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Abstract: Nanomaterial-based aptasensors are useful devices capable of detecting small biological
species. Determining suitable signal processing methods can improve the identification and quan-
tification of target analytes detected by the biosensor and consequently improve the biosensor’s
performance. In this work, we propose a data augmentation method to overcome the insufficient
amount of available original data and long short-term memory (LSTM) to automatically predict the
analyte concentration from part of a signal registered by three electrochemical aptasensors, with
differences in bioreceptors, analytes, and the signals’ lengths for specific concentrations. To find
the optimal network, we altered the following variables: the LSTM layer structure (unidirectional
LSTM (LSTM) and bidirectional LSTM (BLSTM)), optimizers (Adam, RMSPROP, SGDM), number of
hidden units, and amount of augmented data. Then, the evaluation of the networks revealed that
the highest original data accuracy increased from 50% to 92% by exploiting the data augmentation
method. In addition, the SGDM optimizer showed a lower performance prediction than that of the
ADAM and RMSPROP algorithms, and the number of hidden units was ineffective in improving the
networks’ performances. Moreover, the BLSTM nets showed more accurate predictions than those of
the ULSTM nets on lengthier signals. These results demonstrate that this method can automatically
detect the analyte concentration from the sensor signals.

Keywords: data augmentation; multi-class classifiers; classification; deep learning; long short-term
memory neural networks; unidirectional LSTM; bidirectional LSTM; time-series aptasensor signal

1. Introduction

Aptamer-based biosensors have been widely used in various fields, such as environ-
mental monitoring [1], food quality and safety [2], and medical diagnostics and therapy [3],
due to the physical and chemical features of aptamers for detection and small binding
substances [4]. Moreover, the advancement in nanostructured materials has attracted much
attention in recent years due to their potential applications and unique properties, including
high reactivity, high functionalization, large surface-area-to-volume ratio, and small size [5].
Thus, advanced nanostructured materials have been utilized to improve the sensing capaci-
ties of aptasensors [6], lower the limits of detection of analytes [7], and amplify the sensors’
signals [8]. Nanomaterial-based aptasensors have been used as effective instruments for
recognizing small analytes in clinical health diagnostics [6,7], medical therapy [9], and
disease biomarker detection [10]. In addition, using and improving these analytical devices
for identifying and quantifying a target analyte is beneficial due to their having higher
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specificity and selectivity and their elimination of labor-intensive and time-consuming
procedures, expensive instruments, and multiple analytical steps [11].

Applications of machine learning (ML) algorithms have been widely used in health-
care as powerful tools for creating prediction models and making precise decisions [12].
Consequently, machine learning has significantly improved biosensors, such as through the
analysis of sensing data for anomaly detection, noise reduction, classification, and pattern
recognition [13]. Identifying ultra-low levels of biological species is a critical objective in
improving biosensors in medical diagnostics and therapy [14].

Deep learning (DL) algorithms, as a subcategory of machine learning algorithms,
have progressed remarkably on broad datasets with distinctive modalities, including time
series, images, and natural languages [15]. Significant progress in deep learning has been
beneficial for solving problems in many domains, including the medical and healthcare
fields, and it has also defeated the conventional machine learning models [15]. For example,
convolutional neural networks (CNNs) are a better fit for problems dealing with image
processing, and recurrent neural networks (RNNs) are suitable for modeling problems that
require the processing of time series or sequential data [16].

There are different RNN-based networks, and their main distinguishing feature is the
difference in how they remember the input data [16]. For example, an original RNN is
incapable of remembering past data, while a long short-term memory (LSTM) network is a
modified version of RNN-based networks capable of remembering and learning from past
data [16]. This means that LSTMs are suitable for making a prediction model when the
datasets are in the form of time series due to their ability to learn temporal dependencies
by employing a gating mechanism for data analysis [17]. Moreover, LSTM solves the
vanishing gradient problem, unlike the original RNN [18].

LSTM networks have a broad range of applications in data processing and decision-
making in healthcare [19,20]. Saltepe et al. [21] utilized two LSTM networks to detect and
classify gold ion concentrations ranging from 0 to 100 µM to decrease the time needed for the
detection of gold ions, which ranged from 30 min to 3 h. The first network was a binary clas-
sification network and was designed to detect the existence of gold ions in the sample. This
network detected the gold ions’ presence in the sample with prediction accuracies of 78%
and about 98% from the 30-min and 3-h time series, respectively. The second LSTM network
that was designed for classifying the gold concentrations showed a prediction accuracy of
82% from the 3-h time series. Klosowski et al. [22] applied two LSTM networks to classify
six types of heart dysfunctions based on ECG time-series signals. The LSTM networks used
the raw and the double spectral ECG data, and the accuracies of their predictions were
70.8% and 100%, respectively.

Some research has been conducted regarding the classification of biosensors’
signals [21,23]. The similarity among these studies is that the analyte concentration re-
mained constant from the start to the end of the signal registration. This means that signals
of different analyte concentration levels were recorded separately and independently. To
the best of our knowledge, there has not been enough research on the detection of concen-
tration from electrochemical biosensor signals in conditions in which signals are registered
while the concentration of the analyte increases after a specific time and in which the
sensing platform does not show that it is sensing the analyte anymore. Finding a suitable
workflow for classifying these biosensor signals motivates this research, since it might
ease the development of biosensor. Thus, this study presents a deep learning model com-
posed of recurrent LSTM layers that are capable of classifying analyte concentrations from
aptasensor signals.

In this paper, we utilized LSTM networks to analyze the transient signals from three
nanomaterial-based aptasensors in order to detect the presence and concentrations of target
analytes and automate signal classification regarding the analyte concentration. In addition,
all computations and deep learning algorithms were implemented in MATLAB 2021b. The
following describes the workflow followed in this paper. First, a preprocessing technique
was applied to the sensor signals. Then, the preprocessed original signals were split into
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two categories: original data (OD) network data and control group data. In the next step,
the OD network was used to make prediction models, and the control group was used
to assess the prediction models. Then, a data augmentation method was developed to
increase the data size. Then, both original and augmented data were used to make and
train the LSTM models, and the test set and control group were responsible for assessing
the performance of the prediction models.

2. Materials and Methods

This section describes the methods applied in this study, including those for data
collection, data preprocessing, data augmentation, LSTM architecture and optimization,
and evaluation of the prediction models.

2.1. Dataset Descriptions

The datasets used in this study were (1) 35-mer adenosine, (2) 31-mer oestradiol, and
(3) 35-mer oestradiol. The datasets contained several time-series signals representing the
drain current of three different aptasensors. Table 1 describes three key features of the
sensors used for data collection to provide a quick and brief comparison of the datasets.
The distinguishing features of these datasets were two main components of their sensors:
their target analytes and their bioreceptors. However, their transducers, another main
component used for these aptasensors, were carbon nanotube (CNT) field-effect transistors
(FETs). Explaining all of details of the functionalization of these sensors is beyond the scope
of this paper. However, detailed information on the 35-mer adenosine sensor, including
transistor fabrication and aptamer functionalization, can be found in [24].

Table 1. The datasets and the main components of the sensors that recorded the signals in
each dataset.

Dataset Name Analyte Transducer Bioreceptor Ref

35-mer Adenosine Adenosine CNT FET 5′-NH2-AAAAAAAAAACCTGGGGGAGTATTGCGGAGGAAGG-3′ [24]
31-mer Oestradiol Oestradiol CNT FET 5′-GGTCCTGACCGGAGGCTGACCGGAGTGGGAA-3′ [25] 1

35-mer Oestradiol Oestradiol CNT FET 5′-AAGGGATGCCGTTTGGGCCCAAGTTCGGCATAGTG-3′ [26]
1 The bioreceptor of this dataset was created by Erica S. Cassie and was a modification of that in the mentioned
reference. This sequence took the common part of the best three oestradiol aptamers, and then some extra mers
were added on either side.

As the sensing protocols for the drain current measurements might provide a clear
insight into the registered signals, the following explains the method of measuring the
signals. The sensing protocols for measuring the 31-mer and 35-mer oestradiol sensors’
responses were similar, but they were different from those of the adenosine sensors. Table 2
summarizes and compares the sensing protocols of the adenosine and oestradiol datasets.

The sensing responses for adenosine and oestradiol were measured in time intervals of
1 and 1.081 s with a standard deviation of 5× 10−3, respectively, with similar gate and drain
voltages, i.e., VG = 0 V and VD = 100 mV. The buffer selected for the adenosine sensor was
2 mM Tris-HCI, and that for the oestradiol sensors was 0.05 × PBS (phosphate-buffered
saline) with 5% ethanol (EtOH).

Regarding the adenosine sensor, the initial load for each measurement was 110 µM of
2 mM Tris-HCI in a polydimethylsiloxane (PDMS) well, which lasted for 1000 s. Then, the
adenosine solution was added to the PDMS well every 500 s in successively greater concen-
trations, considering the adenosine concentration in the PDMS well before each addition.
The process of adding the adenosine solution increased the adenosine concentration, which
varied from 1 pM to 10 µM in the PDMS well.
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Table 2. Comparison of the sensing protocols of the adenosine and oestradiol aptasensors. Note that
the sensing protocols for both the 31-mer and 35-mer oestradiol aptasensors were completely the
same. Thus, their relevant information is merged into one column.

Characteristics Adenosine Aptasensor Oestradil Aptasensors

Time interval of easurement 1 s 1.081 s with std 5× 10−3

Gate voltage (VG) 0 V 0 V
Drain voltage (VD) 100 mV 100 mV

Buffer 2 mM Tris-HCI 0.05 × PBS with 5% EtOH
Initial step load chemical 110 µM of 2 mM Tris-HCI 100 µL of 0.05 × PBS 5% EtOH
Next steps load chemical - 20 µL of 0.05 × PBS 5% EtOH

Initial load time 1000 s 300 s
Time interval of adding analyte 500 s 300 s

Time interval of adding chemical - 300 s
Analyte concentration range 1 pM–10 µM 1 nM–10 µM

Regarding the oestradiol sensors, the initial load for each measurement was 100 µL
of 0.05 × PBS 5% EtOH in the well, which lasted for 300 s. Then, in the next 300 s, 20 µL
of 0.05 × PBS 5% EtOH was added, while the oestradiol concentration did not increase.
Then, the oestradiol solution was added to the well every 300 s in successively greater
concentrations, considering the oestradiol concentration in the well before each addition.
In addition, each time the oestradiol concentration was increased, a solution of 20 µL of
0.05 × PBS 5% EtOH was added to the well. The process of adding the oestradiol solution
increased the oestradiol concentration, which varied from 1 nM to 10 µM in the well.

2.2. Contextual Outlier Detection

A contextual outlier, also known as a conditional anomaly, is defined as a data instance
whose pattern does not conform to that of other well-defined data instances with similar
contextual information [27,28]. Regarding the experiments related to this study, factors
that could cause contextual outliers were background noises in the lab, the use of broken
transistors, issues in immobilizing the aptamers on carbon nanotube surfaces, issues in
fabricating the sensing interface, and so on.

The patterns of signals affected by these factors deviate from the patterns of well-defined
and normal signals. The purpose of removing outliers is to eliminate non-informative signals
or segments. As there were a few signals in the datasets, removing the outliers was performed
with prior knowledge of the biosensors’ behaviors and through data visualization.

In this paper, the signals were preprocessed with data normalization before being fed
into the DL models. It needs to be mentioned that data normalization was applied to the
entire signal. Data normalization or feature scaling puts all of the signals in a dataset on
the same scale and prevents a feature from dominating and controlling the others. The
data normalization applied in this paper was a Z-score scaling that used the mean (µ) and
standard deviation (σ) of a signal.

Suppose that X = [x1, x2, . . . , xi, . . . , xn] is an entire signal, where the n is the number
of data points within the given signal or the length of the signal. Then, Equation (1) shows
the new signal X̂ created by Z-score scaling.

X̂ = [x̂1, x̂2, . . . , x̂i =
xi − µ

σ
, . . . , x̂n]. (1)

Segmentation and Labeling

After rescaling the signal, it was split into different segments. Each segment was a part
of the signal for which the concentration of analyte remained constant from its beginning
to its end. Then, each segment was labeled with its corresponding analyte concentration.
This means that the labels for the three datasets were: No Analyte, 1 nM, 10 nM, 100 nM,
1 µM, and 10 µM. As shown in Table 3, these six labels and concentrations were considered
as the six different classes, in the same order.
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Table 3. The available segments’ labels and their corresponding classes.

Label No Analyte 1 nM 10 nM 100 nM 1 µM 10 µM

Class class 1 class 2 class 3 class 4 class 5 class 6

2.3. Data Split

The data fed into the DL model needed to be split into three subsets, namely, the
training, validation, and test set, with the proportions of 60%, 20%, and 20%, respectively. The
training set was used to extract meaningful information and find the optimal parameters, the
validation set was used to tune the parameters, and the test set was used to assess the model’s
performance [13].

In this paper, the original data were split into two sets—network and test sets—with
proportions of approximately 70% and 30%, respectively. These sets were named the
original data (OD) network and OD test set, respectively. The former set was used to make
DL models based on original data and for data augmentation. The latter, the OD test set,
assessed the DL models and acted as a control group. The reasons for considering this OD
test set were to prove the functionality of the data augmentation method in making the
prediction models and to avoid biased results. In order to complete the information related
to the data split, it must be mentioned that the augmented data and OD networks were
randomly shuffled and separated again into the training set (60%), validation set (20%),
and network test set (20%).

2.4. Data Augmentation

In machine learning, small amounts of training data might cause overfitting and
might not be enough for training models [29]. The need for data augmentation is more
critical for real-world data, since acquiring large enough real-world datasets has not always
been possible due to cost or time limitations. Generating synthetic data, which is also
known as data augmentation, is a solution for overcoming the problem of insufficient data
samples [30] or compensating for datasets with imbalanced classes [31]. Data augmentation
helps to increase the generalization capability of an ML prediction model and improve
the model’s performance by increasing the variability of the training and validation data
samples [32,33].

In this paper, we utilized a data augmentation method to increase the size of the
available datasets. Suppose the Ŝi and Ŝj are two preprocessed segments from an identical
dataset with similar analyte concentrations. Then, Saug is an augmented segment generated
with the following Equation (2):

Saug = w× Ŝi + (1 − w)× Ŝj , (2)

where w ∈ (0, 1) and is a normally distributed random number generated by the randn
function in MATLAB R2021b.

2.5. Background of LSTM

This subsection explains long short-term memory (LSTM) and its architecture. Then,
the unidirectional and bidirectional LSTM structures, as well as their similarities and
differences, are discussed.

The advantage of using an LSTM network over a recurrent neural network (RNN) is
that LSTM can capture the temporal dependency of input sequences during the training
process [21,34]. An LSTM network is an RNN that prevents the long-term dependency
problem by utilizing gates and calculating a hidden state with an enhanced function [17].
The building blocks of LSTM networks are LSTM cells, which means that an LSTM layer
consists of recurrently connected cells [16,17,34]. An LSTM cell, or an LSTM hidden unit,
consists of four parts: the forget gate, input gate, output gate, and a cell candidate. Figure 1
presents the structure of a cell. This cell decides to ignore or remember something in its
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memory by using a gating mechanism. The role of the three gates is to selectively control
and transfer needed information into and out of the cell [34]. This figure can also be
considered an LSTM layer consisting of only one memory cell or hidden unit, where Xt
and ht, respectively, are the input and output of the LSTM layer.

Figure 1. Illustration of an LSTM cell. Note that � and ⊕ refer to element-wise multiplication and
addition, respectively.

Consider Xt as a sequence input into the memory block at time step t; the forget gate
selects which data to erase and which data to remember. As shown in Equation (3), these
decisions are made by the sigmoid layer:

ft = σ(W f x Xt + W f h ht−1 + b f ). (3)

The input gate is responsible for controlling the level at which the cell state is updated
by using another sigmoid layer. As shown in Equation (4), the sigmoid layer of the input
gate decides which data need to be updated. In the next step, as shown in Equation (5),
the cell candidate (c̃t) is responsible for adding information to the cell state by using the
tanh layer. Now, the cell state is ready to be updated with the combination of the forget
and input gates and new candidate values of c̃t. Equation (6) describes the mathematical
formula for calculating the cell state:

it = σ(Wix Xt + Wih ht−1 + bi), (4)

c̃t = tanh(Wcx Xt + Wch ht−1 + bc), (5)

ct = ft × ct−1 + it × c̃t. (6)

The output gate, which is shown in Equation (7), utilizes a sigmoid layer to decide
which part of the cell state contributes to the output. Now, the hidden state or output of the
memory cell is ready to be calculated. The output gate and the cell state are contributors to
the hidden state. Equation (8) presents its mathematical formula:

ot = σ(Wox Xt + Woh ht−1 + bo), (7)

ht = ot × tanh(ct). (8)
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Note that Wix, W f x, Wox, and Wcx refer to the input weight matrices for the input gate,
forget gate, output gate, and cell value, respectively, and Wih, W f h, Woh, and Wch are the
recurrent weights for the gates and the cell value in the same order. Their corresponding
bias vectors are bi, b f , bo, and bc.

Moreover, it can be seen that the cell state and gate activation functions (AFs) are,
respectively, tanh (Equation (9)) and sigmoid (Equation (10)); these map the nonlinearity
and make decisions:

tanh(z) =
e2z − 1
e2z + 1

, (9)

σ(z) =
1

1 + e−z . (10)

An LSTM layer in a deep neural network consists of a set of LSTM cells. LSTM layers
can be categorized into unidirectional LSTM (ULSTM) and bidirectional LSTM (BLSTM)
layers. Figure 2 represents a ULSTM structure. It can be said that a ULSTM structure is
an RNN that uses LSTM cells instead. The unfolded figure of the ULSTM shows that the
output of each cell is the input for the next cell in the same layer. It should be mentioned
that an LSTM block refers to several LSTM cells or hidden units.

Figure 2. Flow of information in a unidirectional LSTM layer during different time steps with forward
states, where X, Y, and~h refer to the input, output, and forward states in the LSTM layer, respectively.

Figure 3 depicts a BLSTM structure consisting of forward and backward layers. The
unfolded figure shows that the forward layer moves in a positive temporal direction, while
the backward movement is in a negative temporal direction. In addition, the outputs from
both the forward and backward LSTM cells are joined and concatenated as the layer’s
output.

Figure 4 presents the flow of information in an LSTM layer during different time steps.
In this figure, N is the length of the sequential input for the LSTM layer, L is the number of
hidden units in the LSTM layer, and T is the length of the training set. Note that in this
figure, ht can be considered as just the forward movement (~ht) in the ULSTM layer or as a
concatenation of both forward (~ht) and backward ( ~ht) movements in the BLSTM layer.



Bioengineering 2022, 9, 529 8 of 29

Figure 3. Flow of information in a bidirectional LSTM layer during different time steps with forward
and backward states, where X, Y,~h, and ~h refer to the input, output, forward state, and backward
state in the LSTM layer, respectively.

Figure 4. An unfolded LSTM layer that presents the flow of information during different time steps.

2.6. LSTM Architecture

In this work, two LSTM networks were employed to classify the analyte concentra-
tions. The objective was to classify the input data into six different concentration classes:
0 M, 1 nM, 10 nM, 100 nM, 1µM , and 10 µM. The target outputs of each class were labeled
in a binary vector format, where the desired class was labeled with “1” and the others were
labeled with “0”. Recall that the input data were the corresponding concentration segments
of the signals, as well as the original and/or augmented segments.

Figure 5 visualizes the architectures of both networks. The networks comprised
five successive layers: a sequential input layer, an LSTM layer, a fully connected layer, a
softmax layer, and a classification layer. The only difference between the networks was in
their LSTM layers. The LSTM layer in the first network was a unidirectional LSTM layer,
while this was a bidirectional LSTM layer in the second network. It should be taken into
consideration that the fully connected (FC) layers were affected by the previous LSTM
layers and the number of output classes in the classification layer.
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Figure 5. A schematic of the network architecture. Note that the only difference between the two
networks was in their LSTM layer, which used either a unidirectional or a bidirectional LSTM layer.

Table 4 describes and compares the layers and the properties of the unidirectional and
bidirectional LSTM networks depicted in Figure 5. Recall that the size of the input layer
entering the networks was equal to the length of the segments and was considered as one se-
quence, and the output size of the networks (m) was identical to the number of classes in the
data. It should be mentioned that all of the input weights, the recurrent weight, and the bias
matrices were concatenated together to form the input weights (Wx = [Wix; W f x; Wcx; Wox]),
recurrent weights (Wh = [Wih; W f h; Wch; Woh]), and bias (b = [bi; b f ; bc; bo]).

Table 4. Layer description of the LSTM deep learning model.

Layer ID Layer Type Hyperparameters Learnable Parameters State Parameters

1 Sequential input Output size: 1 - -

Input size: 1
Hidden units: n Wx : 4n× 1 Hidden state: n× 1
Output size: n Wh : 4n× n
State AF: tanh b : 4n× 1 Cell state: n× 1

ULSTM

Gate AF: sigmoid

Input size: 1
Hidden units: n Wx : 8n× 1 Hidden state: 2n× 1
Output size: 2n Wh : 8n× n
State AF : tanh b : 8n× 1 Cell state: 2n× 1

2

BLSTM

Gate AF: sigmoid

Input size: n Weights: m× n
FC (ULSTM) 1

Output size: m Bias: m× 1 -

Input size: 2n Weights: m× 2n3
FC (BLSTM) 2

Output size: m Bias: m× 1 -

4 Softmax - - -

5 Output classification - - -
1 Fully connected layer that follows a ULSTM layer. 2 Fully connected layer that follows a BLSTM layer.
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2.7. LSTM Optimization

We adopted the following variables to find the optimal prediction model: the number
of hidden units in the LSTM layers, the optimizers (Adam, RMSPROP, and SGDM) [35],
and the number of segments fed into the networks. Initially, the original datasets were
used to train the networks with the total size of a segment. The altered variables were:
the number of hidden units in the LSTM layers—starting from 50 and increasing to 500 in
increments of 50—and the use of the three optimizers mentioned. In the next step, we used
both the original and augmented signals to train the networks. The sums of the original
and augmented segments per class were 50 and 100.

It should be noted that all deep learning algorithms were implemented with the
MATLAB R2021b Deep Learning Toolbox.

2.8. Evaluation Metrics

After training the prediction models, the classification performance of the neural
networks needed to be assessed with relevant metrics. In this paper, the LSTM networks’
performances were assessed using two standard metrics: overall accuracy (ACC) and macro
F1-score (MF1) [21,36]. In this work, we created a confusion matrix using the predictions
from the test data, and then the overall accuracy and the macro F1-score were calculated
with the confusion matrix.

The overall accuracy was calculated from the sum of the diagonal numbers of the
confusion matrix divided by the total number of elements. In other words, the overall
accuracy (Equation (11)) was the proportion of correctly classified elements among all
elements in the test set.

ACC =
Number of true testing outputs

Total number of elements in the test set
. (11)

Before mentioning the method for calculating the macro F1-score, its building
blocks—recall, precision, and F1-score—need to be defined. The recall, which is the true
positive rate (TPR) and is presented in Equation (12), is the number of correctly classified
positive elements among all positive elements. Precision, which is the positive predicted
value (PPV) and is presented in Equation (13), is the number of correctly classified positive
elements among the elements classified as positives by the model. Then, the harmonic
mean of the recall and precision is called the F1-score (Equation (14)). The macro F1-score
(Equation (15)) is the mean of the class-wise F1-score of each concentration.

Recall = TPR =
TP

TP + FN
, (12)

Precision = PPV =
TN

TP + FP
, (13)

F1-score =
2

1/precision + 1/recall
, (14)

Macro F1-score = MF1 =
1
m

m

∑
i=1
{F1-score}i, (15)

where m is the number of classes in a given dataset.

3. Results
3.1. Datasets

Figure 6 presents the typical raw signals of the available datasets. Vertical dashed
lines separate the different analyte concentrations (ACs). Note that the initial ACs for the
35-mer adenosine experiments were not necessarily identical. Figure 6A,B represent the
drain current in two experiments from the adenosine dataset in which the initial AC for the
former experiment was 1 nM and that for the latter one was 1 µM. However, the initial ACs
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for all of the experiments of the 31-mer and 35-mer oestradiol datasets were completely
similar; these are depicted in Figure 6C,D, respectively.

(A)

(B)

(C)

Figure 6. Cont.
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(D)

Figure 6. The typical raw signals of the datasets, (A) The 35-mer adenosine dataset with an initial
concentration of 1 nM, (B) the 35-mer adenosine signal with an initial concentration of 1 µM, (C) the
31-mer oestradiol dataset, (D) the 35-mer oestradiol dataset. Note that in these plots, AC refers to the
analyte concentration.

In addition, we need to clarify the notions of an entire signal and a segment, as these
notions will be repeatedly used in the rest of this study. An entire signal refers to all of
the data points registered from the beginning to the end of an experimental measurement.
For example, in Figure 6A, the entire signal comprises the data points at t ∈ [1, 3500]. On
the other hand, a segment refers to a part of a signal that represents the sensor response
regarding a specific analyte concentration. For example, Figure 6B contains three segments:
the No Analyte segment for t ∈ [1, 1000], the 1 µM segment for t ∈ [1001, 1500], and the
10 µM segment for t ∈ [1501, 2000].

3.2. Contextual Outlier Detection

Figure 7 compares the normal signals with the contextual outliers. Figure 7A shows the
normal pattern of the 35-mer oestradiol signals that were registered with a well-fabricated
device. It can be seen that these signals had similar trends when the analyte concentration
increased. On the other hand, Figure 7B shows that the signals that did not conform
to normal signals. The red and blue lines were registered with non-sensing and broken
transistor devices. All of the signals that were registered by the non-sensing and broken
transistor devices were completely removed from the datasets.

In addition, Figure 7C shows two instances of signals that showed temporal abnormal-
ities although the sensors were normal and other parts of the signals showed reasonable
sensing. In this figure, the drain currents registered between 300–750 s were considered
the contextual outliers. Thus, there was partial removal of the signals that were related to
the abnormal segments. Consequently, the other segments of the signals remained in their
relevant datasets for utilization in the deep learning models.
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(A)

(B)

(C)

Figure 7. The plots compare the normal behavior in the 35-mer oestradiol signals with the behavior of
the contextual outliers: (A) signals with normal patterns; (B) signals with contextual outliers (the red
and blue lines in the plot represent signals generated by non-sensing and broken transistor devices,
respectively); (C) abnormal temporal signals that were registered with normal sensors but showed
unusual behavior between 300 and 750 s.
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It should be noted that removing the segments that showed temporal abnormalities
was performed after data normalization, since the mean and standard deviation used for
data normalization depended on the information of an entire signal.

Table 5 shows the number of available normal segments in each dataset that were
considered normal and suitable for utilization in the DL networks. However, as there were
insufficient segments of adenosine with a concentration of 100 pM, these segments were
excluded from the adenosine dataset.

Table 5. The number of available segments for each dataset after removing the contextual outlier
signals and segments.

Analyte Concentration 35-mer Adenosine 31-mer Oestradil 35-mer Oestradil

No Analyte 9 9 6
100 pM 1 - -

1 nM 4 9 6
10 nM 5 9 12
100 nM 7 9 12
1 µM 9 9 12

10 µM 9 9 12

3.3. Data Preprocessing

Figure 8 presents and compares the instances of preprocessed signals according to
the Z-score scaling. Recall that this preprocessing method was applied to the entire signal.
Figure 8A shows a raw signal from the 35-mer adenosine dataset, and Figure 8B shows the
preprocessed signal according to Equation (1).

(A)

(B)

Figure 8. Preprocessed signal for the 35-mer adenosine dataset according to the Z-score scaling:
(A) the raw signal; (B) the preprocessed signal.

3.4. Data Split

Table 6 presents the numbers of segments used in the OD network and the OD test
sets in each dataset after the original data split. The network sets were used for feeding into
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the networks, and the OD test sets, which consisted of original data, were used to assess the
networks. The data split in the oestradiol datasets was done by considering three and four
entire signals for the 31-mer and 35-mer as their test sets, respectively. However, the data
split in the 35-mer adenosine dataset was not as straightforward as that for the oestradiol
datasets. The OD test set was selected segment-wise.

Table 6. The number of available segments for the OD network and the OD test sets that were relevant
to each dataset.

Analyte
Concentration

35-mer Adenosine 31-mer Oestradil 35-mer Oestradil

OD Network OD Test OD Network OD Test OD Network OD Test

No Analyte 6 3 6 3 4 2
1 nM 3 1 6 3 4 2

10 nM 4 1 6 3 8 4
100 nM 5 2 6 3 8 4
1 µM 6 3 6 3 8 4

10 µM 6 3 6 3 8 4

3.5. Data Augmentation

Figure 9 presents the augmented segments generated from the normalized drain currents.

(A)

(B)

Figure 9. Cont.
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(C)

Figure 9. Samples of augmented normalized segments from the available datasets: (A) augmented
segments from the 35-mer adenosine segments with a concentration of 100 nM, (B) augmented
segments from the 31-mer oestradiol segments with a concentration of 1 µM, and (C) augmented
segments from the 35-mer oestradiol segments with a concentration of 10 µM.

3.6. LSTM Optimization

Table 7 fully describes the model hyperparameters for optimizing the ULSTM and
BLSTM. Moreover, the MATLAB Deep Learning Toolbox set the other hyperparameters
and functions that are not mentioned in this table to their default values. For example, the
function used to initialize the input weights was the default function, i.e., the glorot weight
initialization function.

Table 7. The model hyperparameters for both the ULSTM and BLSTM neural networks with three
optimizers.

Optimiser ADAM RMSPROP SGDM

Gradient decay factor 0.9 - -
Squared gradient decay factor 0.9 0.9 -

Momentum - - 0.9
Initial learning rate 0.005 0.005 0.005

Learning rate schedule piecewise piecewise piecewise
Learning rate drop factor 0.2 0.2 0.2
Learning rate drop period 5 5 5

L2 Regularization 0.01 0.01 0.01
Maximum epochs 50 50 50

Minimum batch size 20 20 20
Shuffle every epoch every epoch every epoch

3.7. Evaluation

It was mentioned that we used the overall accuracy (ACC) and macro F1-score (MF1)
as the performance metrics. Moreover, all of the networks were assessed with two datasets:
the network test set and the OD test dataset. This means that there were two tables of
evaluation results for each dataset after altering the effective parameters for optimization.
Thus, these tables were organized according to the network and OD test datasets.

Tables 8 and 9 present the performance metrics of the test and control data, respectively,
from the networks trained with the 35-mer adenosine dataset. Tables 10 and 11 present the
performance metrics for the network and control sets from the networks trained with the
31-mer oestradiol dataset, respectively. Tables 12 and 13 present the evaluation metrics for
the test data when trained with the 35-mer oestradiol signals.
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Table 8. Performance metrics of the test data from networks trained with the 35-mer adenosine dataset.

ACC MF1

Adam RMSPROP SGDM Adam RMSPROP SGDM
Dataset Hidden Units ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM

Original Data

50 0.333 0.333 0.167 0.500 0.333 0.333 0.500 0.500 0.500 0.722 0.583 0.500
100 0.333 0.333 0.333 0.333 0.333 0.333 0.500 0.500 0.500 0.500 0.533 0.583
150 0.333 0.500 0.500 0.333 0.333 0.333 0.533 0.722 0.722 0.500 0.533 0.583
200 0.333 0.333 0.333 0.333 0.333 0.333 0.583 0.500 0.533 0.500 0.500 0.500
250 0.333 0.333 0.333 0.333 0.500 0.333 0.500 0.500 0.533 0.500 0.722 0.500
300 0.333 0.333 0.333 0.333 0.333 0.500 0.500 0.583 0.533 0.500 0.533 0.722
350 0.333 0.333 0.333 0.500 0.500 0.333 0.500 0.500 0.500 0.722 0.722 0.500
400 0.333 0.333 0.333 0.500 0.333 0.333 0.533 0.500 0.533 0.722 0.533 0.500
450 0.333 0.333 0.333 0.333 0.333 0.333 0.533 0.500 0.533 0.500 0.533 0.500
500 0.333 0.333 0.333 0.333 0.333 0.333 0.533 0.500 0.667 0.500 0.533 0.500

50 Segments

50 0.783 0.800 0.883 0.867 0.450 0.400 0.864 0.757 0.886 0.866 0.498 0.523
100 0.750 0.883 0.850 0.817 0.350 0.383 0.707 0.861 0.803 0.773 0.419 0.393
150 0.733 0.900 0.667 0.850 0.333 0.350 0.683 0.896 0.833 0.844 0.544 0.430
200 0.783 0.833 0.633 0.800 0.350 0.350 0.769 0.804 0.681 0.794 0.411 0.431
250 0.850 0.817 0.767 0.800 0.350 0.350 0.842 0.814 0.851 0.791 0.415 0.426
300 0.850 0.800 0.767 0.850 0.350 0.350 0.842 0.763 0.736 0.837 0.437 0.432
350 0.750 0.900 0.750 0.800 0.350 0.367 0.820 0.900 0.704 0.789 0.432 0.356
400 0.850 0.850 0.817 0.550 0.350 0.367 0.803 0.844 0.808 0.673 0.418 0.362
450 0.533 0.767 0.783 0.700 0.350 0.350 0.642 0.755 0.764 0.650 0.428 0.419
500 0.883 0.800 0.333 0.817 0.367 0.350 0.885 0.794 0.549 0.911 0.367 0.419

100 Segments

50 0.850 0.825 0.833 0.875 0.542 0.458 0.844 0.817 0.828 0.869 0.530 0.450
100 0.817 0.867 0.833 0.875 0.642 0.408 0.810 0.868 0.826 0.872 0.587 0.440
150 0.825 0.917 0.858 0.917 0.642 0.525 0.817 0.913 0.853 0.914 0.591 0.453
200 0.567 0.858 0.817 0.925 0.625 0.533 0.523 0.859 0.806 0.924 0.564 0.553
250 0.850 0.883 0.842 0.842 0.642 0.625 0.843 0.881 0.836 0.843 0.602 0.566
300 0.850 0.900 0.642 0.825 0.675 0.617 0.848 0.898 0.701 0.815 0.641 0.652
350 0.817 0.850 0.492 0.817 0.692 0.650 0.809 0.845 0.713 0.804 0.670 0.597
400 0.850 0.933 0.850 0.908 0.700 0.642 0.846 0.932 0.843 0.909 0.677 0.593
450 0.825 0.908 0.750 0.792 0.700 0.625 0.813 0.906 0.708 0.784 0.680 0.568
500 0.700 0.817 0.842 0.758 0.700 0.625 0.759 0.807 0.835 0.729 0.675 0.567
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Table 9. Performance metrics of the OD test (control) data from the networks trained with the 35-mer adenosine dataset.

ACC MF1

Adam RMSPROP SGDM Adam RMSPROP SGDM
Dataset Hidden Units ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM

Original Data

50 0.462 0.462 0.385 0.462 0.308 0.385 0.679 0.679 0.471 0.701 0.431 0.610
100 0.462 0.462 0.462 0.462 0.308 0.462 0.679 0.679 0.679 0.679 0.431 0.729
150 0.385 0.462 0.462 0.462 0.308 0.615 0.564 0.701 0.701 0.679 0.414 0.726
200 0.462 0.462 0.308 0.462 0.385 0.462 0.701 0.679 0.431 0.679 0.564 0.679
250 0.385 0.462 0.308 0.538 0.308 0.462 0.564 0.679 0.414 0.634 0.473 0.679
300 0.462 0.462 0.308 0.462 0.308 0.538 0.679 0.679 0.414 0.679 0.414 0.619
350 0.462 0.462 0.385 0.615 0.385 0.462 0.679 0.679 0.583 0.738 0.439 0.679
400 0.308 0.462 0.385 0.615 0.308 0.462 0.414 0.679 0.564 0.629 0.414 0.679
450 0.308 0.462 0.308 0.462 0.308 0.462 0.414 0.679 0.414 0.679 0.414 0.679
500 0.308 0.462 0.538 0.462 0.308 0.462 0.414 0.679 0.634 0.679 0.414 0.679

50 Segments

50 0.462 0.769 0.538 0.692 0.385 0.462 0.606 0.886 0.613 0.779 0.610 0.679
100 0.538 0.538 0.538 0.692 0.462 0.462 0.731 0.707 0.707 0.817 0.679 0.679
150 0.538 0.462 0.462 0.692 0.462 0.462 0.738 0.621 0.610 0.714 0.679 0.679
200 0.615 0.769 0.462 0.846 0.462 0.462 0.711 0.805 0.563 0.903 0.679 0.679
250 0.538 0.769 0.385 0.692 0.462 0.462 0.585 0.803 0.537 0.698 0.679 0.679
300 0.615 0.692 0.385 0.615 0.462 0.462 0.673 0.821 0.537 0.697 0.701 0.679
350 0.538 0.692 0.462 0.692 0.462 0.462 0.606 0.817 0.756 0.869 0.701 0.679
400 0.615 0.769 0.538 0.615 0.462 0.462 0.704 0.776 0.631 0.738 0.679 0.679
450 0.308 0.692 0.692 0.462 0.462 0.462 0.450 0.665 0.781 0.729 0.701 0.679
500 0.692 0.615 0.385 0.538 0.462 0.462 0.811 0.771 0.564 0.617 0.701 0.679

100 Segments

50 0.615 0.538 0.462 0.692 0.308 0.462 0.605 0.638 0.513 0.779 0.450 0.729
100 0.538 0.385 0.615 0.692 0.308 0.462 0.643 0.494 0.651 0.698 0.473 0.701
150 0.692 0.615 0.769 0.769 0.308 0.462 0.725 0.730 0.754 0.785 0.500 0.701
200 0.385 0.846 0.615 0.692 0.385 0.462 0.471 0.891 0.689 0.730 0.500 0.701
250 0.615 0.769 0.692 0.538 0.385 0.462 0.714 0.810 0.811 0.607 0.500 0.729
300 0.538 0.769 0.385 0.462 0.308 0.462 0.613 0.785 0.515 0.606 0.500 0.729
350 0.692 0.692 0.308 0.846 0.385 0.462 0.800 0.817 0.467 0.871 0.500 0.729
400 0.538 0.923 0.615 0.615 0.385 0.462 0.606 0.943 0.714 0.714 0.500 0.729
450 0.538 0.923 0.615 0.538 0.385 0.462 0.648 0.943 0.605 0.617 0.500 0.729
500 0.385 0.846 0.769 0.538 0.385 0.462 0.515 0.891 0.776 0.579 0.500 0.729
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Table 10. Performance metrics of the test data from the networks trained with the 31-mer Oestrdiol dataset.

ACC MF1

Adam RMSPROP SGDM Adam RMSPROP SGDM
Dataset Hidden Units ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM

Original Data

50 0.333 0.333 0.500 0.500 0.333 0.333 0.533 0.533 0.778 0.833 0.667 0.533
100 0.167 0.333 0.333 0.500 0.333 0.333 0.667 0.533 0.500 0.833 0.750 0.533
150 0.500 0.500 0.333 0.500 0.333 0.167 0.722 0.833 0.533 0.722 0.533 0.400
200 0.333 0.333 0.333 0.500 0.333 0.333 0.667 0.583 0.583 0.800 0.700 0.583
250 0.500 0.500 0.333 0.500 0.333 0.333 0.722 0.722 0.667 0.722 0.700 0.533
300 0.333 0.500 0.333 0.333 0.500 0.333 0.500 0.833 0.667 0.533 0.800 0.533
350 0.333 0.333 0.333 0.333 0.333 0.333 0.750 0.583 0.700 0.533 0.700 0.533
400 0.333 0.500 0.500 0.500 0.167 0.333 0.667 0.667 0.778 0.800 0.333 0.533
450 0.333 0.500 0.333 0.333 0.167 0.500 0.500 0.722 0.700 0.533 0.500 0.833
500 0.333 0.500 0.500 0.333 0.333 0.333 0.533 0.722 0.800 0.533 0.667 0.533

50 Segments

50 0.617 0.833 0.600 0.833 0.333 0.350 0.822 0.933 0.640 0.839 0.533 0.457
100 0.617 0.900 0.717 0.800 0.383 0.367 0.665 0.887 0.685 0.888 0.518 0.496
150 0.833 0.833 0.550 0.800 0.333 0.400 0.933 0.933 0.663 0.888 0.533 0.442
200 0.617 0.833 0.600 0.800 0.333 0.350 0.754 0.933 0.608 0.893 0.537 0.421
250 0.733 0.883 0.750 0.833 0.333 0.383 0.818 0.864 0.815 0.933 0.533 0.415
300 0.583 0.917 0.517 0.717 0.333 0.350 0.748 0.909 0.630 0.786 0.533 0.432
350 0.550 0.867 0.717 0.767 0.350 0.333 0.667 0.841 0.794 0.756 0.425 0.530
400 0.500 0.833 0.750 0.833 0.350 0.367 0.722 0.933 0.822 0.920 0.425 0.364
450 0.550 0.833 0.333 0.717 0.333 0.367 0.667 0.933 0.570 0.826 0.533 0.478
500 0.700 0.483 0.167 0.333 0.350 0.333 0.777 0.598 0.290 0.551 0.425 0.530

100 Segments

50 0.708 0.867 0.667 0.867 0.633 0.558 0.790 0.835 0.746 0.833 0.833 0.683
100 0.800 0.883 0.783 0.833 0.683 0.533 0.876 0.867 0.859 0.921 0.760 0.564
150 0.708 0.867 0.708 0.842 0.700 0.525 0.780 0.839 0.794 0.798 0.783 0.553
200 0.658 0.867 0.800 0.867 0.642 0.575 0.711 0.835 0.880 0.834 0.698 0.625
250 0.700 0.883 0.792 0.867 0.608 0.650 0.779 0.864 0.747 0.836 0.654 0.610
300 0.642 0.833 0.717 0.858 0.633 0.592 0.633 0.801 0.800 0.820 0.685 0.539
350 0.758 0.900 0.658 0.867 0.600 0.617 0.834 0.893 0.730 0.835 0.641 0.578
400 0.642 0.900 0.333 0.808 0.658 0.642 0.690 0.890 0.542 0.752 0.727 0.604
450 0.708 0.867 0.792 0.858 0.608 0.608 0.790 0.842 0.870 0.820 0.654 0.556
500 0.767 0.833 0.792 0.858 0.642 0.642 0.848 0.921 0.753 0.821 0.706 0.607
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Table 11. Performance metrics of the OD test (control) data from the networks trained with the 31-mer Oestrdiol dataset.

ACC MF1

Adam RMSPROP SGDM Adam RMSPROP SGDM
Dataset Hidden Units ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM

Original Data

50 0.333 0.333 0.444 0.389 0.333 0.333 0.533 0.533 0.694 0.583 0.605 0.533
100 0.389 0.333 0.333 0.556 0.333 0.333 0.519 0.533 0.503 0.708 0.750 0.533
150 0.333 0.556 0.333 0.444 0.222 0.278 0.503 0.708 0.605 0.619 0.319 0.417
200 0.333 0.444 0.278 0.611 0.389 0.333 0.605 0.656 0.500 0.815 0.625 0.583
250 0.500 0.556 0.333 0.500 0.333 0.333 0.722 0.656 0.676 0.690 0.629 0.533
300 0.333 0.389 0.333 0.333 0.333 0.389 0.523 0.528 0.605 0.533 0.605 0.550
350 0.389 0.333 0.333 0.389 0.167 0.333 0.667 0.606 0.605 0.522 0.353 0.548
400 0.333 0.444 0.556 0.500 0.167 0.333 0.605 0.595 0.693 0.800 0.353 0.533
450 0.278 0.500 0.333 0.333 0.167 0.500 0.439 0.682 0.700 0.533 0.500 0.833
500 0.222 0.500 0.333 0.333 0.333 0.333 0.319 0.690 0.605 0.533 0.605 0.533

50 Segments

50 0.667 0.722 0.611 0.611 0.333 0.333 0.875 0.796 0.765 0.597 0.533 0.564
100 0.611 0.778 0.778 0.611 0.389 0.389 0.789 0.864 0.855 0.678 0.532 0.543
150 0.778 0.778 0.500 0.556 0.333 0.389 0.871 0.864 0.690 0.597 0.548 0.532
200 0.722 0.778 0.556 0.722 0.333 0.333 0.771 0.871 0.700 0.800 0.533 0.564
250 0.722 0.778 0.667 0.778 0.333 0.389 0.800 0.871 0.731 0.864 0.533 0.543
300 0.500 0.833 0.611 0.500 0.333 0.333 0.702 0.819 0.664 0.573 0.533 0.548
350 0.556 0.722 0.722 0.667 0.333 0.389 0.678 0.810 0.764 0.752 0.548 0.543
400 0.611 0.722 0.667 0.778 0.333 0.389 0.789 0.800 0.736 0.864 0.548 0.532
450 0.500 0.667 0.333 0.667 0.333 0.333 0.690 0.714 0.605 0.780 0.533 0.564
500 0.667 0.500 0.167 0.333 0.389 0.389 0.731 0.821 0.286 0.564 0.532 0.543

100 Segments

50 0.611 0.778 0.722 0.778 0.667 0.444 0.836 0.864 0.800 0.864 0.875 0.656
100 0.833 0.722 0.833 0.722 0.667 0.500 0.933 0.817 0.921 0.796 0.731 0.649
150 0.833 0.778 0.722 0.722 0.667 0.556 0.921 0.900 0.788 0.796 0.875 0.599
200 0.667 0.778 0.778 0.778 0.611 0.611 0.875 0.864 0.871 0.864 0.801 0.681
250 0.667 0.778 0.778 0.778 0.611 0.611 0.851 0.758 0.886 0.864 0.789 0.681
300 0.667 0.778 0.722 0.778 0.611 0.611 0.767 0.770 0.800 0.871 0.789 0.681
350 0.778 0.722 0.722 0.778 0.611 0.611 0.853 0.717 0.788 0.871 0.789 0.681
400 0.667 0.778 0.278 0.722 0.667 0.611 0.875 0.864 0.486 0.715 0.739 0.681
450 0.722 0.778 0.778 0.778 0.611 0.611 0.809 0.864 0.871 0.871 0.789 0.681
500 0.722 0.778 0.778 0.778 0.611 0.611 0.800 0.900 0.766 0.864 0.789 0.681
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Table 12. Performance metrics of the test data from the networks trained with the 35-mer Oestrdiol dataset.

ACC MF1

Adam RMSPROP SGDM Adam RMSPROP SGDM
Dataset Hidden Units ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM

Original Data

50 0.300 0.400 0.400 0.500 0.200 0.500 0.450 0.546 0.579 0.667 0.500 0.656
100 0.200 0.400 0.200 0.400 0.400 0.300 0.343 0.567 0.343 0.579 0.583 0.395
150 0.300 0.400 0.300 0.400 0.300 0.300 0.486 0.533 0.486 0.546 0.500 0.429
200 0.400 0.400 0.300 0.400 0.200 0.300 0.546 0.533 0.486 0.546 0.500 0.429
250 0.300 0.500 0.300 0.300 0.300 0.300 0.536 0.689 0.450 0.619 0.500 0.429
300 0.400 0.500 0.300 0.500 0.200 0.300 0.556 0.592 0.433 0.592 0.500 0.429
350 0.400 0.500 0.200 0.400 0.200 0.500 0.579 0.592 0.367 0.546 0.500 0.635
400 0.500 0.400 0.300 0.500 0.400 0.300 0.547 0.546 0.450 0.600 0.583 0.429
450 0.400 0.500 0.300 0.400 0.400 0.400 0.522 0.592 0.450 0.546 0.583 0.544
500 0.300 0.400 0.300 0.400 0.400 0.300 0.450 0.546 0.450 0.546 0.583 0.429

50 Segments

50 0.617 0.617 0.617 0.617 0.367 0.433 0.646 0.660 0.665 0.668 0.459 0.511
100 0.667 0.650 0.667 0.650 0.333 0.483 0.729 0.706 0.725 0.629 0.508 0.547
150 0.683 0.767 0.667 0.667 0.333 0.483 0.747 0.747 0.729 0.640 0.513 0.553
200 0.683 0.700 0.583 0.617 0.333 0.417 0.747 0.685 0.636 0.640 0.513 0.480
250 0.683 0.667 0.617 0.667 0.383 0.500 0.647 0.624 0.579 0.722 0.503 0.600
300 0.750 0.733 0.650 0.667 0.333 0.417 0.748 0.724 0.690 0.707 0.518 0.508
350 0.617 0.750 0.600 0.667 0.333 0.450 0.677 0.731 0.665 0.722 0.580 0.509
400 0.700 0.733 0.417 0.517 0.333 0.450 0.696 0.723 0.559 0.545 0.530 0.656
450 0.633 0.567 0.333 0.633 0.333 0.500 0.588 0.733 0.512 0.628 0.508 0.564
500 0.567 0.833 0.633 0.550 0.333 0.450 0.614 0.836 0.690 0.517 0.542 0.627

100 Segments

50 0.633 0.742 0.683 0.750 0.600 0.500 0.632 0.718 0.621 0.733 0.611 0.480
100 0.742 0.900 0.692 0.783 0.492 0.525 0.726 0.899 0.630 0.779 0.489 0.638
150 0.767 0.867 0.683 0.783 0.525 0.533 0.753 0.862 0.605 0.783 0.526 0.530
200 0.775 0.842 0.725 0.892 0.592 0.550 0.737 0.841 0.695 0.892 0.630 0.557
250 0.792 0.867 0.725 0.858 0.492 0.525 0.774 0.865 0.699 0.857 0.612 0.541
300 0.800 0.850 0.750 0.808 0.617 0.600 0.784 0.845 0.694 0.797 0.657 0.644
350 0.742 0.933 0.583 0.800 0.533 0.567 0.722 0.933 0.709 0.778 0.549 0.600
400 0.575 0.917 0.600 0.683 0.642 0.600 0.573 0.916 0.604 0.735 0.698 0.640
450 0.825 0.783 0.600 0.650 0.608 0.633 0.801 0.777 0.643 0.699 0.635 0.580
500 0.617 0.858 0.600 0.783 0.592 0.592 0.614 0.858 0.593 0.775 0.621 0.532
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Table 13. Performance metrics of the OD test (control) data from the networks trained with the 35-mer Oestrdiol dataset.

ACC MF1

Adam RMSPROP SGDM Adam RMSPROP SGDM
Dataset Hidden Units ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM ULSTM BLSTM

Original Data

50 0.350 0.450 0.350 0.450 0.200 0.300 0.517 0.613 0.469 0.596 0.267 0.462
100 0.300 0.400 0.200 0.350 0.300 0.300 0.472 0.548 0.393 0.468 0.333 0.445
150 0.350 0.400 0.350 0.450 0.200 0.350 0.472 0.522 0.511 0.613 0.500 0.522
200 0.450 0.400 0.350 0.400 0.150 0.350 0.607 0.543 0.456 0.538 0.353 0.500
250 0.400 0.400 0.300 0.350 0.250 0.350 0.537 0.543 0.600 0.531 0.347 0.522
300 0.300 0.450 0.350 0.400 0.150 0.350 0.400 0.632 0.420 0.604 0.333 0.500
350 0.250 0.450 0.350 0.450 0.200 0.350 0.422 0.539 0.532 0.613 0.271 0.508
400 0.200 0.450 0.250 0.450 0.150 0.350 0.301 0.638 0.426 0.627 0.300 0.508
450 0.300 0.450 0.250 0.450 0.250 0.250 0.489 0.671 0.550 0.639 0.322 0.298
500 0.250 0.450 0.250 0.450 0.300 0.350 0.588 0.639 0.453 0.627 0.383 0.500

50 Segments

50 0.650 0.550 0.600 0.550 0.300 0.400 0.756 0.644 0.687 0.627 0.431 0.598
100 0.600 0.500 0.650 0.650 0.300 0.400 0.705 0.568 0.740 0.635 0.472 0.561
150 0.650 0.550 0.650 0.650 0.300 0.400 0.750 0.576 0.745 0.635 0.517 0.598
200 0.650 0.600 0.700 0.550 0.350 0.400 0.750 0.622 0.785 0.717 0.444 0.578
250 0.550 0.550 0.500 0.550 0.350 0.400 0.607 0.644 0.550 0.627 0.476 0.482
300 0.550 0.500 0.600 0.550 0.300 0.400 0.608 0.558 0.673 0.644 0.500 0.598
350 0.550 0.550 0.550 0.500 0.300 0.400 0.607 0.644 0.643 0.643 0.558 0.561
400 0.750 0.550 0.350 0.600 0.300 0.400 0.749 0.593 0.447 0.690 0.517 0.561
450 0.550 0.550 0.250 0.600 0.350 0.400 0.634 0.627 0.483 0.625 0.444 0.561
500 0.600 0.600 0.600 0.350 0.300 0.400 0.700 0.638 0.688 0.539 0.500 0.561

100 Segments

50 0.600 0.550 0.550 0.550 0.600 0.450 0.665 0.576 0.653 0.576 0.675 0.594
100 0.600 0.550 0.550 0.600 0.550 0.450 0.614 0.576 0.545 0.605 0.648 0.613
150 0.600 0.600 0.550 0.550 0.500 0.450 0.613 0.638 0.542 0.670 0.577 0.613
200 0.600 0.550 0.600 0.600 0.550 0.450 0.606 0.590 0.587 0.641 0.648 0.613
250 0.650 0.600 0.600 0.650 0.500 0.550 0.698 0.638 0.593 0.701 0.713 0.644
300 0.600 0.500 600 0.600 0.600 0.400 0.631 0.503 0.636 0.605 0.607 0.522
350 0.550 0.550 0.550 0.550 0.500 0.450 0.593 0.538 0.717 0.630 0.697 0.613
400 0.500 0.600 0.600 0.600 0.600 0.400 0.608 0.620 0.561 0.641 0.607 0.522
450 0.650 0.500 0.700 0.600 0.600 0.400 0.655 0.657 0.691 0.665 0.695 0.522
500 0.600 0.550 0.600 0.500 0.550 0.450 0.667 0.590 0.665 0.610 0.656 0.613
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For a better understanding of the tables, the boldface numbers indicate the highest
performance of a network based on the optimizers and the LSTM layer structure for
50 and 100 augmented segments. Moreover, we ignored the best classifiers when the
numerical metrics for almost all hidden units were similar. For example, in Table 9, the
best classifiers were not selected for accuracy when using 50 segments in the ULSTM and
BLSTM structures and the SGDM optimizer. The reason for this was that the use of more
than four hidden units resulted in the same accuracy.

Figure 10 shows the overall accuracy of the OD test set from the network trained with
the original segments from the 35-mer adenosine dataset. The accuracies of the prediction
models trained with the original data varied approximately from 30% to 55% for the three
datasets.

(A)

(B)

Figure 10. Accuracy of the networks trained with the original 35-mer adenosine dataset: (A) ULSTM
network; (B) BLSTM network.

Figure 11 depicts the effect of increasing the number of augmented segments on the
prediction models. This figure shows the accuracy of the test data from the networks
trained with the ADAM optimizer and the 35-mer adenosine dataset. In general, it can be
seen that the performance of the prediction models significantly improved by utilizing the
data augmentation method. However, the prediction models were slightly improved with
the increase in the amount of augmented data.
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(A)

(B)

Figure 11. Accuracy of the test data from the networks trained with the 35-mer adenosine dataset
and the ADAM optimizer: (A) ULSTM network; (B) BLSTM network.

Figure 12 shows the overall accuracy from the control data of the ULSTM and BLSTM
networks trained with the 35-mer adenosine dataset when 100 augmented segments per class
were used.

(A)

Figure 12. Cont.
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(B)

Figure 12. Accuracy of the control data from the networks trained with the 35-mer adenosine dataset
with 100 augmented and original data points per class: (A) ULSTM network; (B) BLSTM network.

In more detail, regarding the 35-mer adenosine dataset, as shown in Tables 8 and 9,
the MF1 for the original data changed approximately from 50% to 72%. Then, the ACC
and MF1 reached 85% and 94%, respectively, by utilizing the augmented segments for
the control data, as shown in Table 9. For the 31-mer oestradiol dataset, Tables 10 and 11
show that the accuracy reached 90% and the MF1 increased approximately from 50–83%
to 54–93%. For the 35-mer oestradiol dataset, Tables 12 and 13 depict that the accuracy
range of 25–50% reached 70% by using the augmented data, and the MF1 increased from
the range of 30–63% to 76% after data augmentation.

4. Discussion

Nanomaterial-based aptasensors are useful biosensors that are capable of detecting
small chemicals and species. A vital goal in the advancement of biosensors is the iden-
tification and measurement of low levels of target analytes. Deep learning methods are
attractive tools for the advancement of biosensor technology and the analysis biosensing
data. RNNs exploit temporal information in time-series inputs to make prediction models
for classification and regression problems.

In our work, we successfully employed LSTM networks to automatically predict
analyte concentrations from parts of drain current signals registered by three different
electrochemical aptasensors. The differences in these sensors were their bioreceptors, their
analytes, and the lengths of the signals for specific concentrations. Among RNN-based
models, LSTM networks, which contain a gating schema for data analysis, are suitable
models due to their ability to learn temporal dependencies. Thus, we utilized ULSTM
and BLSTM networks with different optimizers and hidden units to identify the optimal
classification models for various concentrations.

Moreover, similarly to most real-world problems, the available signals registered by
these sensors were insufficient for training the networks. To overcome this limitation, we
proposed a data augmentation method in order to increase the size of the available datasets
and improve the prediction model’s generalization ability and overall performance. The
augmentation method improved the model’s performance.

By comparing the evaluation results obtained with the original and augmented data,
it can be seen that the applied data augmentation method significantly improved the
classification performance. In addition, the results showed that the number of hidden units
might not be very effective in enhancing LSTM models. Considering the optimizers, the
LSTM networks that used the SGDM optimization algorithm showed a lower prediction
performance than that obtained with the ADAM and RMSPROP algorithms [35].

According to the results showing the networks’ performance on the test data, the
BLSTM networks used for the three datasets presented more accurate classification than
that of the ULSTM networks [37]. However, this result was not identical to that obtained
with the OD test data on the 31-mer and 35-mer oestradiol datasets, i.e., the prediction
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performance of the BLSTM models on both the test and control segments of the 35-mer
adenosine dataset was higher than that of the ULSTM structures, but not for the oestradiol
datasets. The reason for this failure to improve the performance of the BLSTM over that
of the ULSTM for the oestradiol datasets might be the shorter length of the oestradiol
segments compared to that of the adenosine segments.

Regarding the datasets, we observed that the least accurate models belonged to
the 35-mer oestradiol dataset, and the most accurate networks were trained with the
35-mer adenosine dataset. This low accuracy might have occurred for one of two reasons:
the aptamer length used to detect the analyte or the criteria chosen for the detection of
contextual outliers. It was shown that successful detection of the analyte depended on the
aptamer length, and the analyte–aptamer binding must occur within the Debye length to
affect a CNT FET’s drain current [38]. Thus, the 35-mer oestradiol signals might not have
shown obvious evidence of sensing. In the case that this low-accuracy model might be the
result of the detection of contextual outliers, it can be assessed in a future study.

In future work, we can evaluate the effects of the segment length and automatic detec-
tion of contextual outliers on the prediction models. In order to address the unequal size of
segments in future studies, data augmentation methods based on artificial neural networks
might be a solution. In fact, by defining a regression model and employing deep learning
networks [39], we can extend the length of available time-series data. Consequently, this
technique can produce new datasets containing segments of similar lengths. Regarding
the detection of contextual outliers, neural networks such as autoencoder-based [40] or
LSTM-based models [41] can be utilized to assess and compare the effects of automatic
anomaly detection on the prediction models.

The insufficiency of the data exposed a limitation in the preprocessing method applied
in this work. Typical data preprocessing methods apply identical changes to the training
and test sets. However, we used Z-score scaling for each signal based on its mean and
standard deviation. It was impossible to estimate the mean and standard deviation with
the available statistical methods, such as with simulations and hypothesis tests.

5. Conclusions

In this work, we exploited a data augmentation method and LSTM networks to
analyze the drain current signals of three similar CNT FET aptasensors in the 35-mer
adenosine dataset and 31-mer and 35-mer oestradiol datasets. The drain current signals
reflected the sensing responses of the aptasensors, while the concentrations of target
analytes successively increased from 1 nM to 10 µM. The ultimate purpose of analyzing the
signals was to automatically detect and classify the analyte concentration according to the
corresponding sensing response.

The scaling-based data augmentation method was proven to be highly effective for
improving and increasing the generalization ability of LSTM-based classification models.
In addition, the results suggest that the applied data augmentation method might be more
effective and useful in capturing the features from lengthier signals, e.g., 35-mer adenosine
signals.

Moreover, the LSTM networks were successful in sensing response classification and
in predicting the analyte concentration. In addition, the results suggest that using BLSTM
networks does not necessarily result in making more accurate prediction models when
using augmented data. Higher scores for evaluation metrics, namely, accuracy and MF1,
of the BLSTM over the ULSTM might have resulted due to overfitting. Thus, using a
control group when evaluating prediction models seems to be vital in order to obtain robust
results. In addition, changing the number of hidden units was not effective with respect
to the performance of the prediction models, and the SGDM algorithm was not a suitable
optimisation algorithm for them.
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