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Abstract 

Sound structures such as phonemes and words have highly variable durations. Thus, there is a 
fundamental difference between integrating across absolute time (e.g., 100 ms) vs. sound structure 
(e.g., phonemes). Auditory and cognitive models have traditionally cast neural integration in terms of 
time and structure, respectively, but the extent to which cortical computations reflect time or structure 
remains unknown. To answer this question, we rescaled the duration of all speech structures using 
time stretching/compression and measured integration windows in the human auditory cortex using a 
new experimental/computational method applied to spatiotemporally precise intracranial recordings. 
We observed significantly longer integration windows for stretched speech, but this lengthening was 
very small (~5%) relative to the change in structure durations, even in non-primary regions strongly 
implicated in speech-specific processing. These findings demonstrate that time-yoked computations 
dominate throughout the human auditory cortex, placing important constraints on neurocomputational 
models of structure processing.  
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Introduction 

Natural sounds are composed of hierarchically organized structures that span many temporal scales, 
such as phonemes, syllables, and words in speech1 or notes, contours, and melodies in music2. 
Understanding the neural computations of hierarchical temporal integration is thus critical to 
understanding how people perceive and understand complex sounds such as speech and music3-6. 
Neural computations in the auditory cortex are constrained by time-limited “integration windows”, within 
which stimuli can alter the neural response and outside of which stimuli have little effect7. These 
integration windows grow substantially as one ascends the auditory hierarchy7,8 and are thought to play 
a central role in organizing hierarchical computation in the auditory system5,9.  

A major, unanswered question is whether neural integration in the auditory cortex is tied to absolute 
time (e.g., 100 milliseconds, time-yoked integration) or sound structures (e.g., a phoneme, structure-
yoked integration). Time- and structure-yoked integration reflect fundamentally different computations 
because sound structures such as phonemes, syllables, and words are highly variable10,11 (Fig 1A). 
The duration of a phoneme, for example, can vary by a factor of 6 or more across talkers and utterances 
(Fig 1B). Thus, if the auditory cortex integrated across speech structures such as phonemes or words 
– or sequences of phonemes or words – then the effective integration time would necessarily vary with 
the duration of those structures.  

Currently, little is known about the extent to which neural integration in the auditory cortex reflects time 
or structure. Auditory models have typically assumed that neural integration is tied to absolute cortical 
timescales8,12-15, for example, by modeling cortical responses as integrating spectral energy within a 
fixed spectrotemporal receptive field16,17 (STRF). In contrast, cognitive and psycholinguistic models 
have often assumed that information integration is tied to abstract structures such as phonemes or 
words4,18-25. Distinguishing between time- and structure-yoked integration is therefore important for 
relating auditory and cognitive models, building more accurate neurocomputational models of auditory 
processing, and interpreting findings from the prior literature.  

Distinguishing time- and structure-yoked integration has been difficult in part due to methodological 
challenges. Temporal receptive field models have been used to characterize selectivity for many 
different acoustic features (e.g., STRFs) and speech structures20,25-30. Temporal receptive field models, 
however, implicitly assume time-yoked integration, even when applied to sound structures (e.g., 
phoneme labels), require making strong assumptions about the particular features or structures that 
underlie a neural response, and cannot account for nonlinear computations, which are prominent in the 
auditory cortex31-34 and likely critical to structure-yoked computations35. In addition, standard human 
neuroimaging methods have poor spatial (e.g., EEG) or temporal (e.g., fMRI) resolution, which is critical 
for measuring and mapping integration windows in the human auditory cortex.  

To address these limitations, we measured integration windows using intracranial recordings from 
human neurosurgical patients, coupled with a recently developed method for measuring integration 
windows from nonlinear systems, which does not depend on any assumptions about the features that 
underlie the neural response or the nature of the stimulus-response mapping (the temporal context 
invariance or TCI paradigm)7 (Fig 1C). We then tested whether neural integration windows varied with 
speech structures by rescaling the duration of all structures using stretching and compression 
(preserving pitch). Prior studies have measured the degree to which the overall neural response 
timecourse compresses/stretches with the stimulus36,37, but this type of “timecourse rescaling” could be 
due to changes in the stimulus rather than changes in the neural integration window, as we 
demonstrate. By contrast, we show that our approach can clearly distinguish time- and structure-yoked 
integration, including from deep neural network (DNN) models that have complex and nonlinear 
stimulus-response mappings. 
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Figure 1. Distinguishing time- and structure-yoked neural integration. A, Histogram of phoneme 
durations across a large speech corpus (LibriSpeech; alignments computed using the Montreal Forced 
Aligner), illustrating the substantial durational variability of speech structures. Each line corresponds to a 
single phoneme. B, Histogram of the durational variability across all phonemes (median value: 6.0). 
Durational variability was measured by computing the central 95% interval from the duration histogram 
for each phoneme (panel A) and then computing a ratio between this interval’s upper and lower bound. 
This figure plots a histogram of this ratio across all phonemes. C, Schematic illustration of the temporal 
context invariance (TCI) paradigm used to measure integration windows. In this paradigm, each stimulus 
segment (here speech) is presented in two different “contexts”, where context is simply defined as the 
stimuli that surround a segment. This panel illustrates two contexts, one where a segment is part of a 
longer segment and surrounded by its natural context (left) and one where a segment is surrounded by 
randomly selected alternative segments of the same duration (right) (concatenated using crossfading). If 
the integration window is less than the segment duration (top), there will be a moment when it is contained 
within the segment and invariant to the surrounding context. If the integration window is bigger than the 
segment duration (right), the context can always alter the response. The TCI paradigm estimates the 
smallest segment duration needed for a context-invariant response. D, Schematic illustration of the effect 
of time compression and stretching on a time-yoked (left, green) and structure-yoked (right, purple) 
integration window. Compression and stretching rescale the duration of all speech structures and should 
therefore compress/stretch the integration window if it reflects structure and not time. E, Schematic 
illustration of two hypotheses tested in this study. Each circle plots the hypothesized integration window 
(logarithmic scale) for stretched (x-axis) and compressed (y-axis) speech for a single electrode with color 
indicating the electrode’s anatomical location. Time-yoked integration windows will be invariant to 
stretching/compression (green line) while structure-yoked windows will scale with the magnitude of 
stretching/compression leading to a shift on a logarithmic scale (purple line). The left panel (Hypothesis 
1) illustrates the predicted organization if neural integration windows increased from primary to non-
primary regions but remained time-yoked throughout auditory cortex. The right panel (Hypothesis 2) 
illustrates the predicted organization if there was a transition from time- to structure-yoked integration 
between primary and non-primary regions. 

We used uniform stretching/compression in our study, even though it is not entirely natural, because it 
rescales the duration of all speech structures by the same amount. As a consequence, a structure-
yoked integration window should rescale with the magnitude of stretching/compression, irrespective of 
the particular structures that underlie the window, while a time-yoked window should be invariant to 
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stretching and compression (Fig 1D). We tested two primary hypotheses (Fig 1E): (1) integration 
windows increase hierarchically in non-primary regions but remain yoked to absolute time throughout 
the auditory cortex (2) integration windows become structure-yoked in non-primary auditory cortex.  

Results 

Temporal context invariance effectively distinguishes time- vs. structure-yoked integration. 
Integration windows are often defined as the time window within which stimuli alter a neural response 
and outside of which stimuli have little effect7,38. This definition is simple and general and applies 
regardless of the particular features that underlie the response or the nature of the stimulus-response 
mapping (e.g., linear vs. nonlinear). To estimate the integration window, we measure responses to 
sound segments surrounded by different “context” segments7 (Fig 1C). While context has many 
meanings39, here we operationally define context as the stimuli that surround a segment. If the 
integration window is less than the segment duration, there will be a moment when it is fully contained 
within each segment and thus unaffected by the surrounding context. In contrast, if the integration 
window is larger than the segment duration, the surrounding segments can alter the response. We can 
thus estimate the integration window as the smallest segment duration yielding a context-invariant 
response. Our stimuli consist of segment sequences presented in a pseudorandom order with shorter 
segments being excerpted from longer segments. As a consequence, we can compare contexts where 
a segment is part of a longer segment and thus surrounded by its natural context (Fig 1C, left) with 
contexts where a segment is surrounded by random other segments (Fig 1C, right).  

We assessed context invariance via the “cross-context correlation”7 (Fig 2A). We aligned and compiled 
the response timecourses surrounding all segments as a [segment x time] matrix, separately for each 
context. We then correlated the corresponding columns across the segment-aligned matrices for each 
context. Prior to segment onset, the cross-context correlation should be approximately 0, since the 
integration window must overlap the preceding context segments, which are independent across 
contexts. As the integration window begins to overlap the shared central segments, the cross-context 
correlation will rise, and if the window is less than the segment duration there will be a lag when the 
response is the same across contexts, yielding a correlation of 1, modulo noise.  

We tested whether we could use our paradigm to distinguish time- and structure-yoked integration by 
applying the cross-context correlation analysis to responses from computational models. We measured 
the cross-context correlation for stretched and compressed speech from a spectrotemporal receptive 
field (STRF) model that linearly integrated spectrotemporal energy within a time-yoked window and a 
phoneme integration model that linearly integrated phonemic labels within a structure-yoked window 
whose temporal extent varied with the magnitude of stretching/compression. Both models were fit to 
cortical responses to natural speech, measured using intracranial recordings, to make them more 

neurobiologically accurate. We used a stretching/compression factor of √3 in both our model 
simulations and neural experiments, because this factor maintains high intelligibility36,40, while still 
producing a relatively large, 3-fold difference in structure durations between compressed and stretched 
speech.  

For both models, the cross-context correlation rose and fell at segment onset/offset and increased with 
segment duration, as predicted. Notably, the STRF cross-context correlation was nearly identical for 
stretched and compressed speech, consistent with a time-yoked integration window (Fig 2B, top 
panel), while the phoneme cross-context correlation was lower and more delayed for stretched speech 
(Fig 2B, bottom panel), consistent with a longer integration window. We quantified these effects by 
computing a structure-yoking index that varied between 0 (time-yoked) and 1 (structure-yoked), 
calculated by dividing the change in integration windows on a logarithmic scale by the three-fold change 
in structure duration between stretched and compressed speech (Fig 2C). Integration windows were 
computed as the smallest segment duration needed to achieve a threshold invariance level, as 
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measured by the peak cross-context correlation across lags (threshold set to 0.75; results were robust 
to the threshold value). We consistently observed structure-yoking values near 0 for our STRF model 
responses and structure-yoking values near 1 for our phoneme integration models, verifying that we 
can distinguish time- and structure-yoked integration from ground truth models.   

 

Figure 2. Validating approach using computational models. A, Schematic of the cross-context 
correlation analysis used to measure context invariance for one segment duration. The response time 
courses to all segments are organized as a [segment x time] matrix, separately for each of the two 
contexts. Each row contains the response time course to a different segment, aligned to segment onset. 
The central segments are the same across contexts, but the surrounding segments differ. The grey region 
highlights the time window when the shared segments are present. To determine whether the response 
is context invariant, we correlate corresponding columns across matrices from different contexts (“cross-
context correlation”), illustrated by the linked columnar boxes. For each box, we plot a schematic of the 
integration window at that moment in time. At the start of the shared segments (first box pair), the 
integration window will fall on the preceding context segments, which are random, yielding a cross-
context correlation near zero. If the integration window is less than the segment duration, there will be a 
lag when the integration window is fully contained within the segment, yielding a context-invariant 
response and correlation of 1 (second box pair). B, The cross-context correlation for stretched and 
compressed speech from two computational models: a model that integrates spectrotemporal energy 
within a time-yoked window (STRF, top) and a model that integrates phonemes within a structure-yoked 
window (phoneme integration, bottom). C, Structure-yoking index measuring the change in integration 
windows between stretched and compressed speech on a logarithmic scale (log 𝑖𝑠 − log 𝑖𝑐), relative to 

the change in structure durations between stretched and compressed speech (log Δd). The index 
provides a graded metric measuring the extent of time- (index=0) vs. structure-yoked (index=1) 
integration. This panel plots the distribution of structure-yoking indices for STRF and phoneme integration 
models. D, Schematic of a deep neural network (DNN) speech recognition model (DeepSpeech2) used 
to assess whether the TCI paradigm can distinguish time- and structure-yoked integration in a complex, 
multilayer, nonlinear model. The DNN consists of 8 layers (two convolutional, five recurrent layers, one 
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linear readout), trained to transcribe text from a speech mel-spectrogram without any stretching or 
compression. Each layer is composed of model units with a response timecourse to sound. Integration 
windows were estimated by applying the TCI paradigm to the unit timecourses. E, Distribution of 
structure-yoking indices (violin plots) across all units from each layer for both a trained and untrained 
DNN. F, Distribution of overall integration windows, averaged across stretched and compressed speech, 
for all model units from each layer for both a trained and untrained DNN. 

We next examined whether we could detect a transition from time- to structure-yoked integration from 
a deep neural network (DNN) model (DeepSpeech2) that had been trained to recognize speech 
structure from sound (trained to transcribe speech from a mel-spectrogram using a connection-
temporal-classification loss). DNNs trained on challenging tasks have been shown to learn nonlinear 
representations that are predictive of cortical responses and replicate important aspects of hierarchical 
cortical organization, and thus provide a useful testbed for evaluating new methods and generating 
hypotheses for neural experiments. Moreover, unlike our STRF and phoneme models, the stimulus-
response mapping in these models is complex and nonlinear and therefore provides a more challenging 
setting in which to measure neural integration windows and thus stronger test of our method. We 
measured integration windows using the same procedure just described but applied to the response of 
each unit from each layer of the trained DNN model. Importantly, the DNN model was only ever trained 
on natural speech and thus any structure-yoking present in the model must have been learned solely 
from the structural variability of natural speech. 

This analysis revealed a clear transition from time- to structure-yoked integration across network layers 
(Fig 2D). This transition was completely absent from an untrained model, demonstrating that it was 
learned from the structural variability of natural speech. The overall integration time, averaged across 
stretched and compressed speech, also increased substantially across network layers for the trained 
model (Fig 2E), an effect that was also primarily due to training (the increase from layer 1 to layer 2 is 
present in the random network because of striding in the architecture). These results demonstrate that 
we can distinguish time- and structure-yoked integration, as well as transitions between the two using 
our approach, including from complex, nonlinear models that have only ever been trained on natural 
speech. These results also help motivate our second hypothesis (Fig 1E, right panel), since prior 
studies have found that later network layers better predict later-stage regions of the human auditory 
cortex41, suggesting that there may be a transition from short, time-yoked integration to long, structure-
yoked integration across the auditory hierarchy.  

Neural integration throughout human auditory cortex is predominantly time-yoked. We next 
sought to test whether integration windows in the human auditory cortex reflect time- or structure-yoked 
integration. We measured cortical responses to speech segments (37, 111, 333, 1000, 3000 ms) from 
an engaging spoken story (from the Moth Radio Hour), following time compression or stretching 
(preserving pitch). Our paradigm was designed to characterize sub-second integration windows within 
the auditory cortex and it was not possible to characterize multi-second integration windows beyond 
the auditory cortex due to the small number of segments at these longer timescales. All analyses were 
performed on the broadband gamma power response of each electrode (70-140 Hz). We focus on 
broadband gamma because it provides a robust measure of local electrocortical activity42,43 and can be 
extracted using filters with narrow integration windows (~19 ms), which we have shown have a 
negligible effect on the estimated integration window7. In contrast, low-frequency, phase-locked activity 
requires long-integration filters that substantially bias the measured integration window7.  
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Figure 3. Neural integration in human auditory cortex is predominantly time-yoked. A, Cross-
context correlation (red line) and noise ceiling (black line) for stretched (left) and compressed (right) 
speech from two example electrodes overlapping right Heschl’s gyrus (HG) (top) and right superior 
temporal gyrus (STG) (bottom). B, Integration windows for stretched (x-axis) and compressed (y-axis) 
speech for all sound-responsive electrodes. Green and purple lines indicate what would be predicted 
from a time- and structure-yoked integration window. Electrodes are colored based on annular regions-
of-interest (ROI) that reflect the distance of each electrode to primary auditory cortex (inset; gray colors 
reflect electrodes outside the annular ROIs). C, Map plotting the average integration window across 
stretched and compressed speech. Right panel plots the median integration window within annular ROIs. 
Error bars plot one standard error of the bootstrapped sampling distribution across subjects and 
electrodes. D, Map of structure yoking. Right panel plots the median structure-yoking index within annular 
ROIs. E, Cross-context correlation (normalized by noise ceiling) for stretched and compressed speech 
averaged across all electrodes within each annular ROI (top to bottom).  

The cross-context correlation for stretched and compressed speech is shown for two example 
electrodes, one from a primary region overlapping right Heschl’s gyrus (HG) and one from a non-
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primary region overlapping the right superior temporal gyrus (STG) (Fig 3A). Because neural data is 
noisy (unlike model responses), we plot a noise ceiling for each electrode which measures the cross-
context correlation when the context is the same using repeated presentations of the same segment 
sequence. The STG electrode required longer segment durations and lags for the cross-context 
correlation to reach the noise ceiling, indicating a longer integration window. But notably, the cross-
context correlation was similar for stretched and compressed speech for both the HG and STG 
electrode, suggesting a window predominantly yoked to absolute time. 

We used a parametric model developed in our prior work that makes it possible to estimate integration 
windows from noisy neural data by pooling across all lags and segment durations, allowing us to 
quantify the integration window for each electrode for both stretched and compressed speech (Fig 3B; 
Fig S1&2). Electrodes were localized on the cortical surface, which we used to create a map of the 
overall integration window (Fig 3C), averaged across stretched and compressed speech, as well as a 
map of structure yoking (Fig 3D). As in prior work7,33, we quantified differences in neural integration 
related to the cortical hierarchy by binning electrodes into annular ROIs based on their distance to 
primary auditory cortex (three 10-mm spaced bins) (Fig 3B-E). As a simple, model-free summary 
metric, we also computed the average cross-context correlation across all electrodes within each ROI 
separately for stretched and compressed speech and normalized the cross-context correlation by the 
noise ceiling at each lag and segment duration (Fig 3E). For our annular ROI analyses, we pooled 
across hemispheres because integration windows were similar between the right and left hemispheres 
both in this study (Fig 3D&E) and in our prior work7, and because we had a small sample size in the 
right hemisphere (33 electrodes).  

We found that the overall integration window, averaged across stretched and compressed speech, 
increased substantially across the cortical hierarchy with an approximately three-fold increase from 
primary to non-primary regions (Fig 3B, C) (median integration for the annular ROIs: 80, 130, and 272 

ms for annular ROIs 1; 𝐹1,9.49 = 20.65, 𝑝 < 0.01, 𝛽 = 0.088 𝑜𝑐𝑡𝑎𝑣𝑒𝑠/𝑚𝑚, 𝐶𝐼 = [0.050, 0.127], 108 

electrodes, 15 subjects, Linear Mixed Effects model). The cross-context correlation showed a lower 
peak value and a more gradual build-up and fall-off in ROIs further from primary auditory cortex, again 
consistent with a longer integration time (Fig 3E). These findings replicate prior work7 showing that the 
human auditory cortex integrates hierarchically across time with substantially longer integration 
windows in higher-order regions.  

We next investigated structure yoking. Across all electrodes, we observed a significant increase in 
integration windows for stretched compared with compressed speech (Fig 3B) (𝐹1,110 = 8.58, 𝑝 <
0.01, 𝛽 = 0.097 𝑜𝑐𝑡𝑎𝑣𝑒𝑠, 𝐶𝐼 = [0.031, 0.163], 110 electrodes, 15 subjects). The magnitude of this 
increase, however, was small relative to the three-fold difference in speech structure durations. 
Specifically, the median change between stretched and compressed speech was only 0.06 octaves, 
yielding a structure yoking index of 0.04 when compared with the 1.58-octave difference in structure 
durations between stretched and compressed speech. Notably, structure yoking was similarly weak 
throughout both primary and non-primary auditory cortex (Fig 3D): structure yoking did not increase 
with distance from primary auditory cortex (𝐹1,7.67 = 0.36, 𝑝 = 0.57, 𝛽 = −0.007 ∆𝑜𝑐𝑡𝑎𝑣𝑒𝑠/𝑚𝑚, 𝐶𝐼 =
[−0.031, 0.017], 108 electrodes, 15 subjects) and did not become stronger in electrodes with longer 

overall integration times (𝐹1,29.87 = 0.22, 𝑝 = 0.64, 𝛽 =  0.018 ∆𝑜𝑐𝑡𝑎𝑣𝑒𝑠/𝑜𝑐𝑡𝑎𝑣𝑒𝑠, 𝐶𝐼 = [−0.060, 0.097], 
110 electrodes, 15 subjects), as predicted by Hypothesis 2. The average cross-context correlation was 
very similar for stretched and compressed speech even in annular ROIs far from primary auditory 
cortex, again consistent with time-yoked integration (Fig 3E). These findings suggest that the auditory 
cortex integrates hierarchically across time, but that the fundamental unit of integration is absolute time 
and not structure.  

Timecourse rescaling does not distinguish time- and structure-yoked integration.  Prior studies 
have observed that stretching or compressing speech causes the neural response timecourse to stretch 
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and compress36,37. We replicated these prior studies by correlating the response timecourse of each 
electrode to stretched and compressed speech after time-stretching the neural response to 
compressed speech (Fig 4A) (by the 3-fold difference in speech rates), and then dividing by the 
maximum possible correlation given the data reliability. Consistent with prior studies, we observed 
substantial timecourse rescaling values throughout primary and non-primary auditory cortex (Fig 4B) 
(median rescaling value across the three annular ROIs was 0.47, 0.43, and 0.39) (𝐹1,12.40 = 40.48, 𝑝 <
0.001, 𝛽 = 0.063, 𝐶𝐼 = [0.044, 0.083], 131 electrodes, 15 subjects). 

 

Figure 4. Timecourse rescaling does not distinguish time- and structure-yoked integration. A, The 
timecourse for compressed speech was rescaled (stretched) using resampling and then correlated with 
the neural response timecourse for stretched speech. B, The correlation between stretched and 
compressed speech with and without rescaling (noise-corrected by response reliability). Electrodes were 
grouped into annular ROIs and violin plots show the distribution of the timecourse rescaling metric across 
all electrodes within each ROI. C, Timecourse rescaling for different layers of a trained and untrained 
DNN model, as well as baseline correlations without rescaling (for the trained model).  

Neural timecourse rescaling might naively be interpreted as reflecting a rescaled (structure-yoked) 
integration window, but might alternatively reflect a rescaled stimulus with a fixed (time-yoked) 
integration window. To address this question, we examined timecourse rescaling in our DNN model, 
which showed a clear, training-dependent change in structure-yoked integration across its layers. We 
found that all DNN layers showed substantial timecourse rescaling, even the earliest layers, and that 
rescaling was similar for trained and untrained models (Fig 4C). These findings contrast sharply with 
the results from our TCI analysis (Fig 2E) and suggest that timecourse rescaling provides a poor metric 
of structure-yoked integration, being driven to a large extent by stimulus rescaling rather than 
integration window rescaling. This finding underscores the significance of our approach, which can 
cleanly isolate time- and structure-yoked integration from complex, nonlinear responses. 

Discussion 

We tested whether the human auditory cortex integrates information across absolute time or sound 
structure in speech. Leveraging our recently developed TCI method, we developed a novel approach 
that we demonstrated was effective at distinguishing time- and structure-yoked integration in 
computational models, including revealing a transition from time- to structure-yoked integration in 
nonlinear, DNN models trained to recognize structure from natural speech. We then applied our 
approach to intracranial recordings from human neurosurgical patients, which have high spatiotemporal 
precision, enabling us to measure integration windows throughout primary and non-primary human 
auditory cortex. Across all electrodes, we observed a significant increase in integration times for 
stretched compared with compressed speech. This change, however, was small relative to the 
difference in structure durations between stretched and compressed speech, even in non-primary 
regions of the STG strongly implicated in structure processing6,44,45. These findings demonstrate that 
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the primary unit of integration throughout the human auditory cortex is absolute time and not structure 
duration.  

Implications for computational models. Auditory and cognitive neuroscientists have often studied 
sound processing using distinct sets of models and assumptions. Auditory models typically assume 
that neurons integrate simple types of acoustic features over fixed temporal windows8,12-15 (e.g., 
STRFs). These models have been successful in explaining neural responses early in the auditory 
system, but have had greater difficulty in predicting neural responses to natural sounds in higher-order 
regions of the auditory cortex31,41. For example, prior work has revealed prominent selectivity for speech 
and music that cannot be explained by spectrotemporal receptive fields6,33,45, as well as tuning for 
speech-specific structures such as phonemes and phonotactics20,26-30 (STG). 

Cognitive models, by contrast, have often assumed that temporal integration is yoked to abstract 
structures such as phonemes or words4,18-25, often leaving unspecified the acoustic computations used 
to derive these structures from sound. For example, models of spoken recognition are often cast as a 
sequential operation applied to phonemes19,46, and features inspired by these models have shown 
promise in predicting cortical responses in non-primary auditory cortex20,47,48. Language models, which 
integrate semantic and syntactic information across words (or “word pieces”) have also shown strong 
predictive power, including in non-primary regions of the auditory cortex such as the STG21-24. 
Collectively, these observations suggest that there might be a transition from time-yoked integration of 
acoustic features in primary regions to structure-yoked integration of abstract structures such as 
phonemes or words in non-primary regions. 

Our findings are inconsistent with this hypothesis since we find that neural integration is predominantly 
yoked to absolute time throughout both primary and non-primary auditory cortex with little change in 
structure yoking between primary and non-primary regions. These findings do not contradict prior 
findings that non-primary auditory cortex represents speech- and music-specific structure, but do 
suggest that the underlying computations are not explicitly aligned to sound structures as in many 
cognitive and psycholinguistic models. For example, phonotactic models that compute measures of 
phoneme probability using a sequence of phonemes19,46, implicitly assume that the neural integration 
window is yoked to phonemes and thus varies with phoneme duration. Similarly, language models that 
integrate across words and word pieces implicitly assume that the integration window varies with word 
duration21-24. Our findings indicate that these types of structure-yoked computations are weak in the 
auditory cortex, which has important implications for models of neural coding. For example, a corollary 
of our finding is that the amount of information analyzed by the auditory cortex will be inversely 
proportional to the rate at which that information is presented since compressing speech increases the 
information present within the integration window, and stretching speech decreases the information 
within the integration window. Similarly, the number of phonemes and words that the auditory cortex 
effectively analyzes will be less when those phonemes and words have longer durations.  

How can people recognize speech structures using time-yoked integration windows, given their large 
durational variability? One possibility is that integration windows in the auditory cortex are sufficiently 
long to achieve recognition of the relevant sound structures, even if they are yoked to absolute time. 
Non-primary regions integrate across hundreds of milliseconds and do not become fully invariant to 
context even at segment durations of 333 ms (Fig 3E), and thus will integrate across many phonemes 
even if those phonemes have long durations. This may be analogous to higher-order regions of visual 
cortex that have large spatial receptive fields, sufficient to recognize objects across many spatial 
scales49,50. Structure-yoked computations may also be instantiated in downstream regions, such as the 
superior temporal sulcus or frontal cortex that integrate across longer, multisecond timescales3,4,51, 
either by enhancing weak structure-yoked computations already present in the auditory cortex or by 
explicitly aligning their computations to speech structures and structural boundaries19,52.  
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Our findings are broadly consistent with anatomical models that posit a hierarchy of intrinsic timescales, 
driven by hierarchically organized anatomical and recurrent connections53,54. Since intrinsic timescales 
are stimulus-independent they are by definition time-yoked and will not vary with structure duration. 
Stimulus-independent dynamics can nonetheless influence the integration window by controlling the 
rate at which sensory information is accumulated and forgotten within neural circuits. Several recent 
neurocognitive models have posited that neural integration in the cortex is yoked to “event boundaries” 
in speech, such as the boundary between words, sentences, or longer narrative structures55,56. Our 
results rule out simple models of event-based integration within the auditory cortex, such as models 
where the integration window grows based on the distance to a structural boundary57, since the 
distance scales with the magnitude of stretching and compression. 

Relationship to prior methods. Many methods have been developed to study the temporal 
characteristics of neural responses, but in most cases, these methods do not provide a direct estimate 
of the integration window. For example, many prior studies have measured the autocorrelation of the 
neural response in the absence of or after removing stimulus-driven responses, as a way to assess 
intrinsic timescales53,58. Intrinsic timescales are thought to in part reflect network dynamics such as the 
integration time of a neural population with respect to its synaptic inputs54. The neural integration 
window, as defined here, specifies the integration time of a neuron with respect to the stimulus, and 
includes the cumulative effects of all network dynamics on stimulus processing, both feedforward, 
feedback, and recurrent.  

Many prior studies have measured temporal properties of the neural response timecourse, such as 
frequency characteristics of the response59,60 or the degree to which the neural response tracks or 
phase locks to the stimulus61-63. These methods while useful, do not provide a direct measure of the 
neural integration window in part because they are influenced by both the stimulus and neural response 
characteristics. For example, stretching the stimulus will tend to stretch the neural response (changing 
the frequency spectrum as well) even in the absence of a change in neural integration, which explains 
why we observed strong timecourse rescaling for neural responses with time-yoked integration 
windows. This observation underscores the utility of having a method like the TCI paradigm that can 
directly estimate the neural integration window, independent of stimulus characteristics, in order to 
distinguish time- and structure-yoked integration.    

Temporal receptive models can be conceptualized as estimating the integration window of a best-fitting 
linear system, for example, between a spectrogram-like representation and the neural response in the 
case of a STRF8,16,17. However, as our DNN analyses show, nonlinear processing is likely critical to 
instantiating structure-yoked computations, and it is therefore important to be able to measure the 
integration window of a nonlinear system to distinguish between time- and structure-yoked integration. 
Temporal receptive field models have also been applied to investigate selectivity for speech structures, 
such as phonemes or phonotactic features20,26-30, which implicitly assumes time-yoked integration of 
these structures. By demonstrating strong, time-yoked integration throughout the auditory cortex, our 
findings provide some justification for this assumption.  

Several studies have reported neural responses that change at structural event boundaries in speech 
or music56,64, including in the auditory cortex, which has motivated event-based integration models55. 
However, many features of sound change at structural boundaries, which could produce a neural 
response at the boundary even if the integration window does not change at the boundary. These prior 
findings are thus not inconsistent with our study, and more research is needed to determine whether 
there are any event-based changes in integration within the auditory cortex.  

Many studies have measured selectivity for longer-term temporal structure by comparing intact and 
temporally scrambled sounds3,4,6,51. These scrambling metrics however do not provide a direct measure 
of the integration window, since many regions of the auditory cortex (e.g., primary auditory cortex) show 
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no effect of scrambling even at very short timescales6 (e.g., 30 milliseconds) despite having a 
meaningful integration window at these durations7. Here, we were able to identify a wide range of 
integration times throughout primary and non-primary auditory cortex by combining our TCI method 
with the spatiotemporal precision of intracranial recordings. We were able to detect a small change in 
integration windows between stretched and compressed speech across auditory cortex, while 
simultaneously showing that this change was small relative to the magnitude of stretching and 
compression and similar between primary and non-primary regions. Our methods were thus critical to 
distinguishing between time- and structure-yoked integration and provide clear evidence that 
integration windows in the auditory cortex are predominantly time-yoked.  

Methodological choices, limitations, and future directions. We chose to use uniform stretching and 
compression so that all speech structures would be stretched or compressed by the same amount. This 
choice was made because speech contains many perceptually relevant structures and we do not know 
a priori which structures will underlie a particular neural response. Although uniform stretching and 
compression are not entirely natural, people can still understand speech with moderate amounts of 
uniform stretching and compression36,40, like that used in this study, and thus whatever mechanisms 
are used by the brain to recognize speech must still be operational in this regime. Moreover, we showed 
that we could use uniform stretching and compression to detect a transition to structure-yoked 
integration from a nonlinear DNN model that had only ever been trained on natural speech (Fig 2E).  

We chose to use segments with a fixed duration because this simplified our analyses. Fixed-duration 
segments contain mixtures of full and partial structures (e.g., half a word), but this property is not 
problematic for identifying structure-yoked integration, because the same mixtures are present for both 
stretched and compressed speech. For example, if a structure-yoked population only responded 
strongly to complete words then the segment duration needed to achieve a strong response would still 
be three times as long for stretched vs. compressed speech since the duration needed for a given 
number of complete words to be present would be three times as long for the stretched speech. Our 
computational models verified that we could detect structure-yoked integration using fixed duration 
segments.  

Our analysis focused on broadband gamma power because it provides a standard measure of local 
electrocortical activity and because it can be extracted with short-duration filters that have little effect 
on the measured integration7. In contrast, low-frequency phase-locked activity is measured using filters 
that are long and fixed, which inevitably biases responses toward long, time-yoked integration. Future 
work could potentially examine lower-frequency, phase-locked activity using spatial filters designed to 
extract such activity rather than temporal filters65. 

The large majority of the segments tested in this experiment were less than a second to allow us to 
measure integration windows from the auditory cortex which has sub-second integration times7. 
Regions beyond the auditory cortex in the superior temporal sulcus and frontal cortex show longer, 
multi-second integration windows3,4,51. Future work could examine whether these higher-order regions 
show time- or structure-yoked integration windows by testing a larger number of long-duration 
segments, although this is experimentally challenging because longer-duration segments inevitably 
require longer experiment times.  

Methods 

Measuring durational variability of speech phonemes 

To illustrate the variability of speech structures, we measured the durational variability of phonemes in 
the LibriSpeech corpus66. Phoneme alignments were computed using the Montreal Forced Aligner67. 
For each phoneme, we then measured the distribution of durations across all speakers and utterances 
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in the corpus. We then calculated the central 95% interval of this distribution and measured the ratio 
between the upper and lower boundaries of this interval as a measure of durational variability.  

Cross-context correlation analysis 

We used the “cross-context correlation” to estimate context invariance from both computational models 
and neural data. In this analysis, we first compile the response timecourses to all segments of a given 
duration in a [segment x time] matrix (Fig 2A). Each row contains the response time course surrounding 
a single segment, aligned to segment onset. Different rows thus correspond to different segments, and 
different columns correspond to different lags relative to segment onset. We compute a separate matrix 
for each of the two contexts being compared. The central segment is the same between contexts, but 
the surrounding segments differ.  

Our goal is to determine whether there is a lag when the response is the same across contexts. We 
instantiate this idea by correlating corresponding columns across segment-aligned response matrices 
from different contexts (schematized by the linked columnar boxes in Fig 2A). At segment onset (Fig 
2A, first box pair), the cross-context correlation should be near zero since the integration window must 
overlap the preceding segments, which are random across contexts. As time progresses, the 
integration window will start to overlap the shared segment, and the cross-context correlation should 
increase. If the integration window is less than the segment duration, there will be a lag where the 
integration window is fully contained within the shared segment, and the response should thus be the 
same across contexts, yielding a correlation of 1 (Fig 2A, second box pair).  

Our stimuli enable us to investigate and compare two types of contexts: (1) cases where a segment is 
a subset of a longer segment and thus surrounded by its natural context (Fig 1C, left) and where a 
segment is surrounded by randomly selected segments of the same duration (Fig 1C, right). We 
computed the cross-context correlation by comparing natural and randomly selected contexts, as well 
as two different randomly selected contexts (see prior paper7 for details), but results were very similar 
when only comparing natural and random contexts. We note that any response that is selective for 
naturalistic structure (e.g., a word) will by definition show a difference between natural and random 
contexts and thus our paradigm will be sensitive to this change. 

Estimating integration windows from computational model responses 

We tested whether our approach could distinguish time- vs. structure-yoked integration by applying our 
analyses to the outputs of computational models. Our methods were very similar to our neural analyses, 
except that in the case of computational models, the response is noise-free and we are not constrained 
by experiment time and thus can measure responses to many segments. We measured the cross-
context correlation using 30 segment durations with 100, 27-second sequences per duration (segment 
durations: 20, 40, 60, 80, 120, 160, 200, 240, 280, 320, 400, 480, 560, 640, 720, 800, 880, 960, 1040, 
1120, 1200, 1280, 1440, 1600, 1760, 1920, 2080, 2240, 2400, 2560 ms). Segments were excerpted 

from LibriSpeech following time compression and stretching by a factor of √3 as in the neural 
experiments (time stretching and compression were implemented using waveform synchronous overlap 
and add, as implemented by SOX in Python68).  
 To estimate the integration window, we applied our cross-context correlation analysis, which is 
described both in the main text and in our prior paper7 (Fig 2A) (comparing natural and random 
contexts). We then calculated the peak cross-context correlation value for each segment duration as a 
measure of context invariance. Finally, we interpolated the correlation vs. segment duration curve to 
determine the smallest segment duration needed to achieve a threshold cross-context correlation value 
(threshold set to 0.75). 

Spectrotemporal receptive field model. Following standard practice, our spectrotemporal receptive 
field (STRF) model was defined by applying a linear transformation to a spectrogram representation of 
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sound (mel spectrogram with torchaudio; sample_rate=16000, n_fft=1280, hop_length=320, f_min=40, 
f_max=8000, n_mels=128, power=2.0, norm='slaney'). To make the STRF model more realistic, the 
STRFs were fit to approximate human cortical responses to natural speech recorded intracranially from 
patients. The data and stimuli used to fit the STRF models have been described previously30 and 
consisted of 566 electrode responses from 15 patients. Each patient listened to 30 minutes of speech 
excerpted from a children’s storybook (Hank the Cowdog) and an instructional audio guide (four voice 
actors; 2 male, 2 female). The STRFs were fit using standard regularized regression with cross-
validation used to select the regularization parameter69 (10-fold cross-validation). To suppress edge 
artifacts70, a 50 ms half-Hanning window was applied to the beginning and end of each TRF. 

Phoneme integration model. As a simple model of structure-yoked integration, we instantiated a 
model that integrated phonemic features within a window whose temporal extent varied inversely with 
the speech rate. There were 22 phoneme features, each indicating the presence or absence of a single 
feature (e.g., manner of articulation)30. Results were very similar when applied to binary phoneme labels 
rather than phoneme features. The integration window was determined by fitting the TRF model to the 
same dataset of responses to natural speech described above, and then stretching or compressing the 
TRF (via interpolation) by the same stretching and compression factor applied to the speech stimulus.   

Deep neural network model. We computed integration windows from a popular DNN speech 
recognition model (DeepSpeech2)35,71. The DNN consists of two convolutional layers, five recurrent 
layers (long-short-term memory cells), and one linear readout layer and was trained to transcribe text 
from a mel spectrogram using a connection-temporal-classification (CTC) loss (applied to graphemes). 
The model was trained using 960 hours of speech from the LibriSpeech corpus using standard data 
augmentation techniques35 (background noise, reverberation, and frequency masking) to make 
recognition more challenging (25 epochs; optimization was implemented in PyTorch using the Adam 
optimizer). Each layer is defined by a set of unit response time courses and we measured the 
integration of each unit time course by applying the TCI analysis to its response (in the same manner 
as all other models). Like most DNN models, DeepSpeech2 is acausal, but this is not problematic for 
measuring its integration window35, because acausality shifts the cross-context correlation to earlier 
lags and our measure of context invariance (the peak correlation across lags) is invariant to shifts.  

Intracranial recordings from human patients 

Participants and data collection. Data come from 15 patients undergoing treatment for intractable 
epilepsy at the NYU Langone Hospital (6 patients) and the Columbia University Medical Center (9 
patients) (7 male, 8 female; mean age: 36 years, standard deviation: 13 years). No formal tests were 
used to determine the sample size, but the number of subjects was larger than in most intracranial 
studies, which typically test fewer than 10 subjects5,36. Electrodes were implanted to localize 
epileptogenic zones and delineate these zones from eloquent cortical areas before brain resection. 
NYU patients were implanted with subdural grids, strips, and depth electrodes depending on the clinical 
needs of the patient. CUMC patients were implanted with depth electrodes. All subjects gave informed 
written consent to participate in the study, which was approved by the Institutional Review Boards of 
CUMC and NYU. NYU patients were compensated $20/hour. CUMC patients were not compensated 
due to IRB prohibition.    

Stimuli. Segments of speech were excerpted from a recording of a spoken story from the Moth Radio 
Hour (Tina Zimmerman, Go In Peace). The recording was converted to mono, resampled to 20 kHz, 
and pauses longer than 500 ms were excised. The stimuli were then compressed and stretched while 
preserving pitch using a high-quality speech vocoder STRAIGHT72. There were five, logarithmically 
spaced segment durations (37 ms, 111 ms, 333 ms, 1000 ms, 3000 ms). Each stimulus was 27 seconds 
and was composed of a sequence of segments of a single duration. There were two stimuli per segment 
duration, each with a different ordering of segments. We also tested a 27-second stimulus composed 
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of a single, undivided excerpt. Shorter segments were created by subdividing longer segments. Each 
stimulus was repeated twice (in one subject, the stimuli were repeated four times). In two participants, 
we tested an additional segment duration (9 seconds) and used a longer stimulus duration (45 seconds) 
with only one ordering of segments rather than two.  

Preprocessing. Our preprocessing pipeline was similar to prior studies7,73. Electrode responses were 
common-average referenced to the grand mean across electrodes from each subject. We excluded 
noisy electrodes from the common-average reference by detecting anomalies in the 60 Hz power band 
(measured using an IIR resonance filter with a 3dB down bandwidth of 0.6 Hz; implemented using 
MATLAB’s iirpeak.m). Specifically, we excluded electrodes whose 60 Hz power exceeded 5 standard 
deviations of the median across electrodes. Because the standard deviation is itself sensitive to outliers, 
we estimated the standard deviation using the central 20% of samples, which are unlikely to be 
influenced by outliers (we divided the range of the central 20% of samples by that which would be 
expected from a Gaussian of unit variance). After common-average referencing, we used a notch filter 
to remove harmonics and fractional multiples of the 60 Hz noise (60, 90, 120, 180; using an IIR notch 
filter with a 3dB down bandwidth of 1 Hz; the filter was applied forward and backward; implemented 
using MATLAB’s iirnotch.m).  

We measured integration windows from the broadband gamma power response timecourse of each 
electrode. We computed broadband gamma power by measuring the envelope of the preprocessed 
signal filtered between 70 and 140 Hz (implemented using a 6th order Butterworth filter with 3dB down 
cutoffs of 70 and 140 Hz; the filter was applied forward and backward; envelopes were measured using 
the absolute value of the analytic signal, computed using the Hilbert transform; implemented using 
fdesign.bandpass in MATLAB). We have previously shown that the filter does not strongly bias the 
measured integration time because the integration window of the filter (~19 milliseconds) is small 
relative to the integration window of the measured cortical responses7. Envelopes were downsampled 
to 100 Hz. We detected occasional artifactual time points as time points that exceeded 5 times the 90th 
percentile value for each electrode (across all time points for that electrode), and we interpolated these 
outlier time points from nearby non-outlier time points (using “piecewise cubic Hermite interpolation” as 
implemented by MATLAB’s interp1.m function).  

As is standard, we time-locked the iEEG recordings to the stimuli by either cross-correlating the audio 
with a recording of the audio collected synchronously with the iEEG data or by detecting a series of 
pulses at the start of each stimulus that were recorded synchronously with the iEEG data. We used the 
stereo jack on the experimental laptop to either send two copies of the audio or to send audio and 
pulses on separate channels. The audio on one channel was used to play sounds to subjects, and the 
audio/pulses on the other were sent to the recording rig. Sounds were played through either a Bose 
Soundlink Mini II speaker (at CUMC) or an Anker Soundcore speaker (at NYU). Responses were 
converted to units of percent signal change relative to silence by subtracting and then dividing the 
response of each electrode by the average response during the 500 ms before each stimulus. 

We selected electrodes with a significant test-retest correlation (Pearson correlation) across the two 
presentations of each stimulus. Significance was measured with a permutation test, where we 
randomized the mapping between stimuli across repeated presentations and recomputed the 
correlation (using 1000 permutations). We used a Gaussian fit to the distribution of permuted correlation 
coefficients to compute small p-values74. Only electrodes with a highly significant correlation relative to 

the null were kept (𝑝 <  10−5). We also excluded electrodes where the test-retest correlation fell below 
0.05.  

Following standard practice, we localized electrodes as bright spots on a post-operative computer 
tomography (CT) image or dark spots on a magnetic resonance image (MRI), depending on which was 
available. The post-op CT or MRI was aligned to a high-resolution, pre-operative MRI that was 
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undistorted by electrodes. Each electrode was projected onto the cortical surface computed by 
Freesurfer from the pre-op MRI, excluding electrodes greater than 10 mm from the surface. We used 
the same correction procedure as in our prior studies to correct gross-scale errors by encouraging 
points that are nearby in 3D space but far apart on the 2D cortical surface (e.g., two abutting gyri) to 
preferentially be localized to regions where sound responses are common.  

Estimating integration windows from noisy neural responses. Neural responses are noisy and 
thus never produce the same response even if the response is context invariant. Moreover, we are 
limited in the number of segment durations and segments that we can test due to limited experimental 
time with patients. To address these challenges, we measure a noise ceiling for our cross-context 
correlation when the context is identical using repeated presentations of the same segment sequence. 
We then estimate the integration window that best predicts the cross-context correlation by finding a 
parametric window (Gamma distributed) that best predicts the cross-context correlation pooling across 
all lags and segment durations. The predictions are computed by multiplying a noise-free prediction 
from the parametric model window by the measured noise ceiling. We have previously described and 
justified our parametric model in detail and have extensively tested the method, showing that it can 
correctly estimate integration windows from a variety of ground truth models without substantial bias 
using noisy, broadband gamma responses with similar signal-to-noise ratios as those in actual neural 
data7. 

In our original formulation, the Gamma-distributed window was parametrized by three parameters that 
control the width, delay, and shape of the window. We found previously that the best-fitting delay is 
highly correlated with the width and is close to the minimum possible value for a given width and shape, 
and therefore constrained the delay to take this minimum value to reduce the number of free 
parameters. For a structure-yoked response, we predict that the window will scale with the temporal 
scaling of the stimulus structures, which will change the width but not the shape. We therefore 
constrained the shape of the window to be the same for compressed and stretched speech. Results 
were similar, but with higher variance when the shape was unconstrained, likely in part due to an 
increased number of free parameters (Fig S2). We also measured the average cross-context 
correlation within each annular ROI as a simple, model-free way of assessing the average integration 
window for stretched and compressed speech (Fig 3E). The results of this model-free analysis support 
our model-dependent results by showing that integration windows increase in non-primary regions but 
change little with structure duration.  

We also applied our parametric window analysis to our STRF and phoneme integration models which 
revealed the expected result with time-yoked integration for our STRF model and structure-yoked 
integration for our phoneme model (Fig S3). It was not possible to apply our parametric window analysis 
to our DNN model because unlike the brain the model’s responses are acausal and a Gamma-
distributed window is thus inappropriate.   

Timecourse rescaling. We measured the degree to which the neural response time course rescaled 
by correlating the response time course to stretched and compressed speech after rescaling the time 
course for the compressed speech (accomplished via resampling, i.e. upsampling by a factor of 3, and 
then discarding the additional time points). After rescaling, we measured the average correlation 
between all pairs of stimulus repetitions, and we measured a ceiling for this across-condition correlation 
(stretched vs. rescaled compressed) by measuring the average test-retest correlation across repetitions 
for the same condition (stretched vs. stretched and rescaled compressed vs. rescaled compressed). 
We only used responses to the intact 27-second stimuli for this analysis. We applied the same analysis 
to the trained and untrained DNN models.  

Statistics. Unlike most intracranial studies, we had responses from enough participants to perform 
across-subject statistics, and when possible used a linear mixed effects model to account for subjects 
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as a random effect (using lmefit.m in MATLAB). To evaluate whether the integration windows differed 
between stretched and compressed speech we used the following model: 

Δ𝑖 ~ 1 + (1 | 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

Δ𝑖 = log2 𝑖𝑠 − log2 𝑖𝑐 

which models the logarithmic difference in integration windows between stretched (𝑖𝑠) and compressed 
(𝑖𝑐) speech using a fixed effects intercept plus a subject-specific random intercept. We then tested 
whether the fixed effects intercept differed significantly from 0 using an F-test (as implemented by 
coefTest.m with Satterthwaite approximation used to estimate the degrees of freedom; a full covariance 
matrix was fit in all cases).  

To examine the effect of distance (𝑑) on overall integration windows, we modeled the mean integration 
window for stretched and compressed speech as a function of distance to primary auditory cortex:  

𝑖 ~ 1 + 𝑑 + (1 + 𝑑 | 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

𝑖 =
𝑖𝑠

2
+

𝑖𝑐

2
 

To evaluate the effect of distance on structure yoking, we modeled the difference in integration windows 
(which is proportional to the structure yoking index) as a function of distance: 

Δ𝑖 ~ 1 + 𝑑 + (1 + 𝑑 | 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

To evaluate whether the structure yoking increased at longer timescales, we modeled the difference in 
integration windows as a function of the overall integration window: 

Δ𝑖 ~ 1 + 𝑖 + (1 + 𝑖 | 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

We evaluated whether there was a significant effect of timecourse rescaling by fitting a model on the 
difference in correlations between rescaled and non-rescaled responses: 

𝑟𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 − 𝑟𝑛𝑜𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ~ 1 + (1 | 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

Bootstrapping was used to compute error bars (Fig 3C&D), resampling both subjects and electrodes 
with replacement (resampling subjects and for each subject resampling electrodes). Error bars plot the 
central 68% interval (equivalent to one s.d.) of the bootstrapped distribution.  
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Supplemental Figures 

 

 

Supplemental Figure 1. Consistency across participants. Integration windows for stretched (x-axis) and 
compressed (y-axis) speech for all sound-responsive electrodes. Electrodes from the same participant are given 
the same symbol/color. The format is otherwise the same as in Figure 3B. 

 

Supplemental Figure 2. Unconstrained window shape. To reduce the number of free parameters and 
increase robustness, we constrained the shape of the Gamma-distributed window to be the same for stretched 
and compressed speech. This figure shows the results when the shape is unconstrained. Results are similar but 
the variance is higher, as expected. The format is the same as in Figure 3B. 
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Supplemental Figure 3. Structure yoking for phoneme and STRF models estimated using parametric 
Gamma window. We used a simple, model-free approach to estimate integration windows from STRF and 
phoneme integration models since the model responses are noise-free and not constrained by limited data. Here, 
we show that structure-yoking values are similar when estimated using the parametric, Gamma-distributed 
window applied to neural data. The format is the same as in Figure 2C.  
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