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Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system

characterized by demyelination, which leads to the formation of white matter lesions

(WMLs) and gray matter lesions (GMLs). Recently, a large amount of transcriptomics or

proteomics research works explored MS, but few studies focused on the differences

and similarities between GMLs and WMLs in transcriptomics. Furthermore, there are

astonishing pathological differences between WMLs and GMLs, for example, there

are differences in the type and abundance of infiltrating immune cells between WMLs

and GMLs. Here, we used consensus weighted gene co-expression network analysis

(WGCNA), single-sample gene set enrichment analysis (ssGSEA), and machine learning

methods to identify the transcriptomic differences and similarities of the MS between

GMLs and WMLs, and to find the co-expression modules with significant differences

or similarities between them. Through weighted co-expression network analysis and

ssGSEA analysis, CD56 bright natural killer cell was identified as the key immune

infiltration factor in MS, whether in GM or WM. We also found that the co-expression

networks between the two groups are quite similar (density = 0.79), and 28 differentially

expressed genes (DEGs) are distributed in the midnightblue module, which is most

related to CD56 bright natural killer cell in GM. Simultaneously, we also found that there

are huge disparities between themodules, such as divergences between darkredmodule

and lightyellow module, and these divergences may be relevant to the functions of the

genes in the modules.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory disease of the
central nervous system characterized by demyelination, which
leads to the formation of white matter lesions (WMLs) and gray
matter lesions (GMLs) (1, 2). Axon demyelination in different
brain regions would lead to distinct symptoms, for example,
cerebellar lesions may lead to ataxia, etc. (3, 4). Recently, many
studies have shown that although the pathological changes in
GMLs andWMLs are both focal demyelinations, themechanisms
of the two are still different. Some hypotheses were put forward
to insinuate that varying degrees of immune cell infiltration,
such as CD8+ T-cells, CD4+ T-cells, and B cells, may play
a key role in the progression of the disease. However, the
region-specific differences of immune infiltration in MS remain
unclear (3, 5–7).

Weighted gene co-expression network analysis (WGCNA)
is a classic gene clustering biological method, which relates
genes with phenotypes or pathways. It is mainly based on
two theories: (1) genes with similar expression patterns
may be co-regulated, functionally related, or in the same
pathway, and (2) the distribution of gene networks conforms
to scale-free. In WGCNA, the weighted value of the
correlation coefficient is used, that is, the gene correlation
coefficient is taken to the power of N so that the connections
among the genes in the network conform to the scale-free
network distribution, and this algorithm is more biologically
meaningful. It has been widely applied in Alzheimer’s disease,
Parkinson’s disease, cancers, and green halophytic microalgae
Dunaliella salina (8–13). The consensus network based
on WGCNA could discover the similarity and difference
of two gene co-expression networks better. It has been
performed to measure the similarity of gene expression
patterns in the livers of patients with different gender, or
in neurodegenerative diseases, such as Alzheimer’s disease,
Parkinson’s disease, etc. (14, 15).

Here, we applied consensus WGCNA and single-sample gene

set enrichment analysis (ssGSEA) on the MS transcriptomics

data of WM and GM, detected the similarities and differences

in the gene expression patterns between WMLs and GMLs,
and performed ssGSEA and machine learning analysis to

identify the most relevant immune infiltration pathways of MS.

Through the analysis above, we obtained the most relevant

immune infiltration pathways in GMLs andWMLs (CD56 bright

natural killer cell). Furthermore, the most different module

between WMLs and GMLs was detected (the darkred and
lightyellow modules). We also overlapped the differentially

expressed genes (DEGs) in WMLs and GMLs and found that

most DEGs in GM were kept in WM DEGs. Overlapped
DEGs were mainly distributed in midnightblue, pink, yellow,

magenta, and purple modules, which were most similar modules
between WMLs and GMLs. Finally, we found that the genes
in midnightblue module, such as heat shock proteins (HSPs),
may be involved in the pathway in which CD56 bright natural
killer cell could resist T- and B-cell-associated inflammatory
brain damage.

METHODS AND MATERIALS

Data Acquisition and Preprocessing
The data used in this article were obtained from the GEO
database GSE123496, which contains five patients with MS
(average age= 57.6 years) and five age-matched healthy controls
(CON; average age = 56.2 years), and fresh frozen autopsy
samples were obtained from Human Brain and Spinal Fluid
Research Center in Los Angeles, USA (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE123496). Gene expression in
the frontal cortex (MS = 5, CON = 5) and parietal cortex
(MS = 5, CON = 5) was selected as the gene expression
profile in GM, compared with gene expression profile in
WM represented by data from an internal capsule (MS =

5, CON = 5) and the corpus callosum (MS = 5, CON
= 5). The normalized gene expression matrix data were
downloaded, and data filtering was performed before WGCNA.
In order to filter data, first, eliminate abnormal samples through
hierarchical clustering. Second, eliminate duplicate probes and
gene expression data in the expression matrix. Ultimately, there
were about 33,000 genes in the dataset used for the follow-
up analysis.

Single-Sample Gene set Enrichment
Analysis
The detailed mathematical principle of ssGSEA can be found in
Reference (16). The main steps are as follows:

a) First, assuming that there is a sample’s expression data, then
it should be like this, the first column is the gene, the second
column is the expression value, such as a two-column data
matrix. The expression levels of all genes in the sample are
sorted to obtain their rank among all genes, and the set of these
genes is BG.

b) Assuming that we want to analyze the Kyoto Encyclopedia of
Genes and Genomes (KEGG), first, we need to find the gmt
file corresponding to KEGG on the GSEA official website. The
main format of the gmt file is: each line represents a pathway,
the first column is the pathway ID, the second column is
the description corresponding to the pathway, and the third
column to the last column is the gene in the pathway.

c) Then, for any pathway A, we can get the gene list GL of this
pathway, find the genes present in BG from GL, count them
as NC, and add the expression levels of these genes to SG. ES
calculation should be started: for any gene G in the expression
profile, if G is a gene in the set GL, then the ES value is equal
to the expression level of the gene divided by SG, otherwise,
the ES value of the gene is equal to 1 divided by the value
of gene set BG total number minus NC. The ES value of the
genes in each BG, in turn, should be calculated, and the ES
with the largest absolute value as the A.ES of pathway A should
be found.

d) After the calculation of the ES value of this pathway A is
completed, a statistical method is required to evaluate whether
the ES is significant, that is, non-random. According to the
above method of calculating ES, first, the expression order of
genes in the expression profile should be randomly shuffled,
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and then the ES value is calculated. It has to be repeated a
thousand times to obtain a thousand ES values. According
to the distribution of these thousand ES values, to calculate
the position of A.ES in this distribution and the probability
of appearing in this position, the p-value is obtained. The ES
and p-values of each channel are, in turn, calculated, and then
multiple test corrections are used to obtain the false discovery
rate (FDR) of each channel.

In this study, the GSVA package based on R 3.4.2 was used as
a tool for the ssGSEA analysis, which is a method proposed
for ssGSEA (17). The gene sets were acquired from Molecular
Signatures Database (MSigDB) according to the description in
the section “Introduction,” , and 28 signaling pathways involved
immune infiltration were included, such as CD56 bright natural
killer cell, CD56 dim natural killer cell, effector memory CD8+ T
cell, etc.

Application of Random Forest to Find the
key Immune Infiltration Pathway in
Classifying the MS and CON in Different
Brain Regions
The samples in each brain region were grouped into MS and
CON. Inputting the ssGSEA enrichment scores of these 28
immune infiltration pathways in these samples into random
forest (RF) classifier via sklearn package based on python to
predict which group the samples belong to and to identify the
most important pathway for classifying.

Construction of Weighted Gene
Co-expression Network and Identification
of Significant Modules
The consensus weighted gene co-expression network was
constructed by WGCNA package based on R 3.4.2 to
identify consensus modules for cross-dataset (GM and WM)
comparisons. First, the Pearson correlation coefficient was
calculated to assess the similarity of the gene expression profiles,
and then the correlation matrices were converted into adjacency
matrices. Second, the adjacency matrices between genes were
weighted by a soft power (14 for both datasets) function to
obtain a scale-free network. The dynamic tree-cut method was
used to identify different modules, the adjacency matrix was
converted to a topology overlay matrix (TOM), and modules
were detected by cluster analysis during module selection.
DeepSplit and the minModuleSize adopted the default values.
Lastly, the hierarchical cluster was used to identify gene modules,
and different modules were represented by different colors.

Correlation Analysis of Gene Modules With
Clinical Phenotype
To detect the associations between modules and clinical
phenotypes (ssGSEA scores), first, the match function in
WGCNA is used to associate ssGSEA scores with expression
matrices. Second, the correlations of the consensus module
eigengene (ME) and the ssGSEA scores were calculated by
Pearson’s analysis. Modules showing significant differences

between GM and WM were obtained. Lastly, to further confirm
the consensus modules with significant differences in GM
and WM datasets, the correlation coefficients between module
membership (gene expression level) and gene significance (GS,
for assessing the association of genes with phenotypes) were
calculated using the labeledHeatmap function, and the p-values
were obtained.

Find the Overlapping Genes Between the
GM and WM DEGs (Gray Matter MS vs.
CON; White Matter MS vs. CON)
The samples were divided into two groups (MS and CON),
respectively, in WM and GM, and the Limma packages were
preformed to normalize and identify the DEGs (18, 19).
Next, using the Venn tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/) to discover the overlapping genes between
WML and GML DEGs.

Cross-Validation Criteria for Random
Forest
The criteria used for cross-validation are as follows: the data size
of the validation set accounts for 25% of the entire data, and
the training data account for 75%, which means that a five-fold
cross-validation is used.

The Construction of Protein–Protein
Interaction Network
These overlapped genes were also analyzed using
GeneMANIA (https://genemania.org/) (20, 21) to construct
the co-expression network.

RESULTS

Data Preprocessing and Standardization
The GSE123496 dataset includes samples from 5 brain regions,
and each sample has 60,234 gene counts (22). We extracted the
sample data from different brain regions and divided them into
2 regions roughly (GM and WM, 20 samples in each group,
Supplementary Figure 1A). We inputted the gene counts into R
for log2 conversion and removed blank and duplicate values, and
finally, 32,353 genes were reserved.

Identify the Overlapped DEGs Between
WMLs and GMLs
First, we calculated the DEGs between the WMLs and the WM
normal control samples, the DEGs between the GMLs and the
GM normal control samples. We found 181 DEGs in the WM
group (p < 0.001, Figures 1A,B), 123 DEGs in the GM group
(p < 0.001, Supplementary Figures 1B,C), and 122 overlapped
DEGs were identified through overlapping analysis (Figure 1C).

ssGSEA Analysis of MS Gene Expression
Matrix in WM and GM
The ssGSEA analysis was performed on the gene expression
matrix of 20 GM (10 GMLs vs. 10 normal) and 20 WM
(10 WMLs vs. 10 normal). The analysis pathways mainly
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FIGURE 1 | (A) Volcano plot of DEGs in WM. (B) Heatmap of DEGs in WM. (C) Using the Venn tools to find the overlap genes between downregulated genes in DEGs

and genes in black module.

include 28 immune infiltration pathways, such as CD56 bright
natural killer cell, effector memory CD8+ T cell, and memory
B cell. As shown in Figures 2A,B, the scores in different
samples are different. Furthermore, we found that there was
a significant difference in the enrichment scores between the
MS samples and the normal control samples, for example, the
enrichment score for CD56 bright natural killer cell pathway in
GM (Supplementary Figure 2, p < 0.001) and the enrichment
score for effector memory CD8+ T-cell pathway in the WM
(Supplementary Figure 3, p < 0.01) were significantly different.
Finally, we compared the importance of the above relevant
immune infiltration pathways in WM and GM, respectively (see
the “Method). We found that in GM, CD56 bright natural killer
cell pathway plays a key role, whereas, in WM, CD56 bright
natural killer cell pathway is still important (Figures 2C,D).
Furthermore, we also found that there is a certain negative
correlation between the score of CD56 bright natural killer cell
pathway and the scores of activated B-cell pathway, T follicular
helper cell pathway, MDSC pathway, and so on in MS samples
(Supplementary Figure 4).

The Identification of Consensus Modules
Across Different Brain Regions
The microarray data of 20 GM and 20 WM samples were
read by R for hierarchical clustering. The consensus network
of scale independence and mean connectivity analysis showed
that when the weighted value was set to 14, the average degree
of connectivity was close to 0, and the scale independence
was about 0.8; therefore, the weighted value was set to 14
finally (Supplementary Figures 5A–C).WGCNAwas performed

to identify consensus modules. The comparison between GM
set-specific modules and GM–WM consensus modules of
the global co-expression network indicated that most WM
modules were preserved in GM. All shared modules showed a
significant overlap with themodules of the corresponding region-
specific co-expression networks (Supplementary Figure 1D),
demonstrating the similarity of clustering patterns in WM
and GM.

Relate the Consensus Modules With the
ssGSEA Scores for Different Regions
The module–feature relationship table showed the relationship
between ssGSEA pathways (WM and scores of 18 pathways
in Figure 3A, GM and scores of 18 pathways in Figure 3B)
and consensus modules of different brain region datasets. The
2 relational heatmaps indicated a certain degree of similarity
in the relationship of ssGSEA pathways and co-expression
networks (Figure 3C). Furthermore, we found that the yellow,
pink, purple, and magenta modules were correlated with most
ssGSEA pathways significantly in each dataset, although the
correlation coefficients and p-values between the two datasets
were slightly different. In addition, we found that some modules
in the two datasets had opposite correlation coefficients with
the ssGSEA pathways, such as darkred and lightgreen modules.
Finally, we took the lowest value of each correlation coefficient
as the correlation coefficients of the comparison modules
(Figure 3C). When the two values had opposite signs, we set
the correlation coefficients of the comparison modules to NA.
For instance, Figure 3A shows that the GM lightgreen module
is negatively correlated with the effector memory CD8+ T-cell
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FIGURE 2 | (A,C) Heatmap shows the ssGSEA scores of different gene sets in WM (A) and GM (C). (B,D) The bar plot shows the relative importance of features

(immune infiltration pathway) in the random forest classification model [(B) WM; (D) GM].

pathway, whereas in the WM dataset, the lightgreen module
is positively correlated with the effector memory CD8+ T-cell
pathway (Figure 3A), and the correlation between the consensus
modules and the ssGSEA pathway is NA in the comparison table
(Figure 3C). Next, we further analyzed the genes inmidnightblue
module because we found that there were 28 DEGs identified as
hub genes in the midnightblue module (GPR31,HOXD4, PAPPA,
BPIFB4, LDHBP3, TMEM207, etc.).

Differential Consensus Module Eigengene
Network Analysis Reveals Highly
Preserved Network Structure
In order to explore the overall preservation of correlation
in the consensus module pairs between WM- and GM-
specific networks, we analyzed the differential eigengene network
(Figure 4). Based on the correlation of the pairwise consensus
modules, we built eigengene network to evaluate the preservation
of modules between WM and GM datasets. Figures 4A,B shows
the overall preservation of the three networks is a positive
correlation. The mean density of the two networks exceeded
0.79 in WM and GM datasets, demonstrating that the overall
structures of the co-expression networks were similar between
different brain regions. Furthermore, in Figure 4C, we found
that the first meta-modules included red, brown, royalblue,
lightgreen, and black module, and the second meta-modules

included darkturquoise, midnightblue, darkred module, etc.
However, these meta-modules also approximately existed in GM
datasets. These results indicated that the differences between
WM and GM may exist in the particular genes within the
consensus networks.

Identification of the Significant Modules
and Genes in WMLs and GMLs and
Construction of the Network
In the above results, we obtained 122 overlapped DEGs, such
as gene GPR31 and so on, and then, we identified the modules
in which these genes were mainly distributed in. As shown in
Figure 5A, we found that these genes were mainly distributed
in the midnightblue module (28, DEGs), followed by the yellow
module (9, DEGs) and purple module (8, DEGs).

To identify the most important genes in classifying MS and
normal samples, the 28 genes in the midnightblue module
(Figure 5B) were further filtered by the RF classification. Gene
counts were inputted into the RF classifier model, and 40 (MS
and normal) samples were shuffled. Furthermore, we used about
75% of the data as the training set and 25% of the data as the
test set. Disease state was regarded as the classification target,
and cross-validation was used to train the RF model. As shown
in Figure 5C and Supplementary Figure 5D, in the test set, the
f1 = 0.8 and AUC = 0.86. Furthermore, we also obtained the
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FIGURE 3 | WM–GM consensus module construction. (A) Pearson correlation coefficients between the ssGSEA scores and module eigengenes (MEs) in WM

dataset; numbers in brackets indicate the corresponding p-values. (B) Pearson correlation coefficients between the ssGSEA scores and module eigengenes in GM

dataset; numbers in brackets indicate the corresponding p-values. (C) Pearson correlation coefficients between the ssGSEA scores and consensus module

eigengenes; numbers in brackets indicate the corresponding p-values.

relative importance of the genes in the trained RF model. As
shown in Figure 5D and Supplementary Table 1, 21 important
genes (PCBP1, HSP90AB1, HSPA7, CHMP6, LRIF1, SNAPC5P1,
STIP1, AHSA6, etc.) were screened (imp > 0.01), and they
were subjected to GeneMANIA to construct the protein–protein
interaction (PPI) network (Figure 5E).We found that these genes
only had a co-expression relationship, and few of them had an
interaction between themselves.

DISCUSSION

Multiple sclerosis is an autoimmune neurological disease, and its
pathological mechanism is still unclear (5, 6, 23). Furthermore,
although the pathological changes in different brain regions
are all mainly demyelinating lesions, the mechanisms are quite
different. For instance, in theWMLs, the pathological mechanism
is mainly the infiltration of immune cells, such as CD8+ T
cells, whereas, in the GMLs, such immune cell infiltration is
rare (3, 6, 7, 24). At present, although many studies focused
on immune infiltration through ssGSEA, such as studying the
role of immune infiltration in the tumor microenvironment and
other autoimmune system diseases (25–27), it is rarely applied in
studying MS in the brain. Therefore, integrating transcriptomics
and ssGSEA to study the immune infiltration of MS plays a key
role in elucidating its pathological mechanisms and searching
for therapeutic targets. Therefore, we performed ssGSEA analysis
on the pathways related to immune infiltration of WM and
GM samples and found that 18 immune infiltration pathways
were significantly different between the normal samples and
the MS samples (Figure 2; Supplementary Figures 2, 3), such as
the activated B-cell pathway and central memory CD4+ T-cell

pathway. The memory B-cell pathway of immune infiltration
pathways in theMS samples was significantly higher than those in
the normal control samples, and these results are consistent with
many previous studies (28–31). However, by the RF algorithm
model, we identified that the most important pathway in theWM
was the CD56 bright natural killer cell pathway, and in the GM,
it remained the most important signal pathway (Figures 2C,D).
Many researchers reported that, as the main type of natural killer
cells, CD56 bright natural killer cell mainly played a role in
inhibiting the T-cell signaling pathway in the disease progression
of MS (32–34), thereby reducing its damage to the brain. In our
study, we found that the score of CD56 bright natural killer
cell signaling pathway in patients with MS is higher than that
in the normal control samples, which may also be due to the
resistance to T-cell damage. Furthermore, we also found that
the scores of the CD56 bright natural killer cell pathway in the
disease samples were negatively correlated with T-cell pathway
scores (Supplementary Figure 4), which further indicated that
the increase of CD56 bright natural killer cell pathway scores was
due to the reduction of T-cell damage to the brain.

As a classic co-expression network algorithm, WGCNA is
widely used in various diseases to find related hub genes. In
this study, we perform the consensus WGCNA on the two brain
region datasets, and then specific and opposite modules between
WMLs and GMLs were identified. The mean density of the
two networks exceeded 0.79 in consensus modules (Figure 4),
demonstrating that the overall structures of the co-expression
networks were similar in the WMLs and GMLs. We also found
that there were 122 overlapped DEGs between WM and GM,
and most of the DEGs in GM were kept in WM (Figure 1C)
and modules with similar expression patterns between the two
datasets, such as magenta, yellow, and pink modules. These
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FIGURE 4 | (A,B) Clustering dendrograms of consensus module eigengenes (MEs) for identifying meta-modules show the presence of similar major

branching pattern in WM and GM eigengene networks. (C,F) The heatmap shows the eigengene adjacencies in WM and GM eigengene networks. Each row and column

(Continued)

Frontiers in Neurology | www.frontiersin.org 7 February 2022 | Volume 13 | Article 807349

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chai et al. Application of WGCNA in MS

FIGURE 4 | corresponds to an eigengene tagged by consensus module colors. Within each heatmap, red represents high adjacency (positive correlation) and blue

represents low adjacency (negative correlation) as represented by the color legend. (D) Bar plot shows the preservation degree of each consensus eigengene as the

height of the bar (y-axis), and each colored bar corresponds to the eigengene of the associated consensus module. The high-density value D (preserve WM and GM)

= 0.79 indicates the high overall preservation between the WM and GM networks. (E) Adjacency heatmap of the preservation network between WM and GM

consensus eigengene networks. The saturation of the red color indicates correlation preservation of WM and GM MEs.

FIGURE 5 | (A) Identifying the overlap genes between DEGs and genes in consensus modules. (B) Heatmap shows the expression of the overlapping genes in the

midnightblue module. (C) The plot shows the changes of the f1 index with the changes of the max-feature in the training set and test set. (D) The bar plot shows the

relative importance of features (genes) in the random forest classification model. (E) The PPI network of important genes via GeneMANIA.

results showed that the pathological mechanisms of the two were
very analogous. In Figure 3, we found that the darkred module
has opposite relationships in immune infiltration pathways, with
the highest positive correlations with Mast cell in WM and
negative correlations in GM, which indicated that there is an
opposite relationship between the two gene expression patterns
in the signaling pathway with Mast cell. These gaps may also be
one of the reasons for the different pathological mechanisms of
WM and GM.

Many studies are focusing on the mechanism of MS, and
most studies showed that the pathological mechanisms in the
GM and WM are similar to a certain degree (35–37). In
this study, we found that there are certain differences and
similarities between the pathological mechanisms of MS in
GMLs and WMLs. Specifically, in our results, we found that
the CD56 bright natural killer cell pathway plays the most
important role in MS, regardless of whether it is in WM or
GM. When the modules and the immune infiltration signaling
pathways were analyzed for correlation, we found that the

most relevant module to the CD56 bright natural killer cell
pathway is the midnightblue module in GM (r = 0.82, p =

2e-06, Figure 3B). In order to better identify the hub genes
in the midnightblue module, we overlapped the DEGs with
the genes in midnightblue module and found 28 important
hub genes, such as genes GPR31, HOXD4, PAPPA, BPIFB4,
LDHBP3, TMEM207, etc. Similarly, we found the modules,
which were most relevant to the CD56 bright natural killer
cell pathway in WMLs, the darkturquoise module (r = 0.67,
p = 0.001, Figure 3A), and we identified DEGs as hub genes,
such as PARVG, FCGR2A, HLA-DRB5, and OXTR (Figure 3C).
These results indicate that although the CD56 bright natural
killer cell plays a key role in the WM and GM of MS, there
are still some differences in the molecular mechanisms that
mediate it.

In this study, we found that most of the DEGs belonged to
the HSPs family (Figure 5B), which indicated that HSPs play
a key role in MS. Although many studies reported that HSPs
are involved in the pathological processes of many diseases
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in the brain, such as Alzheimer’s disease, stroke, and brain
trauma (38–40), in the pathological process of MS, the specific
mechanism is still unclear. Some reports suggested that in the
brain of MS, the level of HSPs is significantly increased (41, 42).
However, whether these elevated HSPs are beneficial or harmful
to patients with MS is still controversial. In our study, we also
found that HSPs as important genes (Figure 5D) were mainly
distributed in the midnightblue module, which further implied
that HSP-related genes may play a synergistic effect with the
genes in this module. In Figure 3C, we could discover that the
immune infiltration pathway, which was most relevant to this
module, was the CD56 bright natural killer cell pathway, and
it implied that HSPs, which could inhibit the T-cell damage to
the brain, may be involved in the CD56 bright natural killer cell
pathway in MS.

CONCLUSION

In this study, we compared the gene co-expression networks
in GMLs and WMLs through WGCNA and ssGSEA methods
and identified that the co-expression networks of the two had
high similarities. Furthermore, we also identified the similarities
and differences between the two co-expression networks in
immune infiltration. The gene expression patterns of the two
had similar expression in signal pathways, such as the activated
B-cell pathway, central memory CD4+ T-cell pathway, and
immature B-cell pathway. The differences between the two were
mainly distributed in the CD56 bright natural killer cell pathway.
Furthermore, we found that the HSPs, as the hub genes, were
mainly distributed in the module, which was most relevant to the

CD56 bright natural killer cell pathway, and it may be involved
in antagonizing the damage caused by T-cells.
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