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Abstract
Regeneration of a functional kidney from pluripotent stem cells (PSCs) is
challenging because of its complex structure. Kidneys are derived from
embryonic metanephros, which are composed of three progenitor cells:
nephron progenitors, ureteric bud, and stromal progenitors. Nephron
progenitors and ureteric bud have been induced successfully from PSCs as a
result of the understanding of their detailed developmental process through
cell-lineage tracing analysis. Moreover, these induced progenitors can be used
to reconstruct the three-dimensional (3D) structure of kidneys  , includingin vitro
glomeruli with podocytes, renal tubules, and the branching ureters. Induction of
the remaining renal progenitors (that is, stromal progenitors from PSCs and the
further maturation of reconstructed kidneys) needs to be studied extensively to
regenerate functional and sophisticated kidneys from PSCs. In addition to the
proper induction of renal progenitors, new bioengineering methods such as
decellularization and 3D bioprinting and the recent advancements in the
regeneration of kidneys in other species are promising leads for regenerating
the complex spatial arrangement of kidneys, including the vascular network and
urinary excretion pathway in humans.
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Introduction
Establishment of human induced pluripotent stem (iPS) cells 
was a big step that brought us closer to a realization of organ  
regeneration and transplantation, which was a distant dream 
for many researchers1. Although the advancements in renal  
regeneration are falling behind in terms of technology com-
pared with regeneration of other organs because of its complex 
structure, the strategy to induce renal three-dimensional (3D)  
structures in vitro has recently been advanced by the detailed  
analysis of developmental origins of the kidney. The National 
Institute of Diabetes and Digestive and Kidney Diseases  
(Bethesda, MD, USA) is now leading a consortium called 
“(Re)Building a Kidney” to optimize approaches for the isola-
tion, expansion, and differentiation of appropriate kidney cell  
types and the integration of these cells into complex structures 
that replicate human kidney function2, which shows the extent of 
attention being given to this area of research. In this review, we  
summarize the recent advances and future perspectives of renal 
regeneration.

Three types of renal progenitor cells
Accurate understanding of the organogenesis process is crucial 
for achieving renal regeneration. Three primordia—pronephros, 
mesonephros, and metanephros—are developed during embryo-
genesis3. Kidneys are derived from the embryonic metanephros, 
which develops at the most posterior part of the body trunk, 
whereas the pronephros and mesonephros develop at the more 
anterior part of the body trunk in earlier developmental stages,  

which eventually degenerate. Metanephros is formed by three  
progenitor cells: nephron progenitors, ureteric bud, and stromal 
progenitors. Nephron progenitors undergo mesenchymal-to- 
epithelial transition, forming glomeruli and renal tubules; ureteric  
bud undergoes branching morphogenesis, forming collecting  
ducts and ureters; and stromal progenitors differentiate into  
interstitial cells. Thus, the optimal induction of these three  
progenitor cells from pluripotent stem cells (PSCs) is a critical 
step in achieving renal regeneration4. Moreover, the interaction 
between these three progenitors is important (Figure 1). The tips 
of the ureteric bud (UB tips) send signals to maintain undif-
ferentiated nephron progenitors and induce mesenchymal-to- 
epithelial transition of nephron progenitors by a transient Wnt 
signaling. In turn, the undifferentiated nephron progenitors  
produce glial cell–derived neurotrophic factor (Gdnf) to main-
tain UB tip proliferation, and the stromal progenitors support 
ureteric branching by retinoic acid signaling. These interactions 
attain nephron progenitors’ maintenance and differentiation 
at the same time, producing millions of nephrons with sys-
temic connections. Therefore, the continuous supply of nephron 
progenitors5 and ureteric branching as a result of interactions 
between three progenitors4 are essential for organ-scale kidney  
morphogenesis.

Induction of nephron progenitors from pluripotent 
stem cells
Both nephron progenitors and ureteric bud were believed to be 
derived from the same intermediate mesoderm, which appears 

Figure 1. Three renal progenitors’ interaction during kidney organogenesis. Nephron progenitors, ureteric bud (UB), and stromal 
progenitors interact with each other to undergo kidney organogenesis. Tips of the UB (UB tips) send signals to maintain undifferentiated 
nephron progenitors and induce mesenchymal-to-epithelial transition of nephron progenitors by transient Wnt signaling. In turn, the 
undifferentiated nephron progenitors produce glial cell–derived neurotrophic factor (Gdnf) to maintain UB tip proliferation, and the stromal 
progenitors support ureteric branching by retinoic acid (RA) signaling.
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on about embryonic day 8.5 (E8.5) and expresses paired box  
gene 2 (Pax2)6,7. Although the intermediate mesoderm-like 
cells have been successfully induced from PSCs8–10, the 3D  
structure of kidneys could not be regenerated from it. There 
is a possibility that the induced cells were not intermediate  
mesoderm but lateral plate mesoderm, for Mae et al. have not 
investigated the possibility of lateral plate mesoderm induction in 
their generating cells although they used odd skipped–related 1 
(Osr1) as the selection marker8, which was thought to be  
specifically expressed in the intermediate mesoderm but, in fact, 
is also expressed in other areas such as lateral plate mesoderm. 
The cell-lineage tracing analysis11 recently revealed that precur-
sor of nephron progenitors, which is T (Brachyury)-positive, 
is maintained and localized posteriorly in the undifferentiated  
state (posterior nascent mesoderm) until E8.5 and differenti-
ates into posterior intermediate mesoderm at E9.5, which subse-
quently becomes nephron progenitors (Figure 2). This, however,  
is against the conventional concept which states that the entire 
kidney is derived from early-stage intermediate mesoderm 
which overlaps with recently recognized anterior intermediate  
mesoderm. Thus, nephron progenitors are different from ureteric 
bud in both their origin (nephron progenitors originate from  
posterior/late-stage intermediate mesoderm, whereas ureteric 
bud originates from anterior/early-stage intermediate meso-
derm) and the timing of intermediate mesoderm differentiation 
(nephron progenitor lineage differentiates on E9.5, and uret-
eric bud lineage differentiates on E8.5). Owing to this detailed  
understanding of the kidney development process, Taguchi et al.  
succeeded in inducing nephron progenitor cells from mouse  
embryonic stem (ES) cells and human iPS cells via posterior  

nascent mesoderm and posterior intermediate mesoderm  
(Figure 3)12. They succeeded in maintaining the immature 
mesoderm state (T-positive) during the posteriorization phase 
by using an unusually high concentration of Wnt agonist.  
Subsequently, graded attenuation of the Wnt agonist, as well 
as stage-specific addition of growth factors, led to metanephric  
nephron progenitor formation. Moreover, they demonstrated 
that the induced nephron progenitors reconstituted the 3D  
structure of kidneys in vitro, including glomeruli with podocytes 
and renal tubules with proximal and distal regions12.

Based on this concept, Morizane et al. successfully developed a 
more efficient method for inducing nephron progenitor cells13. 
Furthermore, some researchers have developed a method for 
selectively expanding nephron progenitors derived from mouse 
embryos, mouse ES cells, and human iPS cells5,14,15, which would 
help to reconstruct kidneys in vitro because the continuous supply 
of nephron progenitor cells is essential.

Induction of ureteric bud from pluripotent stem cells
Proper organization of ureteric branching morphogenesis is 
essential for kidney function. Takasato et al. generated kidney  
organoids by induction of multiple kidney components, includ-
ing nephron progenitors, ureteric bud, and stromal progenitors, 
using a single protocol16, but their organoids did not have a dichot-
omously branching ureteric tree. Taguchi and Nishinakamura 
induced ureteric bud from mouse ES cells and human iPS cells by  
using a protocol completely different from that used for the  
induction of nephron progenitors4. Since the duration of imma-
ture mesoderm state is different between nephron progenitors and 

Figure 2. Different developmental process of nephron progenitors and ureteric bud. The precursor of ureteric bud is differentiated into 
anterior intermediate mesoderm on embryonic day 8.5 (E8.5) and forms the Wolffian duct on E9.5. The precursor of nephron progenitors 
is maintained and localized posteriorly in an undifferentiated state (posterior nascent mesoderm) until E8.5, differentiates into posterior 
intermediate mesoderm on E9.5, and subsequently becomes nephron progenitors.
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Figure 3. “Anterior/posterior intermediate mesoderm concept” for the accurate induction of nephron progenitors. Considering that 
the precursor of nephron progenitors is maintained and localized posteriorly in an undifferentiated state (posterior nascent mesoderm) until 
embryonic day 8.5 (E8.5), Taguchi et al.12 used an unusually high concentration of Wnt agonist to maintain the immature state during the 
posteriorization phase. Subsequently, graded attenuation of the Wnt agonist, as well as stage-specific addition of growth factors, led to 
metanephric nephron progenitor formation. The required signaling for the lineage specification at each embryonic stage (E) and the in vitro 
differentiation timing (Day) of human induced pluripotent stem (iPS) cells are shown4,12. Bmp4, bone morphogenetic protein 4; Fgf9, fibroblast 
growth factor 9; RA, retinoic acid.

ureteric bud, they regulated it by changing the exposure time to  
the Wnt signaling4,17. Furthermore, preparing a budding uret-
eric structure with an isolated E11.5 metanephric mesenchyme  
(including nephron progenitors and stromal progenitors) resulted 
in the dichotomous branching up to six or seven generations of 
ureteric bud with nephron progenitors on each ureteric bud tip  
(nephron progenitor niches) and formed differentiated nephrons 
containing distal and proximal tubules along with glomerular 
structures, suggesting how important it is to control the spatial 
arrangement of progenitor cells. This higher-order kidney  
organoid (branching ureter with nephron progenitor niches and  
differentiated nephron components) could also be reconstructed 
by adding separately induced nephron progenitors and ureteric 
bud from mouse ES cells to stromal progenitors sorted from  
E11.5 embryonic kidneys.

Future challenges for kidney regeneration in vitro
As mentioned above, rapid and remarkable advances have been 
made in the field of kidney regeneration, but reconstructing 
functional and sophisticated kidneys from PSCs is still a  
challenging task.

First, signals required for induction of the stromal progenitor 
lineage remain to be elucidated, even though the selective  
induction of the other two renal progenitors (nephron pro-
genitors and ureteric bud) from PSCs has already been estab-
lished. Kobayashi et al. revealed that Foxd1-expressing cortical 
stroma represents a distinct multipotent self-renewing stromal 
progenitor population that gives rise to stromal tissues using 
cell-fate mapping analysis18. The detailed differentiation proc-
ess of stromal progenitors, however, has not yet been clearly  

understood. Thus, Taguchi and Nishinakamura still used stromal  
progenitors sorted from mouse embryonic kidneys when recon-
structing higher-order kidney structures with separately induced 
nephron progenitors and ureteric bud from PSCs4. Since primary 
human embryonic stromal progenitors are not readily available, 
induction of stromal progenitors from PSCs is strongly required. 
Although Takasato et al. have reported that multiple kidney  
components, including stromal progenitors, can be induced from 
PSCs by a single protocol16, this kidney organoid has limited  
functionality and no ureteric bud cell types were detectable by  
single-cell RNA sequencing19. Given that nephron progenitors 
and ureteric bud have distinct origins, selective induction of the 
three renal progenitors from PSCs is one of the best strategies 
for reconstructing higher-order kidneys at this stage. Therefore, 
it is critical to understand the differentiation process of stromal  
progenitors and establish the optimal conditions for their  
induction from PSCs for the reconstruction of sophisticated and 
functional kidneys in vitro.

Second, at present, the reconstructed kidney organoid has 
not fully matured in scale, structure, and function. Although  
Taguchi and Nishinakamura were successful in reconstructing 
higher-order kidney organoid (branching ureter with nephron 
progenitor niches and differentiated nephron components),  
cDNA microarray analyses of their reconstructed kidney  
organoids revealed that their organoids cultured for 7 days most  
closely resembled the E15.5 kidney4, indicating that they were 
different from adult kidneys. It was speculated that blood  
supply might be required to make the organoids function as 
kidneys. Takebe et al. showed that liver buds generated from  
human iPS cells developed into vascularized and functional human 
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livers by murine intracranial or mesenteric transplantation20, 
showing that blood perfusion is important for making  
reconstructed organs functional. Sharmin et al. transplanted  
human iPS cell–derived nephron progenitors beneath the kid-
ney capsule of immunodeficient mice and demonstrated that the  
human glomeruli were vascularized by the host endothelial cells, 
resulting in further maturation of podocytes21. Van den Berg  
et al.22 have also shown that renal subcapsular transplantation 
in mice induces vascularization with blood perfusion of human 
iPS–derived kidney organoids reconstructed by Takasato’s  
protocol23, resulting in progressive maturation of nephron  
structures such as podocyte foot processes and polarization and 
segmental specialization of tubular epithelium. Although the  
transplantation approach by Sharmin et al. required the addi-
tion of vascular endothelial growth factor (VEGF) to the trans-
plant21, Van den Berg et al. have shown that the kidney organoids  
themselves actively secrete VEGF and induce host-derived  
angiogenic vascularization after transplantation22. However, the  
vascular system formed in the transplanted kidney organoids is  
simple at this stage and there is still a very long way to go before  
the appropriate kidney vascular networks can be reproduced.

Furthermore, using kidney organoids as disease modeling might 
contribute to the medical research. Cruz et al. have generated 
a genetic model of polycystic kidney disease using human iPS 
cells and established a highly efficient model of cystogenesis24.  
Hale et al. have shown that podocytes in kidney organoids have 
improved podocyte-specific gene expression and polarized  
protein localization compared with podocyte cell lines cultured 
in 2D25. Tanigawa et al. established kidney organoids using 
human iPS cells from a patient with an NPHS1 missense 
mutation, identifying impaired nephrin localization and slit  
diaphragm formation in podocytes26. In this context, how to 
standardize the differentiation efficiency among the PSCs which 
have a different genetic background is a significant challenge.  
Czerniecki et al. recently presented a protocol for the mini-
aturization and automation of human organoid differentiation  
from iPS cells, showing that kidney organoids can be applied to 
high-throughput screening focusing on therapeutic discovery and 
toxicology27.

Future perspectives for regenerating functional 
kidney in vivo
Application of recent technological advancements in human 
regenerative medicine can help in regenerating complex spatial  
arrangement of kidneys with vascular network and urinary  
excretion pathway.

One promising strategy might be a bioengineering technique 
such as decellularization and 3D bioprinting. Song et al. decel-
lularized rat kidneys by detergent perfusion, which yielded 
acellular scaffolds, and then seeded them with epithelial and 
endothelial cells and perfused these cell-seeded constructs in a 
whole-organ bioreactor28. Although transplantation of this bioen-
gineered kidney exhibited excretory function in vivo, optimization 

of cell-seeding protocols and upscaling of biomimetic organ  
culture are still required for their use in clinical settings. Appli-
cation of 3D bioprinting methods has also been successful in 
reconstructing the complicated structures of proximal tubules29 
and vasculatures30,31 in vitro, although the physiological functions 
reproduced by these technologies reflect only a small part of  
organs.

Another promising strategy might be regenerating human  
kidneys in other species. Kobayashi et al. first generated rat pan-
creas in mouse via interspecific blastocyst complementation32.  
Yamanaka et al. applied this concept and succeeded in regenerat-
ing rat-derived nephrons in mice by combining the transplanta-
tion of rat-derived nephron progenitors with the native nephron 
progenitors’ conditional elimination33, thereby demonstrating a 
technical platform for regenerating kidneys in other species. The 
same group was successful in demonstrating a stepwise peristal-
tic ureter system for constructing the urinary excretion pathway  
in stem cell–generated embryonic kidneys34. Concretely, rat 
metanephroi with bladders developed from cloacas were trans-
planted into host rats and then were connected to the host  
animal’s ureter (a stepwise peristaltic ureter system). Thus, func-
tional kidneys can be theoretically reconstructed by the combi-
nation of three technologies—induction of nephron progenitors 
from human iPS cells, regeneration of human nephrons in other 
species, and construction of a urinary excretion pathway—which  
might be the most promising strategy for regenerative medicine 
at present. However, there is still a big ethical problem regarding  
the generation of chimeric animals.

Conclusions
Although regeneration of a functional kidney is difficult because 
of its complex structure, recent advancements in this field are 
remarkable. The cell-lineage tracing analysis has revealed  
details of the developmental process of renal progenitors, which 
allows the induction of two of the three renal progenitor cells  
from PSCs and the reconstruction of higher-order kidney  
organoids in vitro, even though the degree of maturation of 
these organoids is not satisfactory. Combining the induction of 
renal progenitors from PSCs with new bioengineering methods,  
including decellularization and 3D bioprinting, and the recent 
advancements in the regeneration of kidneys in other species  
would be a promising strategy for regenerating functional human 
kidneys.
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