with a sCMOS

camera (Flash4.0, Hamamatsu). A motorized XY-stage allowed

recording multiple fields of view at every time point, typically five

positions per well and eight wells per experiment. CFP (50 ms), RFP

(300 ms), and YFP (300 ms) and two bright-field (10 ms) images

were recorded at time intervals of 2 min before induction and 5 min

after.

Data analysis

Time-lapse movies were analyzed with the YeastQuant platform

(Pelet et al, 2012). Briefly, the nuclei of the cells were segmented by

thresholding of the CFP images. The contour of the cell around each

nucleus was detected using two bright-field images. The cytoplasm

object was obtained by removing the nucleus object expanded by

two pixels from the cell object. Dedicated scripts in Matlab (The

Mathworks) were written to further analyze the data. Only cells

tracked from the beginning to the end of the movie were taken into

consideration. In addition, a quality control was applied on each

trace and only cells with low variability in nuclear and cell area,

nuclear CFP fluorescence, and a ratio of RFP to YFP fluorescence

lower than a certain threshold were kept for further analysis. At

least 100 cells, but often 200–300 cells, were quantified for each

replicate. The curves displayed in the figures are from one represen-

tative experiment out of at least three biological replicates.

Appendix Table S3 summarizes the number of cells quantified in

each figure panel. The nuclear enrichment values for all single-cell

traces used to generate the main figures are provided in Dataset

EV1.

For each cell, the difference between its average intensity in the

nucleus and the cytoplasm was calculated at each time point to plot

the nuclear enrichment of dPSTRR and dPSTRY.

For further analysis, all retained cell traces were smoothed by a

moving average of three points. The basal level was calculated as

the mean of the three time points preceding the stimulation. The

corrected nuclear enrichment of the dPSTR was calculated by

subtracting the basal level to the smoothed trace. The expression

output represents the maximal corrected nuclear enrichment of the

dPSTR. The population-averaged expression output was calculated

on the mean trace of all cells. A threshold to qualify cells as express-

ing was defined as 20% of the population-averaged expression

output. For all expressing cells, dPSTRs traces were normalized

between 0 and 1, and the response time was identified as the first
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time point, after stimulation, to exceed 0.2. For plots of population

average correlation, and instant correlations, all cell traces were

normalized by the mean trace of all cells.

The correlative promoter variability (CPV) was calculated based

on the formula from Elowitz et al (2002) for noises as the ratio of

intrinsic and total noise:

CPV ¼ g2int
g2tot

g2int ¼
ri � yið Þ2

D E

2 rih i yih i g2tot ¼ r2i þ y2i
� �� 2 rih i yih i

2 rih i yih i

ri and yi are the normalized nuclear accumulations from the ith cell

at a specific time point in the red and yellow channels, respec-

tively. The normalization factors were obtained from the highest

and lowest population-averaged intensities from the entire dataset

for one replicate.

ChIP assays

Yeast cultures were grown to early log phase (A660 0.4–0.6), and

then, samples (50 ml) were subjected to 1 lM a-factor for the indi-

cated times. For cross-linking, yeast cells were treated with 1%

formaldehyde for 20 min at room temperature. Glycine was added

to a final concentration of 330 mM for 15min. Cells were collected,

washed four times with cold TBS (20 mM Tris–HCl, pH 7.5,

150 mM NaCl), and kept at �20°C for further processing. Cell

pellets were resuspended in 0.3 ml cold lysis buffer (50mM HEPES–

KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.1% sodium deoxy-

cholate, 1% Triton X-100, 1 mM PMSF, 2 mM benzamidine, 2 lg/
ml leupeptin, 2 lg/ml pepstatin, 2 lg/ml aprotinin). An equal

volume of glass beads was added, and cells were disrupted by

vortexing (with Vortex Genie) for 13 min on ice. Glass beads were

discarded, and the cross-linked chromatin was sonicated with water

bath sonicator (Bioruptor) to yield an average DNA fragment size of

350 bp (range, 100–850 bp). Finally, the samples were clarified by

centrifugation at 16,000 g for 5 min at 4°C. Supernatants were incu-

bated with 50 ll anti-HA 12CA5 or anti-Myc 9E10 monoclonal anti-

bodies pre-coupled to pan mouse IgG DynabeadsTM (Invitrogen,

11042). After 120 min at 4°C on a rotator, beads were washed twice

for 4 min in 1 ml lysis buffer, twice in 1 ml lysis buffer with

500 mM NaCl, twice in 1 ml washing buffer (10 mM Tris–HCl pH

8.0, 0.25 M LiCl, 1 mM EDTA, 0.5% NP-40, 0.5% sodium deoxy-

cholate), and once in 1 ml TE (10 mM Tris–HCl pH 8.0, 1 mM

EDTA). Immunoprecipitated material was eluted twice from the

beads by heating for 10 min at 65°C in 50 ll elution buffer (25 mM

Tris–HCl pH 7.5, 1 mM EDTA, 0.5% SDS). To reverse cross-linking,

samples were adjusted to 0.3 ml with elution buffer and incubated

overnight at 65°C. Proteins were digested by adding 0.5 mg/ml

Proteinase K (Novagen, 71049) for 1.5 h at 37°C. DNA was

extracted with phenol–chloroform–isoamyl alcohol (25:24:1) and

chloroform. It was finally precipitated with 48% (v/v) of isopro-

panol and 90 mM NaCl for 2 h at �20 °C in the presence of 20 lg
glycogen and resuspended in 30 ll of TE buffer. Quantitative PCR

analysis of AGA1 and FIG1 promoter sequences used the following

primers with locations indicated by the distance from the respective

ATG initiation codon: AGA1 promoter (�310/�207); FIG1 promoter

(�400/�197); and TEL (telomeric region on the right arm of chro-

mosome VI). Experiments were done on three independent chro-

matin preparations, and quantitative PCR analysis was done in real

time using an Applied Biosystems 7700 sequence detector. Immuno-

precipitation efficiency was calculated in triplicate by normalizing

the amount of PCR product in the immunoprecipitated sample by

that in TEL sequence control. The binding data are presented as fold

induction with respect to the non-treated condition.

In vivo coprecipitation assay

Ste12-Myc- and/or Kar4-HA-tagged cells in mid-log phase (50 ml)

were treated with 1 lM a-factor for 30 min or left untreated and

then collected by brief centrifugation at 4°C. Pellets were harvested

with glass beads in the FastPrep-24 (Qbiogene, 60s at speed 5) in

lysis buffer A (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 15 mM

EDTA, 15 mM EGTA, 2 mM DTT, 0.1% Triton X-100, 1 mM PMSF,

1 mM benzamidine, 2 lg/ml leupeptin, 2 lg/ml pepstatin, 25 mM

b-glycerophosphate, 1 mM sodium pyrophosphate, 10 mM sodium

fluoride, 100 lM sodium orthovanadate), and lysates were clarified

by centrifugation and quantified by the Bradford assay (Bio-Rad

Laboratories). 1.5 mg of cleared supernatant was subjected to

immunoprecipitation with rabbit polyclonal HA tag antibody

(Abcam, ab9110) overnight at 4°C. Immunocomplexes were recov-

ered with DynabeadsTM protein A (Invitrogen, 10002D) and washed

with lysis buffer. Finally, they were resolved by SDS–PAGE and

blotted with mouse monoclonal anti-HA 12CA5 or anti-Myc 9E10

antibodies. As a control, 50 lg of whole-cell extract was also blotted

to check the expression levels of the tagged proteins (total).

Northern blot analysis

Yeast strains were grown to mid-log phase in rich medium and then

treated with 1 lM a-factor for the length of time indicated. Total

RNA and expression of specific genes were probed using radio-

labeled PCR fragments containing a fragment of AGA1 ORF (+145/

+936 bp), FIG1 ORF (+106/+948 bp), and ENO1 ORF (+1/

+1,310 bp). Signals were acquired with a Fujifilm BAS-5000 Phos-

phorImager and ImageQuantTL software.

MNase nucleosome mapping

Yeast spheroplast preparation and micrococcal nuclease digestions

were performed as described previously with modifications (Nadal-

Ribelles et al, 2014, 2015). Ste12-Myc and Kar4-HA double-tagged

strain was grown to early log phase (A660 0.4–0.6), and samples of

500 ml of culture were exposed to 1 lM a-factor for the indicated

length of time. The cells were cross-linked with 1% formaldehyde

for 15 min at 30°C, and the reaction was stopped with 125 mM

glycine for min. Cells were washed and resupended in 1 M sorbitol

TE buffer before cell wall digestion with 100 T zymoliase (USB).

Cells were then lysed and immediately digested with 60–240 mU/ll
of micrococcal nuclease (Worthington Biochemical Corporation,

Lakewood; NJ, USA). DNA was subjected to electrophoresis in a

1.5% (w/v) agarose gel, and the band corresponding to the

mononucleosome was cut and purified using a QIAquick gel extrac-

tion kit (Qiagen). DNA was used in a real-time PCR with specific

tiled oligonucleotides covering AGA1 promoter and partial coding

sequence (�928/+470) or FIG1 promoter and partial coding

sequence (�933/+463) included in Appendix Table S4. PCR quan-

tification was referred to an internal loading control (telomeric
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region in chromosome 6), and nucleosome occupancy was normal-

ized to 1 at the (�1) nucleosome region of the untreated condition.

Mating experiments

Mating experiments were performed in agar pads loaded into 96-

well plates to monitor multiple strains in parallel. Agarose 2% in

synthetic medium was heated 5 min at 95°C. Approximately 150 ll
of this solution was placed in a small aluminum frame to form a

square pad of the proper dimension to fit in a well. After cooling at

4°C for 5 min, the pad was removed from the frame. In parallel,

500 ll of cells at OD600 0.1 were centrifuged. MATa cells were resus-

pended in 10 ll of synthetic media, and this cell suspension was

used to resuspend the MATa cells. 1 ll of this mixture was depos-

ited on the agar pad and placed upside down in a well. Imaging was

started roughly 30 min later, after selecting appropriate fields of

view. CFP (50 ms), RFP (100 ms), YFP (100 ms), tdiRFP (100 ms),

and two bright-field (30 ms) images were recorded every 5 min for

2–3 h. Cells were segmented based on the CFP and bright-field

images. After quality control, cells tracked for at least 10 frames

were taken into consideration for analysis. Fusion events were

defined by a sudden increase of more than 50 in the average nuclear

fluorescence in the tdiRFP channel. Cells were considered as non-

fusing if their average nuclear fluorescence in the tdiRFP channel

did not increase by more than 10 throughout the track.

Data availability

The raw images of the time-lapse movies from the following data-

sets are available on the IDR repository: main figures experiments,

the dose response experiments (Appendix Fig S9), and gene deletion

experiments (Fig EV3, Appendix Figs S13 and S14). The DOI is

10.17867/10000114.

Expanded View for this article is available online.
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