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Abstract

Background: Screening for antibiotic resistance genes (ARGs) in especially environmental samples with (meta)genomic sequencing is
associated with false-positive predictions of phenotypic resistance. This stems from the fact that most acquired ARGs require being
overexpressed before conferring resistance, which is often caused by decontextualization of putative ARGs by mobile genetic elements
(MGEs). Consequent overexpression of ARGs can be caused by strong promoters often present in insertion sequence (IS) elements and
integrons and the copy number effect of plasmids, which may contribute to high expression of accessory genes.

Results: Here, we screen all complete bacterial RefSeq genomes for ARGs. The genetic contexts of detected ARGs are investigated
for IS elements, integrons, plasmids, and phylogenetic dispersion. The ARG-MOB scale is proposed, which indicates how mobilized
detected ARGs are in bacterial genomes. It is concluded that antibiotic efflux genes are rarely mobilized and even 80% of β-lactamases
have never, or very rarely, been mobilized in the 15,790 studied genomes. However, some ARGs are indeed mobilized and co-occur
with IS elements, plasmids, and integrons.

Conclusions: In this study, ARGs in all complete bacterial genomes are classified by their association with MGEs, using the proposed
ARG-MOB scale. These results have consequences for the design and interpretation of studies screening for resistance determinants,
as mobilized ARGs pose a more concrete risk to human health. An interactive table of all results is provided for future studies targeting
highly mobilized ARGs.
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Background
Pathogenic bacteria resistant to antibiotics pose an enormous
threat to human health, resulting in up to 10 million annual
deaths in 2050 if we do not address the issue now, as estimated
by the UN Interagency Coordination Group on Antimicrobial Re-
sistance [1]. Health and environmental challenges imposed by an-
tibiotic resistance have sparked enormous research efforts into
characterizing genetic resistance determinants. Combined with
broad availability of second- and third-generation sequencing
technologies, studying the presence and prevalence of antibiotic
resistance genes (ARGs) in the environment has become pop-
ular in recent years. Bacteria can become resistant to antibi-
otics through several genotypic changes, including point muta-
tions that lead to either altered gene expression or change of pro-
tein function, gene amplifications, genome shuffling leading to in-
creased expression of resistance determinants, and lastly through
acquisition of novel genetic material by horizontal gene transfer.
The latter transferral of ARGs is especially problematic as, for ex-
ample, plasmids carrying ARGs with strong adjacent promoters
can be globally spread to important human pathogens. Here, we
focus on the genetic context of these acquired resistance deter-
minants and evaluate to what degree they have been mobilized.

Antibiotic resistance remains a significant global issue despite
numerous studies into understanding the spread of genes via
mobile genetic elements [2, 3] and devising mitigation strategies.

However, many classes of ARGs are intrinsic to bacterial genomes
and can be considered part of the core bacterial genome and
may perform nonresistance functions [4–7]. Furthermore, many
ARGs have only been shown to provide resistance when cloned
into expression vectors [8, 9] or with constitutive expression in
mutants. Some of these cloned ARGs can hypothetically be tran-
siently highly expressed to confer some level of resistance in their
native genetic context or, as mentioned above, have mutations in
a controlling promoter or repressor gene, leading to high expres-
sion. Alternatively, ARGs can become “decontextualized” by mobi-
lization, leading to overexpression and resistance [6, 10–14], which
moreover can lead to the spread of the decontextualized ARGs via
horizontal gene transfer. Examples of genetic events that can lead
to mobilization and dissemination of ARGs include (i) insertion of
a proximal insertion sequence (IS) element with an internal pro-
moter [15] that may lead to the formation of a unit or composite
transposon that can carry an ARG as an accessory gene, (ii) sub-
sequent transfer from chromosomes to (high copy number) plas-
mids [16], (iii) capture by and integration within integrative and
conjugative elements (ICEs) [17], and (iv) incorporation of an ARG
into an integron as a gene cassette [18, 19]. This aspect is often
overlooked in culture-independent studies using (meta)genomics
and/or quantitative polymerase chain reaction (PCR)–based de-
tection where resistance is rarely experimentally verified. The is-
sue is further discussed in a review by Martínez et al. [14]. Thus,
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screening the environment for ARGs may give the impression that
“resistance is everywhere” or that widespread resistance predates
the use of antibiotics [20–22], although the native roles of ARGs’
homologs may not be related to antibiotic resistance [5, 10, 23–
27]. This topic is subject to debate, with some researchers claim-
ing that all ARGs are suitable targets to screen for in, for example,
metagenomes, since they can be potentially decontextualized and
ultimately lead to problematic resistance in pathogens [28] and
others warranting that ARGs should be ranked according to how
much of a concrete risk they pose [23].

When coupling (meta)genomic predictions with culture-based
detection of resistant strains, it is often found that the two ap-
proaches do not agree [8, 29–32], partially attributable to the fact
that gene expression is rarely considered [33]. Screening a genome
for resistance markers against an ARG database sometimes re-
sults in copious false-positive resistance predictions [30]. This is-
sue can be most pronounced for efflux-related markers where the
specificity of prediction has been reported to be 0.12 [34]. The
balanced accuracy of resistance marker prediction against two
widely used databases was only 0.52 and 0.66, showing that find-
ing ARGs does not necessarily equate to phenotypic resistance
[34]. As discussed in a EUCAST report, the resistance genotype–
phenotype concordance has elsewhere been shown to be much
higher, with agreements reaching almost 100% in studies that
apply subsets of focused and manually curated ARG databases
to predict resistance toward selected antibiotics in well-studied
species with clinical relevance [35]. In the same report, it is argued
that high genotype–phenotype concordances mostly apply to
well-characterized (clinical) isolates [35], emphasizing the poten-
tial problems in applying large ARG databases to screen for resis-
tance in environmental samples and in less well-studied species.
Researchers have devised more advanced machine learning pre-
diction methods to predict resistance in well-characterized bac-
teria such as Mycobacterium tuberculosis with a specificity and sen-
sitivity ranging from 82% to 92.7% [36], in nontyphoidal Salmonella
with an accuracy of 95% [37], and in Escherichia coli with an average
accuracy of 91% [38]. These examples highlight that accurate re-
sistance predictions can be made on well-characterized bacteria
using curated subsets of well-understood ARGs, but also that pre-
dictions on less characterized taxa and in environmental metage-
nomics using large and unspecific ARG databases are subject to
be erroneous.

Although low specificity of resistance prediction from efflux-
based ARGs has been reported [34], it should be noted that many
groups of efflux pumps are inherently encoded, unmobilized, on
chromosomes of important human pathogens where they can
confer intrinsic resistance, potentially along with other nonre-
sistance functions [7, 39]. They may be transiently strongly ex-
pressed to confer resistance or overexpressed through mutations
in transcriptional regulators [39, 40]. The pathogen Acinetobacter
baumannii serves as a great example of bacteria that host a wide
range of efflux pumps, of which some confer intrinsic resistance
and others require overexpression. Many of the native A. bau-
mannii pumps are involved in nonresistance functions such as
membrane composition and stability, opaque/translucent colony
phase variation, various stress reliefs, biofilm formation, plasmid
transfer rates, natural transformation, quorum sensing, and ef-
flux of dyes, disinfectants, metals, and other nonantibiotic com-
pounds [39]. Expression of efflux pumps is usually under the regu-
lation of either local and/or global transcriptional regulators, and
mutations in these regulators are an important path to pheno-
typic resistance through overexpression in clinical isolates [41].
Besides transient changes in expression or mutations in transcrip-

tional regulator genes, the mobilization of ARGs is an essential
aspect of phenotypic resistance.

Most ARGs likely have native roles unrelated to resistance to
clinical concentrations of antibiotics [23]. Many antibiotics are
natural secondary metabolites, occurring at clinically insignifi-
cant concentrations, that are involved in intercellular commu-
nication [42], regulation of metabolism, and other nonresistance
functions [29]. ARGs have been found in and cloned from suscep-
tible bacteria [8], where they are simply performing their original
nonresistance roles. Previous studies have shown that, for exam-
ple, efflux pumps [10, 24], β-lactamases [25, 26], and lipid A modi-
fying proteins (MCR) [27] have nonresistance functions, although
the genes encoding these may be decontextualized to confer re-
sistance.

Functional (meta)genomic approaches, essentially cloning
fragmented DNA into expression vectors followed by screening
for antibiotic resistance [4, 9, 21, 22, 43, 44], has led to the iden-
tification of many putative ARGs [44–50]. Such genes are decon-
textualized in the experimental setup, and their native roles may
not be related to resistance. This has resulted in a problematic
dissemination of self-reinforcing resistance-related annotations
in gene databases. Thus, sequence homology is a poor proxy for
resistance, and culture-independent techniques will often yield
misleading results if genetic contexts of ARGs are not consid-
ered. With recent advances in long-read sequencing, high-quality
metagenome-assembled genomes can be derived [51], facilitating
consideration of the genetic context of ARGs.

The associations between ARGs and mobile genetic elements
(MGEs) are important [16, 52, 53] and have profound effects on
phenotypic resistance [11, 18, 54–56]. It has been argued, for ex-
ample, in the “RESCon” framework [57] that multiple aspects, in-
cluding genetic context, should be included in risk assessment of
ARGs [58, 59]. Here, we initiate the route to more accurate ARG
predictions by categorizing associations between ARGs and MGEs
in all completed RefSeq bacterial genomes. We hypothesize that
highly mobilized classes of ARGs represent those that are infa-
mous for causing phenotypic resistance and were furthermore
initially characterized from already resistant clinical isolates. On
the other hand, we also hypothesize that ARGs with a low degree
of mobilization are represented by ARG classes that were initially
identified through shotgun cloning from nonresistant isolates and
subsequently only shown to confer resistance through overex-
pression from a plasmid vector. This does not rule out future mo-
bilization events and subsequent elevation of the risk posed by a
yet unmobilized ARG.

Decontextualization of ARGs is explored by examining their as-
sociation with (i) plasmids, (ii) IS elements, (iii) integrons, and (iv)
their dispersal across distinct genera. We collect this information
per class of ARG in the unifying ARG-MOB scale for mobilization of
resistance genes in all complete RefSeq bacterial genomes. Among
other results, we conclude that most classes of antibiotic efflux
genes are rarely mobilized from their original, chromosomal lo-
cation and that even 80% of classes of β-lactamases have never
or very rarely been mobilized. This necessitates both increased
awareness of the genetic context of ARGs but also more criti-
cal choosing of ARG targets for future, especially environmental,
studies.

Data Description
The CARD database was used to find ARGs in all completed bac-
terial genomes from the RefSeq database (n = 15,790). Then,
12,170 bp up- and downstream of predicted ARGs were analyzed
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for IS elements and integrons, while replicon type (plasmid or
chromosome) was also considered. For more details, see Meth-
ods and Supplementary Information (Supplementary Text 1, Sup-
plementary Figs. S1–S4; Supplementary Table S1). All databases
are assumed to be biased, especially toward human-associated
bacteria, of which many almost identical genomes have been up-
loaded to RefSeq, leading to overrepresentation of these compared
to, for example, environmental bacteria (Supplementary Text 2,
Supplementary Figs. S5 and S6). In order to ameliorate these bi-
ases, highly similar genetic loci with predicted ARGs (n = 176,888)
were clustered to 53,895 clustered resistance loci (CRLs), repre-
senting 1,176 Antibiotic Resistance Ontology (ARO) terms from
CARD (Fig. 1). We compared the frequency of genera found in both
CARD and RefSeq and calculated the Euclidean distance of these
frequencies before and after clustering to CRLs. The Euclidean
distance of genera frequencies was reduced from 30.89 to 10.26,
showing that many ARG loci in RefSeq are highly similar (Supple-
mentary Text 3, Supplementary Fig. S7). Four mobilization param-
eter ratios were explored for each CRL (Fig. 2): (i) replicon type, (ii)
IS element association, (iii) integron association, and (iv) disper-
sal of CRLs across genera (Simpson diversity). All parameters were
calculated on a scale of 0–1, with 1 indicating that a CRL is always
associated with the given parameter. The mean of the four ratios
is termed the ARG-MOB score and indicates how much genes of a
given ARO are mobilized. This is described further in later sections
and Methods (Supplementary Fig. S8). Prophages in genomes are
not explored for ARGs, since these are not common vectors [60].
Neither are ICEs explored, although they are important in resis-
tance development [17], since they are underexplored and likely
difficult to predict across the wide phylogenetic array of genomes
studied here. Likewise, bacteriophages represent an astounding
reservoir of genetic diversity [61], and successful prediction of in-
tegrated prophages is likely extremely limited to those occurring
in well-studied bacterial families. Including ICEs and prophages
here would introduce severe biases in the analyses and they are
thus excluded.

Analyses
The 16S ribosomal RNA gene as a nonmobilized
control
The average length of 449 composite and unit transposons in The
Transposon Registry [62] was calculated to 12.17 kbp (Supplemen-
tary Fig. S4). This distance was used to screen for the presence
of IS elements and integrons in both directions from identified
ARGs. The 16S ribosomal RNA (rRNA) gene was used as a non-
mobilized control, as this gene is not expected to be associated
with MGEs (Supplementary Text 4). Only 5.59% of 16S rRNA genes
in the 15,790 complete genomes are within 12.17 kbp of an IS ele-
ment (Supplementary Fig. S9). Since 16S rRNA genes should be ex-
tremely rarely associated with, for example, transposons, we con-
sider the 5.59% as a proxy confidence interval for false-positive
ARG–IS associations.

Efflux-associated ARG loci are less unique than
other mechanisms
Loci with efflux-associated ARGs were more compressed by clus-
tering to CRLs than all other types (Mann–Whitney U-test [MWU]
Padj < 0.0001; Supplementary Fig. S7), indicating that these are
more conserved and contain less variation from mobilization
events, for example. The antibiotic efflux (efflux) mechanism is the
most abundant category and its CRL count is more than two times

more numerous than the second largest category, antibiotic inac-
tivation (inactivation), although inactivation has over three times as
many AROs as efflux (Fig. 1). As expected, loci in human-associated
genera were especially compressed by clustering, showing that
these are indeed overrepresented in the RefSeq database (Supple-
mentary Fig. S7).

Association of ARGs with IS elements and
plasmids
Major resistance mechanisms (nonhybrid) are associated with IS
elements and plasmids to varying degrees (Fig. 3) and were as-
sociated with different families of IS elements (Supplementary
Text 5, Supplementary Fig. S10). Efflux AROs generally have very
low IS and replicon ratios, which indicates that efflux ARGs are
rarely mobilized by either IS elements or plasmids. Only few ef-
flux AROs have both high IS and high replicon ratios, includ-
ing ARO3002693 (transposon-encoded cmlA1 chloramphenicol ex-
porter), ARO3003836 (qacH subunit of fluoroquinolone exporter),
and ARO3000165 (tetracycline efflux pump tetA). Many efflux AROs
contain a large number of unique CRLs, as is also reflected by
efflux CRL count in Fig. 1. Therefore, efflux ARGs are rarely asso-
ciated with either IS elements or plasmids. Distances, in terms
of nucleotides, between ARGs and IS elements are larger for ef-
flux AROs than for other mechanisms, indicating that efflux ARGs
are more “loosely” associated with IS elements than other mecha-
nisms (MWU test Padj < 0.014; Supplementary Text 6, Supplemen-
tary Fig. S11). Contrary to efflux, the inactivation mechanism has
many AROs that have been mobilized by both IS elements and
plasmids but also AROs that are hardly mobilized at all (Fig. 3).
With some exceptions, antibiotic target alteration (target alteration)
AROs have low IS and replicon ratios while also exhibiting a low
number of unique CRLs, indicating that target alteration CRLs are
conserved and often not decontextualized. On the other hand, an-
tibiotic target replacement (target replacement) AROs are more mobi-
lized by IS elements and plasmids (Fig. 3).

ARGs are more decontextualized in clinically relevant gen-
era (Fig. 4, Supplementary Figs. S12 and S13). As expected from
database biases (Supplementary Figs. S5–S7), Proteobacteria har-
bor 88.18% of unclustered ARG loci (Supplementary Fig. S2). Al-
though likely to be an artifact of selective sampling, Proteobacte-
ria have been proposed to be the confirmed origin taxa of many ac-
quired ARGs, although only an estimated 4% of ARGs have known
bacterial origins [2]. Proteobacteria have a higher median IS ra-
tio than Actinobacteria and Bacteriodetes (MWU test; Padj < 0.01).
Within Proteobacteria, Enterobacteriaceae have a higher median IS
ratio than Campylobacteriaceae, and Burkholderiaceae but lower than
Aeromonadaceae, Pasterurellaceae, and Morganellaceae (Fig. 4). How-
ever, CRLs in Enterobacteriaceae are more often found on plasmids
than for Campylobacteraceae, Moraxellaceae, Morganellaceae, Neisseri-
aceae, Pasteurellaceae, Pseudomonadaceae, and Burkholderiaceae (Sup-
plementary Fig. S12; MWU test; Padj < 0.01), showing that many
ARGs in Enterobacteriaceae are highly mobilized by both IS elements
and plasmids. Within Enterobacteriaceae, many ARG loci have been
mobilized both by IS elements and plasmids, especially within the
genera Shigella, Escherichia, Salmonella, Klebsiella, Enterobacter, and,
to a lesser degree, Citrobacter (Fig. 4). Other genera in Enterobac-
teriaceae show lower median mobilization degrees (significance
values in Supplementary Table S3). Enterobacteriaceae genera with
highly mobilized ARGs all have members of significant impor-
tance to human health and persistent fixation of mobilized ARGs
is likely a consequence of human interference with pathogenic
bacteria [54].
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Fig. 1: Overview of counts of ARG loci, clustered resistance loci (CRLs), and CARD Antibiotic Resistance Ontology (ARO) terms. In the plot, points are
sized according to their CRL count (see table). Row colors in table correspond to their point colors in the left plot. The three hybrid mechanisms
AE/RPA, ATA/ATR, and ATA/AE, as well as the low ARO count RPA mechanism, are excluded from most analyses, as they are here not considered “main
mechanisms.”

There are significant differences between the median IS ratios
of phyla with, for example, Actinobacteria and Bacteriodetes hav-
ing lower median IS ratios than Proteobacteria (MWU test; Padj <

0.01). Within Firmicutes, whose IS ratio is not different from that
of Proteobacteria, some families are associated with human ac-
tivities such as Enterococcaceae and Staphylococcaceae. These harbor
highly mobilized ARGs, while environmentally associated Firmi-
cutes, such as Bacillaceae, have many ARGs barely mobilized by ei-
ther IS elements or plasmids (Supplementary Fig. S13). This exem-
plifies how homologs of ARGs can be found in both environmental
and clinically relevant genera, but that they have been decontex-
tualized more in the latter. It should be noted that the Bacillaceae
family has many members associated with humans, including the
human gut. However, the “isolation source” and “host” modifiers
for the downloaded RefSeq genome entries are severely lacking,
making it impossible to meaningfully discern environmental from
human-associated strains. As an example, only 16.5% of genome
entries have “host” information with just 2.5% of that being Homo
sapiens and only 30.9% have “isolation source” information, with
the largest source being “soil” at 13.2%. This supports our assump-
tion that a majority of Bacillaceae genomes are from environmental
strains.

Generally, diving into specific families and genera shows that
ARGs in human-associated bacteria are more mobilized than in
others (Supplementary Table S3) and fixation of mobilized ARGs
is likely a consequence of human interference with pathogenic
bacteria [54]. This selection stemming mainly from antibiotic us-

age is obviously hugely important in the fixation of ARGs in the
context of MGEs.

Integron-association varies across ARG classes
Under selective pressure for resistance, ARGs may be decontex-
tualized into integrons, where a strong promoter confers overex-
pression of said ARGs, which may result in phenotypic resistance
[19]. Using IntegronFinder [63] on CRL sequences, 3,723 ARGs were
identified as gene cassettes in integrons or clusters of attC sites
lacking integron–integrases (CALINs). The most abundant major
mechanism was antibiotic inactivation with 2,684 unique CRL oc-
currences. Mechanisms antibiotic target replacement and antibiotic
efflux were found in association with integrons in 694 and 310
CRLs, respectively (Supplementary Fig. S14). At first glance, the
sulfonamide resistance genes associated with Tn402 class 1 in-
tegrons [19], sul1–4, were not the most frequent submechanism
associated with integrons and here found associated with inte-
grons in only 123 unique CRLs out of 2,017 total sul1–4 CRLs. How-
ever, the sul1 gene associated with class 1 integrons is found as
a conserved segment in the 3′ part of the integron and does not
have its own attC site and is therefore often missed by Integron-
Finder. In fact, complete integrons and/or CALINs were found in
proximity of sul1 genes (ARO: 3000410) in 1,393 out of 1,527 un-
clustered regions, supporting the well-described association be-
tween class 1 integrons and sul1 [19]. Trimethoprim resistance
dfr genes associated with class 2 integrons and Tn7 transposon
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Fig. 2: The four investigated mobilization parameters. (I) classification of the replicon type that an ARG loci was found on, (II) presence of one or more
IS elements within 12,170 bp either up- or downstream of ARG, (III) association of found ARG with integrons, and (IV) the phylogenetic spread across
genera, calculated by the Simpson diversity index. ARGs residing on plasmids can be rapidly spread horizontally and, in the case of multicopy
plasmids, may be under heterologous expression. Many IS elements have an internal promoter that can overexpress accessory genes or may contain
an outward-facing -35 component that can form a hybrid promoter, if the IS element is inserted close to a -10 box. If inserted as a gene cassette in an
integron, the ARG is likely to be overexpressed by the common integron promoter. Furthermore, a gene cassette containing an ARG may form circular
DNA molecules from the integron cassette array that can be shuffled to other locations. The final factor considered in this study with regards to
mobilization of ARGs is the already observed phylogenetic dispersal of said ARGs across the genera represented in the RefSeq complete genomes
database.

[19] were here found in high abundance in association with inte-
grons. The most abundant submechanism was the “inactivation”
ant(3′ ′) category, whose genes encode aminoglycoside nucleotidy-
lylating enzymes, with 1,009 CRLs associated with integrons. The
ant genes are often found in association with integrons [64]. Here,
the 5 ant AROs, aadA, aadA2, aadA5, ant(3”)-IIa, and ant(2”)-Ia, all
display integron associations in at least 54.24% of their total CRL
occurrences (Supplementary Table S4). Similarly, the aminoglyco-
side acetyltransferase-encoding aac(6′) AROs (aac(6′)-Ib-cr, aac(6′ ′)-
Ib10, aac(6′ ′)-Ib7, and aac(6′)-Ib9) are here mostly found in inte-
grons, agreeing with previous description of this class of ARGs [64].
Genes encoding OXA-9 and OXA-1 β-lactamases are found in in-
tegrons in 98.51% and 63.90% of the 67 and 277 CRLs, respectively,
emphasizing that these ARGs are of concern (Supplementary Ta-
ble S4).

From these results, it is evident that some target ARGs are
highly associated with integrons and are thus more relevant to
screen for in an environment with, for example, PCR or sequenc-
ing, if the aim is to predict phenotypic resistance. This again em-

phasizes the importance of considering the genetic contexts of
ARGs.

Mobilization assessment based on four
parameters
Inspired by previous work [23], we calculated a mobilization scale
for each ARO, termed the ARG-MOB scale, which is calculated as
the mean of the four mobilization parameters (MOB) and ranges
from 0 to 1 with 1 representing very high mobilization, signified
by very high IS and plasmid ratios, frequent association with inte-
grons, and a wide phylogenetic dispersal across genera. Figure 5A
shows the MOB parameters and ARG-MOB scale for each ARO.
For each MOB parameter, boxplots with MWU test results are also
shown (Fig. 5B).

The median ARG-MOB per major mechanism is highest for an-
tibiotic target replacement (Padj < 0.0001), while antibiotic efflux has
a low median ARG-MOB but not significantly different from an-
tibiotic target alteration and antibiotic inactivation groups. Antibiotic
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Fig. 3: Density plots of IS ratio against the number of unique clustered CRLs in a given ARO category, represented by individual points. Plots are divided
into the individual mechanisms and are colored according to the replicon ratio, where a high ratio (red) indicates that an ARO is more often found on
plasmids and a low ratio (blue) indicates that an ARO is more on chromosomes. Density estimates are calculated with 2-dimensional kernel density
estimation, as implemented in the stat_density_2d function under the ggplot R package. The hybrid mechanisms are not included.

target protection, antibiotic inactivation, and antibiotic target alteration
groups are not significantly different (Fig. 5A).

Efflux genes are rarely mobilized
The efflux mechanism has the lowest median ARG-MOB (although
only significantly lower than target replacement and target protec-
tion), which is reflected by median replicon, IS, and integron ra-
tios that are lower than most other groups (Fig. 5B), that is, efflux
genes are rarely mobilized by these MGEs. It is therefore likely that
most identified efflux ARGs are part of core bacterial genomes lo-
cated in conserved loci of chromosomes, with a few highly mobi-
lized exceptions (Fig. 5A). This supports previous conclusions on
efflux pump genes [7, 10, 39, 40]. While transient changes in ex-
pression or overexpression through mutations in transcriptional
regulators may confer phenotypic resistance through extrusion of
antibiotics, we advocate that genetic context needs to be consid-
ered when screening environments for efflux-associated ARGs. In
clinical settings, the transient or constitutive expression of efflux
pumps still warrants emphasis on screening for efflux-associated
resistance markers.

The highest median ARG-MOB mechanism, antibiotic target re-
placement, is characterized by AROs with a high degree of mobi-
lization by IS elements and plasmids (Fig. 5). The high ARG-MOB
target replacement AROs are furthermore strongly associated with
integrons and are taxonomically more widespread than target al-
teration, inactivation, and efflux groups (Fig. 5B). Likewise, some tar-
get protection AROs are highly mobilized and widespread but they
are to a lesser degree associated with integrons. Generally, target
replacement is significantly more associated with integrons than

other categories, although the median of inactivation is higher than
target alteration and efflux.

AROs of inactivation mechanisms are the least phylogenetically
dispersed but are instead conserved within few genera, as indi-
cated by the lowest median Simpson index. Possibly, many genes
and/or proteins under the inactivation mechanism only function
in specific genera, whereas those of other mechanisms can func-
tion in wider ranges of genera. While there are inactivation AROs
that have been mobilized by plasmids, transposons, and inte-
grons, there are many others that have not been decontextual-
ized (Fig. 5A). All major mechanisms have exceptions in the form
of AROs with elevated ARG-MOB, as evaluated on all four parame-
ters, although target alteration, target protection, and efflux have few
or no AROs with ARG-MOB higher than 0.75.

The ARG-MOB scale proficiently describes
decontextualization of ARGs
The four MOB parameters all correlate significantly with each
other, showing that they covary and are appropriate for calculat-
ing the ARG-MOB scale (Fig. 6A,B). Hierarchical clustering of AROs
from all five major mechanisms in a heatmap shows apparent
mechanism-specific profiles of ARG-MOB scores, as well as each of
the four MOB parameters (Fig. 6C). Two major branches are formed
from clustering: (I) a high-ARG-MOB branch dominated by inacti-
vation, as well as other individual AROs from other mechanisms,
and (II) a low-ARG-MOB branch mostly populated by efflux AROs.

The highest correlation coefficient is seen for IS/replicon ra-
tios, showing that ARGs placed on plasmids are likely mobilized
by IS elements prior to insertion on plasmids (Fig. 6A,B). The sec-
ond highest correlation is found between IS and integron ratios,
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Fig. 4: Taxonomic distribution of ARO categories. Boxplots and dots show IS ratio per taxonomic group. The size of the points indicates the number of
unique CRLs in a given ARO, while the color is the replicon ratio, with highest (red) indicating more plasmid than chromosome placement of CRLs.
Focus is placed on the Proteobacteria for plotting of families and genera. Boxes indicate first and third quartiles (25% and 75% of data) and horizontal
lines in boxes show the median. Whiskers extend to 1.5∗ of the interquartile ranges.

indicating that ARGs, found as gene cassettes in integrons, are
likely to have been mobilized (as part of integrons) by IS elements
(Fig. 6A,B), which has been often reported and discussed [18, 19,
55]. To a lesser degree, ARGs found on plasmids are correlated with
integrons.

Not surprisingly, the Simpson diversity index correlates pos-
itively with IS, replicon, and integron ratios (Fig. 6A), showing
that highly mobilized ARGs are also likely to be phylogenetically
widespread. On the basis of these correlations, we conclude that
the ARG-MOB ratio proficiently describes decontextualization of
ARGs. Pearson correlation coefficients and MGE co-occurrences
were also calculated per mechanism (Supplementary Text 7, Sup-
plementary Figs. S15–S20).

Some AROs are highly divergent in mobilization
Many AROs can be defined as either highly mobilized or only to
a very small degree. Still, some AROs have a large spread from
their mean ARG-MOB score, showing that they are most often sit-
ting unmobilized on a chromosome, but have one or more times
been mobilized and widely dispersed (Supplementary Figs. S21
and S22). This is exemplified by the efflux pump genes oqxAB
(ARO3003922-3) [65, 66] (Supplementary Text 8). These genes are
found on essentially all Klebsiella pneumoniae chromosomes, where

they do not confer resistance unless overexpressed [67–69], as
seen when placed close to IS elements on plasmid pOLA52 [65].
The oqx AROs show high spread across their mean IS and replicon
ratios (oqxA has IS and replicon ratios of 0.35 and 0.16, respec-
tively), showing that their mean ratios are low due to Klebsiella
chromosomes but that there are many outliers due to variants
in Escherichia and Salmonella that are only found mobilized by IS
elements and usually on plasmids (Supplementary Fig. S21, Sup-
plementary Table S5).

Outliers from the mean of IS and replicon ratios can also be
considered per genus instead of ARO, in order to highlight that
ARGs in some genera are much more mobilized than in oth-
ers. For example, efflux pump genes in Shigella are more associ-
ated with IS elements compared to the global average, but they
are not found on plasmids more than on average (Supplemen-
tary Fig. S22). Likewise, many antibiotic inactivation ARGs are found
more on plasmids in Escherichia, Salmonella, Klebsiella, Citrobacter,
and Enterobacter than their respective average placements per
ARO. Other genera including Proteus, Pseudomonas, Acinetobacter,
and Morganella tend to have some inactivation ARGs more located
on chromosomes than the given ARO average, indicating that
chromosomes in these genera may be considered reservoirs of
potential genes with potential as resistance determinants. This
highlights the complexity of the ARG issue and emphasizes the
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A B

Fig. 5: ARG-MOB scores of major resistance mechanisms defined from the 4 MOB parameters. (A) ARG-MOB score of AROs by major mechanism. Each
point indicates a specific ARO and the size of the point corresponds to the number of unique CRLs in that ARO. Each of the four plots shows one of the
individual MOB parameters as colored gradients of the points. Points are horizontally jittered but placed identically between the four plots in the left
column. Mean is shown with dashed lines. Boxes indicate first and third quartiles (25% and 75% of data) and horizontal lines in boxes show the
median. Whiskers extend to 1.5∗ of the interquartile ranges. Letters above boxplots indicate significant differences between mechanism populations
(Mann–Whitney U-test with Holm–Bonferroni correction; P < 0.05). (B) Boxplots of each mobilization factor per major mechanism. Outliers are shown
as gray dots. Above boxplots, bars indicate significant differences in distribution between mechanisms (Mann–Whitney U-test with Holm–Bonferroni
correction). Only significant differences are displayed (∗P < 0.05;∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P ≤ 0.0001).

importance of considering the genetic context before predicting
resistance.

Defining ARG-MOB categories
Smoothed kernel density estimates of AROs and their ARG-MOB
values are shown in Fig. 7A per mechanism and cumulatively for
all mechanisms. The following five ARG-MOB groupings were de-
fined computationally: Very low (ARG-MOB = 0), Low (0 < ARG-MOB
< 0.182), Medium (0.182 < ARG-MOB < 0.378), High (0.378 < ARG-
MOB < 0.681), and Very high (ARG-MOB > 0.681). These definitions
are largely the same when estimating per mechanism individually
(Supplementary Fig. S23). Numerically, inactivation has the highest
number of High and Very high ARG-MOB AROs (144 and 54, respec-

tively), while target replacement has the highest percentage of High
and Very high ARG-MOB AROs with these categories representing
64% of target replacement AROs (Fig. 7B).

High ARG-MOB AROs correspond with high-risk
ARGs
High and Very high ARG-MOB AROs (Fig. 7C) are mainly ARGs
that were initially identified in resistant pathogens where they
indeed confer resistance. Conversely, many low ARG-MOB AROs
have only been shown to confer resistance when placed on high-
expression cloning vectors but not in any natural wild-type iso-
late. A few examples are described below and in Supplementary



Mobilization of antibiotic resistance genes | 9

A

B

C

Fig. 6: Correlation and co-occurrence of MOB parameters. (A) Pearson correlation coefficients between MOB parameters. Scatterplots between pairwise
MOB parameters are shown in the lower left corner. The diagonal shows histograms of distribution of each MOB parameter. The values in the upper
right corner show the Pearson correlation coefficients with significance levels (∗∗∗P < 0.001). (B) Barplot of mobilization of unique CRLs by IS elements,
plasmids, and integrons. (C) Heatmap of highly abundant AROs with at least 20 CRLs. The dendrogram shows clustering of the AROs, based on the four
MOB parameters, and was calculated using standard parameters in the “ComplexHeatmap” package (complete hierarchical clustering on Euclidean
distances).

Text 9. A table for all 1,176 AROs can be found as an interactive
table in Additional File 1.

For all major mechanisms, many AROs are classified as Very low
or Low ARG-MOB (Fig. 7C) and antibiotic target alteration does not
have any Very high ARG-MOB AROs, while target protection has two
(ARO3002803 and ARO3002801; quinolone resistance genes qn-
rVC6 and qnrVC4). Inactivation has many AROs with High and Very
high ARG-MOB, which include infamous β-lactamases, amino-
glycoside nucleotidyltransferases (ANTs), and others (Fig. 7C).
Aminoglycoside resistance by antibiotic inactivation is highly repre-
sented by ARGs scoring High and Very high on the ARG-MOB scale,

showing that aminoglycoside resistance is in many cases highly
mobilized (Supplementary Fig. S24). Likewise, ARGs encoding re-
sistance to up to five groups of β-lactam antibiotics (carbapenem,
cephalosporin, cephamycin, penam, and penem) are highly mo-
bilized, highlighting the critical state of resistance toward these
antibiotics (Supplementary Fig. S24). With a median ARG-MOB of
0.73, the gene encoding the Verone integron-encoded metallo-β-
lactamase (VIM) is the β-lactamase gene with the highest me-
dian ARG-MOB. There are three VIM β-lactamase AROs, of which
ARO3002271 has the highest ARG-MOB of any inactivation ARO at
0.91. In RefSeq complete genomes, the gene is only found inserted
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Fig. 7: Density of ARG-MOB categories and distribution per major resistance mechanism. (A) Count density of ARG-MOB per mechanism. Only major
nonhybrid mechanisms are shown. (B) Count of each ARG-MOB category per mechanism. (C) All submechanisms that have AROs with High or Very
high ARG-MOB scores. Points are colored by major resistance mechanism as in panel (A) and sized according to the number of CRLs of the given ARO.
The background is colored similarly to panel (A), representing Low, Medium, High, and Very high categories. The Very low category is for ARG-MOB = 0
and does thus not have a background color in the graph.

in integrons and is located close to IS elements and on plasmids
in 95% of the CRLs found (n = 21). It is dispersed across 6 unique
genera for a Simpson index of 0.75 (Pseudomonas, Salmonella, Es-
cherichia, Klebsiella, Citrobacter, and Enterobacter). The VIM-1 gene
was found in a multiresistant E. coli from a patient. It was inserted
in a class 1 integron and found on a conjugative plasmid [70]. It
has since been seen in multiple Enterobacteriaceae, typically in as-
sociation with MGEs, and is globally spread [71].

The highest ARG-MOB target replacement AROs belong to the
trimethoprim-resistant dihydrofolate reductase dfr submecha-
nism. The ARO3003013 within this submechanism has the high-
est ARG-MOB of any ARO at 0.95. A class 1 integron with dfrA15 is
widespread in Vibrio cholera isolates in Africa and was found on a
conjugative plasmid [72]. It is the ARO with the highest ARG-MOB,
since it was only found to be associated with IS elements, inte-
grons, and plasmids (all ratios = 1). It has a Simpson index of 0.82
and the 7 CRLs are dispersed across 6 genera (Vibrio, Salmonella, En-
terobacter, Leclercia, Klebsiella, and Escherichia). Generally, ARGs con-
ferring diaminopyrimidine (including trimethoprim) resistance by
antibiotic target replacement mechanism are highly mobilized and
numerous in the complete genomes studied here (Supplementary
Fig. S24).

Discussion
The ARG–MGE association aspect has received much attention re-
cently [2, 3, 18]. For instance, it was shown that mobilized ARGs

often have confirmed origins in Proteobacteria, especially from
human- and animal-associated species, although the confirmed
origins have only been found for an estimated 4% of ARGs [2].
This is likely due to selective pressure for resistance in these envi-
ronments that make them ARG mobilization hotspots [2]. This is
supported in our work where 88.18% of ARG loci are found in Pro-
teobacteria but is also elaborated by our finding that Proteobac-
teria not only is the origin of many ARGs but also harbors the
bulk of mobilized ARGs, especially within the Enterobacteriaceae. Of
course, database biases (Supplementary Text 2) strongly influence
the findings presented here and elsewhere [2].

The publications described above were part of our inspiration
for the work in this study, which expands on the subject of ARG–
MGE associations. We have applied a similar context-focused ap-
proach as these [2, 3], although we here, with empirical evidence,
investigate a distance of 12.17 kbp from ARGs rather than the dis-
tances of 10 kbp or 10 open reading frames in the other studies.
Furthermore, the threshold for including ARG matches is more
stringent in our study at 80% similarity and 80% query coverage,
compared to the other studies with 90%/50% [3] and 70%/80% [2],
respectively. The two referenced papers are from the same re-
search group and are published less than 6 months apart, high-
lighting that there is no consensus strategy for finding ARG ho-
mologs, although a standardized approach is sorely needed. The
same research group published in 2019 the tool fARGene [73],
which applies curated hidden Markov models to make ARG pre-
dictions. While the sensitivity is surely higher with such model-



Mobilization of antibiotic resistance genes | 11

based approaches, they are severely limited by the number of
available models, which, at the time of writing, are not sufficient
for large-scale studies such as that presented here.

It is well established that mobile ARGs pose a more concrete
threat [23], although it has been argued that all ARGs, irrespec-
tive of whether they have ever been mobilized or found in a clin-
ical isolate, should be considered a potential threat [28]. With
the astounding sizes of current ARG databases in the thousands
of genes, surely there must be ARGs that pose a bigger threat
than others? The ARG-MOB score presented here is our approach
for identifying target ARGs that have been mobilized in bacterial
genomes.

Our results clearly demonstrate the importance of including
the genetic context in ARG predictions, since even the highest
ARG-MOB scoring genes have representatives that are not decon-
textualized and may not confer resistance. This study documents
how genes from even the most mobilized categories of ARGs can
be found unmobilized on chromosomes. Therefore, the validity of
using PCR-based screening to assess the abundance and distri-
bution of putative ARGs is questionable at best, unless context
is likewise included in PCR design, as seen before [74] and sug-
gested elsewhere [3]. Including this aspect in future studies may
help to alleviate the occasional discrepancies between genotypic
and phenotypic resistance predictions [8, 29–32], with especially
efflux-related markers producing a high number of false-positive
predictions [34]. Even the presence of β-lactamase genes cannot
solely be used as predictors of resistance, as they are involved in
regular cell upkeep [25] and are in this study found to not have
been mobilized in 80% of their genomic occurrences (see Addi-
tional File 1). It should be noted that other studies did find high
congruence between genotypic and phenotypic resistance [35–38],
using well-known human pathogens and subsets of curated ARG
databases. This highlights that using very large ARG databases to
screen nonclinical environments for resistance markers is likely
to result in false-positive resistance predictions.

Based on examples of high and low ARG-MOB AROs (Supple-
mentary Text 9), a pattern emerges that high ARG-MOB AROs,
such as the bla(VIM) [70], dfrA15 [72], aac(6′) [75], and arr-2 [76],
were originally identified in already virulent, pathogenic bacte-
ria that had indeed been verified to be resistant. On the other
hand, low ARG-MOB AROs were generally identified in susceptible
bacteria and/or only shown to cause resistance when cloned into
vectors with strong gene expression, such as murA [45], norB [46],
and bla(CME-1) [48] (Supplementary Text 9). This warrants cau-
tion when choosing ARGs of interest in either targeted quantita-
tive PCR screening or metagenomic sequencing of environmental
samples. We advocate that knowledge of ARG mobilization paired
with other factors, such as trends in antibiotic usage [77], will al-
low us to better understand ARGs of concern and to predict future
problematic resistance determinants. A worrying aspect in our
results is the extent to which several classes of genes encoding
broad-spectrum β-lactamases are found to be highly mobilized
(Fig. 7), coupled with the fact that penicillins and other β-lactams
have seen a great increase in global usage in recent years [77].

Potential Implications
Based on the results presented here and as discussed elsewhere
[11, 23, 57], it is clearly necessary to consider the genetic context
of genes when predicting ARGs from (meta)genomes. This could
be achieved by applying PCR primers that target regions spanning
both an ARG and an associated MGE [74]. For more accurate ARG

calling, metagenomic sequencing using long-read platforms is a
prerequisite to enable the detection of ARGs and their genetic con-
texts. For more targeted investigations where a “meta” approach
is either not feasible or within scope, we provide a comprehen-
sive and interactive table of the results presented in this study
(see Additional File 1). This table can be used as a tool to select
more relevant possible resistant determinants in future studies.
We are strong proponents of more focused and accurate predic-
tions of true ARGs, especially when dealing with environmental
samples, as it is vital that the serious resistance issue is managed
and discussed with diligence and precision.

Methods
Databases and ARG prediction
All code for data processing was written in BASH scripts, and
statistics and plotting were primarily done in RStudio.

All complete bacterial genomes (15,790 entries with 16,785
chromosomes and 14,280 plasmids) were downloaded from Ref-
Seq on 12 December 2019 using the ncbi-genome-download tool
v0.2.11 [78]. In order to ensure uniform prediction of genes across
all bacterial genomes, Prodigal [79] (v2.6.3; RRID:SCR_011936) was
used to predict genes from nucleotide sequences and write corre-
sponding amino acid sequences from all RefSeq genomes. Since
Prodigal first trains itself based on the input sequence, gene pre-
diction was performed on subsets of each genus present in RefSeq
genomes. Per genus, two rounds of Prodigal were performed with
the -meta flag enabled in the second run, as it predicts some genes
that are missed in single genome mode and vice versa. Results
from the “single” and “meta” gene predictions were consolidated
to omit redundancy.

Several ARG databases and tools for predicting ARGs have
been produced, including CARD [80], ARDB [81], MEGARes [82],
ResFinder [83], SARG [84], ARG-ANNOT [85], DeepARG-DB [86],
ARGminer [87], FARME [88], and others. Some are discontinued
while others receive updates occasionally. The CARD database is
large, actively updated, well curated, and widely used. Further-
more, it makes use of ontology terms (Antibiotic Resistance On-
tology: ARO) that allow for the grouping of resistance genes ac-
cording to resistance mechanisms. Because of these advantages
over other databases and the essential role of ontology terms,
the CARD database was used in this study. The “protein homolog”
models from CARD were used here, since they do not contain re-
sistance determinants that are based on mutations. The main re-
sistance mechanisms defined in the CARD database are “antibiotic
efflux” (efflux), “antibiotic inactivation” (inactivation), “antibiotic target
alteration” (target alteration), “antibiotic target protection” (target protec-
tion), “antibiotic target replacement” (target replacement), and the less
abundant “reduced permeability to antibiotic” (reduced permeability). A
few additional categories exist that are hybrids of two of the above
mechanisms, but there are very few entries of these in CARD and
are for most of the analyses not considered.

The CARD database (v3.0.7) was downloaded, and only
the protein homolog model was used in this study, ex-
cluding resistance determinants related to sequence variants
(e.g., single-nucleotide polymorphisms). DIAMOND [89] blastp
(BLASTP,0020RRID:SCR_001010) was used to identify ARGs in all
RefSeq genomes. For blastp against the CARD database, both
query and subject coverages were set to a minimum of 80%, while
E-value cutoffs were set to 1e-10, to limit the rate of spurious hits.
For each query protein from all RefSeq genomes, only the single
best CARD match was kept.

https://scicrunch.org/resolver/RRID:SCR_011936
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The CARD auxiliary tool, RGI [90], for predicting ARGs in
(meta)genomes, uses curated blastp bitscore cutoffs unique to ev-
ery ARG protein in the CARD database. The same bitscore cut-
offs were applied here, with the exception that hits with bitscores
lower than the RGI cutoff were included if they had an identity
score and a query coverage of at least 80%. These hits were in-
cluded in order to keep more ARG hits from environmental bacte-
ria that are not clinically relevant, since it is assumed that CARD
and other ARG databases are biased toward genes that reside
in anthropogenically relevant strains. Blastp hits with bitscores
above the RGI cutoff were also only kept if query coverage was at
least 80%. The effects of these filters are further described in Sup-
porting Information (Supplementary Text 1, Supplementary Figs.
S1–S3).

Extracting the genetic context of ARGs
The average length of composite and unit transposons was calcu-
lated based on 449 entries in The Transposon Registry [62]. This
average (12.17 kbp) was used as the maximum allowed distance
between an ARG and an IS element for classifying an association
(Supplementary Table S1). However, since ARGs in transposons
can be on either strand relative to the transposase, IS elements
are identified within 12.17 kbp of an ARG in both directions. This
enables searching for transposons of up to 24.34 kbp (plus the
length of the identified ARG), which would include 77.73% of the
449 composite and unit transposons in The Transposon Registry
[62] (Supplementary Fig. S4).

For all filtered blastp ARO hits, up to 12,170 bp both up- and
downstream of the hit were extracted from the respective RefSeq
replicon using the faidx command from Samtools [91, 92] (v1.9–
166-g74718c2; RRID:SCR_002105). If an ARG was found within
12.17 kbp of either terminus of a replicon, only sequence until
the terminus was extracted and not continued from the other
end of the sequence, since entries in RefSeq complete genomes
may not be actually complete, due to low sequencing coverage
regions stemming from, for example, genomic GC-content biases
in sequencing [93]. Loci were categorized according to the ARO of
the identified ARG. There are 9 ARO major mechanism categories,
of which three are less abundant “hybrids” merged by two other
categories. The 6 nonhybrid categories efflux, inactivation, target al-
teration, target replacement, target protection, and reduced permeability
are here considered the main categories and are the ones mainly
investigated in this study. The mechanism reduced permeability is
only represented by three ARO categories and is excluded from
some statistical analyses.

IS elements in ARG loci and 16S rRNA as control
IS elements in ARG loci were predicted using DIAMOND blastp
against the ISfinder database [94], as implemented in Prokka [95]
(v1.14.0; RRID:SCR_014732). The same E-value cutoff for IS an-
notations, as Prokka applies during gene annotation (1e-30), was
used here and the minimum query coverage accepted was 90%.
Only the top IS hit for each query protein was kept, since mul-
tiple “good” hits to distinct IS families may occur per query. The
distance between a given ARG and its closest IS neighbor within
12.17 kbp in either direction (if any) was calculated without con-
sidering the coding strand of the genes. ARGs not within 12.17 kbp
of an IS element were not considered when calculating the mean
ARG–IS element distances.

Since 16S rRNA genes are not expected to be often mobilized
by IS elements, the distance between 16S rRNA genes and IS el-
ements was explored in all complete RefSeq bacterial genomes,

in order to assess how many “false-positive” ARG–IS associations
are expected to be identified using the 12.17-kbp distance cutoff
(Supplementary Text 9). In total, 80,141 16S rRNA genes in 15,790
strains were predicted using barrnap [96]. Of these, 94.61% did not
have identified IS elements within 12,170 bp in either direction,
which can be seen as analogous to a 95% confidence interval for
predicting an association between ARGs and IS elements.

Clustering ARG loci to remove redundancy
Extracted loci with ARGs were grouped based on the CARD ARO
category of the loci ARGs. In order to remove redundancy from
the RefSeq database, stemming from overrepresentation of, for
example, almost identical E. coli chromosomes, extracted loci were
clustered with USEARCH [97] (v11.0.667_i86linux64) (Supplemen-
tary Texts 2–3, Supplementary Figs. S5 and S6). Per ARO group, se-
quence loci were clustered into what we refer to here as CRLs us-
ing the “-cluster_fast” command with the criteria that sequences
in a cluster are at least 99% similar over at least 90% of the length
(both target and query coverage) and only the single best hit was
allowed per sequence. The “-sort length” flag was also enabled to
sort loci by length before clustering, since loci vary in length (sum
of 12.17 kbp up- and downstream plus an ARG of varying length).
This ensures that loci of identical length (with the exact same
ARG) are merged into the same CRLs. For each CRL, the centroid
sequence was used as a representative sequence for downstream
analyses.

Integron prediction
Integrons and cassette arrays were predicted using Integron-
Finder [63] using the centroid CRL sequences as input. Integron-
Finder can predict complete integrons including gene cassettes,
In0 elements where only integrase is present, and CALINs. All
three classes of integrons are included in the analyses and no dis-
tinction is made, since an ARG observed in, for example, a CALIN
has been previously associated with an integron and may still be
in related, but not sequenced, strains.

Statistical analysis
Data tables were imported into R for statistics and visualization
using the packages ggplot2 (ggplot2, RRID:SCR_014601), dplyr
(dplyr, RRID:SCR_016708), tidyr (tidyr, RRID:SCR_017102), gridEx-
tra, ggpubr (ggpubr, RRID:SCR_021139), ggExtra, reshape2,
knitr (knitr, RRID:SCR_018533), kableExtra, vegan (vegan,
RRID:SCR_011950), PerformanceAnalytics, ComplexHeatmap
(ComplexHeatmap, RRID:SCR_017270), RColorBrewer (RColor-
Brewer, RRID:SCR_016697), DT, rstatix (rstatix, RRID:SCR_021240),
tidyverse (tidyverse, RRID:SCR_019186), broom, and plotly (Plotly,
RRID:SCR_013991). Prior to pairwise post hoc tests, all data sets
were tested for whether samples originate from the same dis-
tribution using nonparametric Kruskal–Wallis tests. Significance
was observed for all data sets, allowing for pairwise post hoc
tests. Subsequently, statistical tests on rank sums of groupings
were performed with unpaired MWU with Holm–Bonferroni
correction for multiple testing, since this method does not re-
quire independence. All reported P-values are Holm–Bonferroni
corrected. Pairwise correlation analyses between MOB parame-
ters were calculated with Pearson correlation coefficients and
significance tested with the R function cor.test. A clustered
dendrogram of clustering of the AROs, based on the four MOB
parameters, was calculated using standard parameters in the
“ComplexHeatmap” package (complete hierarchical clustering on
Euclidean distances).
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MOB metrics and the ARG-MOB scale
Four main mobilization (MOB) metrics (Fig. 2), or ratios (0 to 1), of
mobilization were calculated per ARO that aim to quantify just
how mobilized groups of ARGs are. These four ratios are (i) the
replicon ratio, (ii) the IS ratio, (iii) the integron ratio, and (iv) the
phylogenetic spread of an ARO across distinct genera, quantified
by the Simpson diversity index. Pearson correlation coefficients
between MOB metrics were calculated.

For each ARO category, the number of CRLs with and without
identified IS elements was counted and the IS ratio was derived
where an IS ratio of 1 indicates that all CRLs belonging to a given
ARO have an IS element within 12,170 bp either up- or down-
stream of the ARG. Vice versa, an IS ratio of 0 indicates that none
of the CRLs in an ARO have IS elements in proximity. Similarly,
the replicon ratio was calculated per ARO based on the CRLs’ lo-
cation on either plasmids or chromosomes. A replicon ratio of 1
means that all CRLs in a given ARO are of plasmid origin and a
0 means that all CRLs are from chromosomes. The integron ra-
tio indicates how many CRLs are inserted in integrons per ARO.
For measuring the taxonomic distribution of each ARO category,
the Simpson diversity index (range 0 to 1) was calculated per ARO
using unclustered sequences and the genera they were identified
in.

The ARG-MOB scale (0–1) represents the mean of the four MOB
metrics described above (plasmid, IS, and integron association and
Simpson diversity index) and serves as a ranking scheme to eval-
uate the degree to which members of an AROs have been mobi-
lized. Based on the smoothed kernel density estimates of all ARG-
MOB scores, groupings were made to categorize AROs by their
ARG-MOB score. An ARG-MOB score of 0 indicates that ARGs of
the given ARO were not once found to be mobilized in the RefSeq
genomes and a score of 0 is thus categorized as Very low. Valleys in
the density distribution of ARG-MOB scores were used to compu-
tationally pinpoint thresholds between ARG-MOB categories. The
ARG-MOB score in the Low group ranges from 0.0 to 0.182, the
Medium group ranges from 0.182 to 0.378, High ranges from 0.378
to 0.685, and Very high ranges from 0.685 to 1.0. For the Low-Medium
and Medium-High cutoffs, the low point in valleys was used to de-
fine values but no apparent valley is present between High and
Very high. Instead, a linear model was fitted to the right-side slope
of the High peak and another fitted to the approximately linear
data range starting at ARG-MOB score of 0.7. The intersection be-
tween the two linear models (0.685) was used as the cutoff be-
tween the High and Very high groups (Supplementary Fig. S8).

Additional Files
Additional File 1. Dataset1.html. An interactive table summariz-
ing the results presented in the study. This file can be opened in a
web browser.

The file “ARGMOB_Supplementary Material.pdf” contains the
following supplementary materials:
Supplementary Text 1. Additional details about filtering of DIA-
MOND blastp hits against CARD database.
Supplementary Fig. 1. Distribution of DIAMOND blastp hits plot-
ted as % ID against the bitratio. The defined filters are shown.
Supplementary Fig. 2. Major bacterial orders of ARG blastp hits
passing either of the defined filters. This plot shows the taxonomic
distribution of passing hits on the Order level. Only orders that
constitute >0.2% of the total hits are shown here.
Supplementary Fig. 3. Minor bacterial orders of ARG blastp hits
passing either of the defined filters. This plot shows the taxonomic

distribution of passing hits on the Order level. Only orders that
constitute <0.2% of the total hits are shown here.
Supplementary Fig. 4. Violin plot of the lengths of unit- and com-
posite transposons in The Transposon Registry. The mean length
of transposons from this curated database is used to find the
length cutoff for investigating the proximity of ARGs.
Supplementary Table 1. Summary of filters and cutoffs for in-
cluding ARG and IS element blastp hits.
Supplementary Text 2. Investigation of the taxonomic biases and
skews of the RefSeq complete genome database and the CARD
database. These two databases are both biased, but they are not
biased towards the same genera.
Supplementary Fig. 5. Biased composition of the RefSeq complete
genome database investigated at Order level.
Supplementary Fig. 6. Comparison of the relative representation
of genera in the RefSeq complete genome database and the CARD
database. The databases are not skewed towards the same genera.
The biggest differences are from the genera Acinetobacter, Klebsiella,
Escherichia, Salmonella, Streptococcus, and Bordetella.
Supplementary Text 3. By clustering 176,688 genetic loci with
ARGs to 53,895 Clustered Resistance Loci, we reduce the differ-
ential biases between the databases. Furthermore, we reduce the
compositional database biases stemming from the presence of
many almost identical genomes (e.g. E. coli genomes) in RefSeq.
Supplementary Fig. 7. Effect of clustering ARG loci to CRLs. Sev-
eral of the most abundant genera in RefSeq are reduced in their
relative abundance by clustering of almost identical ARG loci. Loci
with antibiotic efflux ARGs are compressed more by clustering
than other resistance mechanisms.
Supplementary Table 2. Overview of blastp hits passing filters,
number of CRLs formed, and total number of AROs represented.
Supplementary Fig. 8. Smoothed kernel density estimates of all
AROs and their ARG-MOB values. In this density plot, the cutoffs
between ARG-MOB groupings (calculated by identification of local
minima in density distribution) are shown. For the cutoff between
High and Very high groups, no local minimum could be found. In-
stead, linear models were fitted in two approximately linear ARG-
MOB ranges. The intersection of the two linear models were cho-
sen as the cutoff.
Supplementary Text 4 and Supplementary Figure 9. 16S rRNA
genes were identified in the studied complete genomes and IS el-
ements were identified within the same proximity as for ARGs.
This serves as a control, in that 16S rRNA is rarely expected to be
associated with IS elements. Within 12.17 kbp on either side of
16S rRNA genes, IS elements were identified in 5.59% of cases. We
consider this an indication of a false-positive rate of approx. 5%
of association of ARGs with IS elements.
Supplementary Text 5. Investigation of which IS element families
co-occur with individual resistance mechanisms.
Supplementary Fig. 10. Boxplots of abundance of IS families in
proximity to ARGs, shown by major resistance mechanism. Signif-
icance values for Mann-Whitney tests are shown above boxplots.
Supplementary Text 6. The distance, in terms of bases, between
IS elements and ARGs are discussed here. Efflux ARGs have sig-
nificantly larger distance to IS elements than other mechanisms.
Supplementary Fig. 11. a: Density plots of IS ratio against distance
to nearest IS element per ARO. b: boxplot of the ARG-IS distance
per resistance mechanism with Mann-Whitney tests.
Supplementary Fig. 12. Replicon ratios of the 10 most abundant
Proteobacteria families. ARO points are colored by their Replicon
ratio and sized by how many unique CRLs belong to them.
Supplementary Fig. 13. IS ratios of Firmicutes families. ARO
points are colored by their Replicon ratio and sized by how many
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unique CRLs belong to them. Many Firmicutes families are associ-
ated with the environment but some are associated with human
activites, such as Enterococcaceae and Staphylococcaceae. This plot il-
lustrates well the differences in ARG mobilization in environmen-
tal and human-associated bacteria.
Supplementary Table 3. Pairwise Mann-Whitney tests for IS and
Replicon ratios in Enterobacteriaceae genera.
Supplementary Fig. 14. a: Overview of major mechanisms associ-
ated with integrons. b: submechanisms associated with integrons.
ANT(3’’) is the most integron-associated submechanism.
Supplementary Table 4. Table of the top 20 AROs associated with
integrons with their % integron association.
Supplementary Text 7 and Supplementary Figures 15-19. Pear-
son correlation coefficient analyses for major mechanisms. For
each of the five major mechanisms, pairwise Pearson corre-
lation coefficients are calculated and shown, similar to main
figure 5a.
Supplementary Fig. 20. Bar charts of co-occurrence of IS ele-
ments, chromosome/plasmid location, and integrons per major
mechanism. This shows that e.g. efflux ARGs are most often lo-
cated on chromosomes and not in association with integrons
or IS elements. On the other hand, inactivation ARGs are of-
ten found on plasmids and in association with IS elements and
integrons.
Supplementary Text 8, Supplementary Figures 21-22, and Sup-
plementary Table 5. Some AROs are highly divergent in mobiliza-
tion. It is here discussed that some AROs have a large spread from
their mean IS and Replicon ratios. As discussed in the main text,
the oqxAB efflux pump genes are good examples of AROs with low
IS and Replicon ratio means, since they are found un-mobilized on
almost all Klebsiella genomes, but have been mobilized in many
Escherichia and Salmonella strains, resulting in large spreads from
the mean IS and Replicon ratios. It is also discussed that Proteus,
Pseudomonas, Morganella, and Acinetobacter may act as reservoirs
of yet unmobilized potential ARGs.
Supplementary Fig. 23. Count density of ARG-MOB per mecha-
nism. Similar to main figure 6a, the count density of ARG-MOB
categories are shown per major resistance mechanism.
Supplementary Figure 24. Antimicrobial compounds to which
there are ARGs with Very high or High ARG-MOB scores.
Supplementary Text 9. Some examples Additional information
and analyses for integron-ARG associations. Some examples of
low and high ARG-MOB AROs are discussed with references. These
examples illustrate that low ARG-MOB scoring AROs have gen-
erally only been shown to confer resistance in broad screenings
where genes have been randomly cloned into strong expression
vectors. On the other hand, high ARG-MOB scoring AROs were
identified in clinical isolates that were experimentally verified to
be resistant.
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Operating system: Linux—Ubuntu
Programming language: bash, R
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Data Availability
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(Additional File 1). All supporting data and materials are available
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Abbreviations
ANT: aminoglycoside nucleotidyltransferases; ARG: antibiotic re-
sistance gene; ARO: antibiotic resistance ontology; bp: base pair;
CALIN: cluster of attC sites lacking integron–integrases; CRL: clus-
tered resistance locus; ICE: integrative conjugative element; IS: in-
sertion sequence; MGE: mobile genetic element; MOB: mobiliza-
tion parameter; MWU: Mann–Whitney U; PCR: polymerase chain
reaction; rRNA: ribosomal RNA; VIM: Verone integron-encoded
metallo-β-lactamase.

Authors’ Contributions
Conceptualization: TKN, LHH; Methodology: TKN, PDB, LHH; In-
vestigation: TKN, PDB; Visualization: TKN; Supervision: LHH;
Writing—original draft: TKN, PDB, LHH; Writing—review & edit-
ing: TKN, PDB, LHH.

Competing Interests
The authors declare that they have no competing interests.

Acknowledgments
We thank the reviewers for providing valuable comments.

References

1. UN Interagency Coordination Group on Antimicrobial Resis-
tance. No Time To Wait: Securing the Future From Drug-Resistant In-
fections. 2019. https://www.who.int/publications/i/item/no-tim
e-to-wait-securing-the-future-from-drug-resistant-infections.
Accessed July 24th 2022.

2. Ebmeyer, S, Kristiansson, E, Larsson, DGJ. A framework for iden-
tifying the recent origins of mobile antibiotic resistance genes.
Communications Biol 2021;4(1). doi: 10.1038/s42003-020-01545-5

3. Mohammad, R, Erik, K, Carl-Fredrik, F et al. The Association be-
tween Insertion Sequences and Antibiotic Resistance Genes. vol. 5.
American Society for Microbiology; 2021.

4. Allen, HK, Donato, J, Wang, HH, et al. Call of the wild: antibi-
otic resistance genes in natural environments. Nat Rev Microbiol
2010;8(4):251–9.

5. Martinez, JL. The role of natural environments in the evolution
of resistance traits in pathogenic bacteria. Proc R Soc B Biol Sci
2009;276(1667):2521–30.

6. Yoon, E-J, Goussard, S, Touchon, M, et al. Origin in Acinetobacter
guillouiae and dissemination of the aminoglycoside-modifying
enzyme Aph(3′)-VI. mBio 2014;5(5):e01972–14.

7. Alvarez-Ortega, C, Olivares, J, Martinez, J. RND multidrug efflux
pumps: what are they good for? Front Microbiol. 2013; 4(7).

8. Clemente, JC, Pehrsson, EC, Blaser, MJ, et al. The microbiome of
uncontacted Amerindians. Sci Adv 2015;1(3): e1500183.

9. Sommer, MOA, Dantas, G, Church, GM. Functional characteri-
zation of the antibiotic resistance reservoir in the human mi-
croflora. Science 2009;325(5944):1128–31.

https://github.com/tueknielsen/ARG-MOB
https://github.com/tueknielsen/ARG-MOB
https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections


Mobilization of antibiotic resistance genes | 15

10. Blanco, P, Hernando-Amado, S, Reales-Calderon, J, et al. Bacterial
multidrug efflux pumps: much more than antibiotic resistance
determinants. Microorganisms. 2016;4(1):14.

11. Dantas, G, Sommer, MOA. Context matters—the complex inter-
play between resistome genotypes and resistance phenotypes.
Curr Opin Microbiol 2012;15(5):577–82.

12. Ito, R, Pacey, MP, Mettus, RT, et al. Origin of the plasmid-mediated
fosfomycin resistance gene fosA3. J Antimicrob Chemother
2018;73(2):373–6.

13. Poirel, L, Figueiredo, S, Cattoir, V, et al. Acinetobacter radiore-
sistens as a silent source of carbapenem resistance for Acine-
tobacter spp. Antimicrob Agents Chemother 2008;52(4):1252–6.

14. Martínez, JL, Coque, TM, Baquero, F. What is a resistance gene?
Ranking risk in resistomes. Nat Rev Microbiol 2015;13(2):116–23.

15. Kamruzzaman, M, Patterson, JD, Shoma, S, et al. Relative
strengths of promoters provided by common mobile genetic el-
ements associated with resistance gene expression in Gram-
negative bacteria. Antimicrob Agents Chemother 2015;59(8):5088–
91.

16. Rodríguez-Beltrán, J, DelaFuente, J, León-Sampedro, R, et al. Be-
yond horizontal gene transfer: the role of plasmids in bacterial
evolution. Nat Rev Microbiol 2021;19(6):347–59.

17. Botelho, J, Schulenburg, H. The role of integrative and conjuga-
tive elements in antibiotic resistance evolution. Trends Microbiol.
2020. 1(3):e1500183.

18. Partridge, SR, Kwong, SM, Firth, N, et al. Mobile genetic ele-
ments associated with antimicrobial resistance. Clin Microbiol
Rev 2018;31(4):e00088–17.

19. Gillings, MR. Integrons: past, present, and future. Microbiol Mol
Biol Rev 2014;78(2):257–77.

20. Waglechner, N, Wright, GD. Antibiotic resistance: it’s bad, but
why isn’t it worse? BMC Biol 2017;15(1):84.

21. Dcosta, VM, King, CE, Kalan, L, et al. Antibiotic resistance is an-
cient. Nature 2011;477(7365):457–61.

22. Allen, HK, Moe, LA, Rodbumrer, J, et al. Functional metagenomics
reveals diverse B-lactamases in a remote Alaskan soil. ISME J
2009;3(2):243–51.

23. Martínez, JL, Coque, TM, Baquero, F. What is a resistance gene?
Ranking risk in resistomes. Nat Rev Microbiol 2015;13(2):116–23.

24. Hernando-Amado, S, Blanco, P, Alcalde-Rico, M, et al. Multidrug
efflux pumps as main players in intrinsic and acquired resis-
tance to antimicrobials. Drug Resist Updat 2016;28:13–27.

25. Henderson, TA, Young, KD, Denome, SA, et al. AmpC and AmpH,
proteins related to the class C β-lactamases, bind penicillin and
contribute to the normal morphology of Escherichia coli. J Bac-
teriol 1997;179(19):6112–21.

26. Mickiewicz, KM, Kawai, Y, Drage, L, et al. Possible role of L-form
switching in recurrent urinary tract infection. Nat Commun 2019.
10(1):4379.

27. Ben, Khedher M, SA, Baron, Riziki, T, et al. Massive analysis of
64,628 bacterial genomes to decipher water reservoir and ori-
gin of mobile colistin resistance genes: is there another role for
these enzymes? Sci Rep 2020. 10(1):5970.

28. Bengtsson-Palme, J, Larsson, DGJ. Antibiotic resistance genes
in the environment: prioritizing risks. Nat Rev Microbiol
2015;13(6):396.

29. Bengtsson-Palme, J, Angelin, M, Huss, M, et al. The human
gut microbiome as a transporter of antibiotic resistance genes
between continents. Antimicrob Agents Chemother 2015;59(10):
6551–60.

30. Hughes, D, Andersson, DI. Environmental and genetic modula-
tion of the phenotypic expression of antibiotic resistance. FEMS
Microbiol Rev 2017;41(3):374–91.

31. Moran, RA, Anantham, S, Holt, KE, et al. Prediction of antibi-
otic resistance from antibiotic resistance genes detected in
antibiotic-resistant commensal Escherichia coli using PCR or
WGS. J Antimicrob Chemother 2017. 72(3):700–704.

32. Thomas, M, Fenske, GJ, Antony, L, et al. Whole genome
sequencing-based detection of antimicrobial resistance and
virulence in non-typhoidal Salmonella enterica isolated from
wildlife. Gut Pathogens 2017;9(1):66.

33. Kos, VN, Déraspe, M, McLaughlin, RE, et al. The resistome of Pseu-
domonas aeruginosa in relationship to phenotypic susceptibil-
ity. Antimicrob Agents Chemother 2015;59(1):427–36.

34. Mahfouz, N, Ferreira, I, Beisken, S, et al. Large-scale assessment
of antimicrobial resistance marker databases for genetic phe-
notype prediction: a systematic review. J Antimicrob Chemother
2020;75(11):3099–108.

35. Ellington, MJ, Ekelund, O, Aarestrup, FM, et al. The role of whole
genome sequencing in antimicrobial susceptibility testing of
bacteria: report from the EUCAST Subcommittee. Clin Microbiol
Infect 2017;23(1):2–22.

36. Chen, ML, Doddi, A, Royer, J, et al. Beyond multidrug resistance:
leveraging rare variants with machine and statistical learning
models in Mycobacterium tuberculosis resistance prediction.
EBioMedicine 2019;43:356–69.

37. Nguyen, Marcus, Long, S Wesley, McDermott, Patrick F, et al. Us-
ing machine learning to predict antimicrobial MICs and associ-
ated genomic features for nontyphoidal Salmonella. J Clin Micro-
biol 2021. 57(2):e01260–18.

38. Moradigaravand, D, Palm, M, Farewell, A, et al. Prediction of
antibiotic resistance in Escherichia coli from large-scale pan-
genome data. PLoS Comput Biol. 2018;14(12):e1006258.

39. Vanessa, K, Ayush, K. Update on multidrug resistance ef-
flux pumps in Acinetobacter spp. Antimicrob Agents Chemother
2021;65(7):e0051421.

40. Alcalde-Rico, M, Hernando-Amado, S, Blanco, P, et al. Multidrug
efflux pumps at the crossroad between antibiotic resistance and
bacterial virulence. Front Microbiol. 2016;7:1483.

41. Du, D, Wang-Kan, X, Neuberger, A, et al. Multidrug efflux
pumps: structure, function and regulation. Nat Rev Microbiol
2018;16:523–39.

42. Romero, D, Traxler, MF, López, D, et al. Antibiotics as signal
molecules. Chem Rev 2011;111(9):5492–505.

43. Forsberg, KJ, Patel, S, Gibson, MK, et al. Bacterial phylogeny struc-
tures soil resistomes across habitats. Nature 2014;509(7502):612–
6.

44. dos Santos, DFK, Istvan, P, Quirino, BF, et al. Functional metage-
nomics as a tool for identification of new antibiotic resistance
genes from natural environments. Microb Ecol 2017;73(2):479–91.

45. McCoy, AJ, Sandlin, RC, Maurelli, AT. In vitro and in vivo func-
tional activity of Chlamydia MurA, a UDP-N-acetylglucosamine
enolpyruvyl transferase involved in peptidoglycan synthesis
and fosfomycin resistance. J Bacteriol 2003;185(4):1218–28.

46. Truong-Bolduc, QC, Dunman, PM, Strahilevitz, J, et al. MgrA is a
multiple regulator of two new efflux pumps in Staphylococcus
aureus. J Bacteriol 2005;187(7):2395–405.

47. Cundliffe, E. Glycosylation of macrolide antibiotics in ex-
tracts of Streptomyces lividans. Antimicrob Agents Chemother
1992;36(2):348–52.

48. Rossolini, GM, Franceschini, N, Lauretti, L, et al. Cloning of a
Chryseobacterium (Flavobacterium) meningosepticum chromo-
somal gene (blaA(CME)) encoding an extended-spectrum class a
β-lactamase related to the Bacteroides cephalosporinases and
the VEB-1 and PER β-lactamases. Antimicrob Agents Chemother
1999;43(9):2193–9.



16 | GigaScience, 2022, Vol. 11, No. 1

49. Hegde, SS, Vetting, MW, Roderick, SL, et al. Biochemistry: a fluoro-
quinolone resistance protein from Mycobacterium tuberculosis
that mimics DNA. Science (1979). 2005. 308(5727):1480–3.

50. Okazaki, A, Avison, MB. Aph(3′)-IIc, an aminoglycoside resistance
determinant from Stenotrophomonas maltophilia. Antimicrob
Agents Chemother 2007;51(1):359–60.

51. Singleton, CM, Petriglieri, F, Kristensen, JM, et al. Connecting
structure to function with the recovery of over 1000 high-quality
metagenome-assembled genomes from activated sludge using
long-read sequencing. Nat Commun 2021;12(1):2009.

52. Larsson, DGJ, Andremont, A, Bengtsson-Palme, J, et al. Critical
knowledge gaps and research needs related to the environmen-
tal dimensions of antibiotic resistance. Environ Int 2018;117:132–
8.

53. MacLean, RC, San Millan A. The evolution of antibiotic resis-
tance. Science 2019;365(6458):1082–3.

54. Gillings, MR, Paulsen, IT, Tetu, SG. Genomics and the evolu-
tion of antibiotic resistance. Ann NY Acad Sci 2017;1388(1):
92–107.

55. Siguier, P, Gourbeyre, E, Chandler, M. Bacterial insertion se-
quences: their genomic impact and diversity. FEMS Microbiol Rev
2014;38(5):865–91.

56. Mahillon, J, Chandler, M. Insertion sequences. Microbiol Mol Biol
Rev. 1998.62(3):725–74.

57. Berendonk, TU, Manaia, CM, Merlin, C, et al. Tackling antibi-
otic resistance: the environmental framework. Nat Rev Microbiol
2015;13(5):310–7.

58. Sommer, MOA, Munck, C, Toft-Kehler, RV, et al. Prediction of an-
tibiotic resistance: time for a new preclinical paradigm? Nat Rev
Microbiol 2017;15(11):689–96.

59. Bengtsson-Palme, J. The diversity of uncharacterized antibiotic
resistance genes can be predicted from known gene variants-but
not always. Microbiome 2018;6(1):125.

60. Enault, F, Briet, A, Bouteille, L, et al. Phages rarely encode an-
tibiotic resistance genes: A cautionary tale for virome analyses.
ISME J 2017;11(1):237–47.

61. Dion, MB, Oechslin, F, Moineau, S. Phage diversity, genomics and
phylogeny. Nat Rev Microbiol 2020;18(3):125–38.

62. Tansirichaiya, S, Rahman, MA, Roberts, AP. The Transposon Reg-
istry. Mobile DNA 2019;10(1):40.

63. Cury, J, Jové, T, Touchon, M, et al. Identification and analysis of
integrons and cassette arrays in bacterial genomes. Nucleic Acids
Res 2016;44(10):4539–50.

64. Ramirez, MS, Tolmasky, ME. Aminoglycoside modifying en-
zymes. Drug Resist Updat 2010;13(6):151–71.

65. Norman, A, Hansen, LH, She, Q, et al. Nucleotide sequence
of pOLA52: a conjugative IncX1 plasmid from Escherichia coli
which enables biofilm formation and multidrug efflux. Plasmid
2008;60(1):59–74.

66. Hansen, LH, Johannesen, E, Burmølle, M, et al. Plasmid-encoded
multidrug efflux pump conferring resistance to olaquindox
in Escherichia coli. Antimicrob Agents Chemother 2004;48(9):
3332–7.

67. Li, J, Zhang, H, Ning, J, et al. The nature and epidemiology of
OqxAB, a multidrug efflux pump. Antimicrob Resistance Infect Con-
trol. 2019;8(1):44.

68. Perez, F, Rudin, SD, Marshall, SH, et al. OqxAB, a quinolone and
olaquindox efflux pump, is widely distributed among multidrug-
resistant Klebsiella pneumoniae isolates of human origin. An-
timicrob Agents Chemother 2013;57(9):4602–3.

69. Yuan, J, Xu, X, Guo, Q, et al. Prevalence of the oqxAB gene complex
in Klebsiella pneumoniae and Escherichia coli clinical isolates. J
Antimicrob Chemother 2012;67(7):1655–9.

70. Miriagou, V, Tzelepi, E, Gianneli, D, et al. Escherichia coli with a
self-transferable, multiresistant plasmid coding for metallo-β-
lactamase VIM-1. Antimicrob Agents Chemother 2003;47(1):395–7.

71. Bush, K, Bradford, PA. Epidemiology of β-lactamase-producing
pathogens. Clin Microbiol Rev 2020;33(2):e00047–19.

72. Ceccarelli, D, Bani, S, Cappuccinelli, P, et al. Prevalence of aadA1
and dfrA15 class 1 integron cassettes and SXT circulation in
Vibrio cholerae O1 isolates from Africa. J Antimicrob Chemother
2006;58(5):1095–7.

73. Berglund, F, Österlund, T, Boulund, F, et al. Identification
and reconstruction of novel antibiotic resistance genes from
metagenomes. Microbiome 2019;7(1):52.

74. Guillard, T, Lebreil, AL, Hansen, LH, et al. Discrimination be-
tween native and Tn6010-associated oqxAB in Klebsiella spp.,
Raoultella spp., and other enterobacteriaceae by using a two-
step strategy. Antimicrob Agents Chemother 2015;59(9):5838–40.

75. Bunny, KL, Hall, RM, Stokes, HW. New mobile gene cassettes con-
taining an aminoglycoside resistance gene, aacA7, and a chlo-
ramphenicol resistance gene, catB3, in an integron in pBWH301.
Antimicrob Agents Chemother 1995;39(3):686–93.

76. Tribuddharat, C, Fennewald, M. Integron-mediated rifampin
resistance in Pseudomonas aeruginosa. Antimicrob Agents
Chemother 1999;43(4):960–2.

77. Browne, AJ, Chipeta, MG, Haines-Woodhouse, G, et al. Global
antibiotic consumption and usage in humans, 2000–18: a
spatial modelling study. Lancet Planetary Health 2021. 5(12):
e893–e904.

78. Kai Blin: ncbi-genome-download 0.2.11. https://github.com/kbl
in/ncbi-genome-download. Accessed 2022 Jun 21.

79. Hyatt, D, Chen, GL, LoCascio, PF et al. Prodigal: prokaryotic gene
recognition and translation initiation site identification. BMC
Bioinf 2010;11(1):119.

80. McArthur, AG, Waglechner, N, Nizam, F, et al. The comprehen-
sive antibiotic resistance database. Antimicrob Agents Chemother
2013;57(7):3348–57.

81. Liu, B, Pop, M. ARDB—Antibiotic resistance genes database. Nu-
cleic Acids Res 2009. 37(Database issue):D443–7.

82. Lakin, SM, Dean, C, Noyes, NR, et al. MEGARes: an antimicro-
bial resistance database for high throughput sequencing. Nucleic
Acids Res 2017;45(D1):D574–80.

83. Zankari, E, Hasman, H, Cosentino, S, et al. Identification of ac-
quired antimicrobial resistance genes. J Antimicrob Chemother
2012;67(11):2640–4.

84. Yin, X, Jiang, XT, Chai, B, et al. ARGs-OAP v2.0 with an ex-
panded SARG database and hidden Markov models for en-
hancement characterization and quantification of antibiotic re-
sistance genes in environmental metagenomes. Bioinformatics
2018;34(13):2263–70.

85. Gupta, SK, Padmanabhan, BR, Diene, SM, et al. ARG-annot, a
new bioinformatic tool to discover antibiotic resistance genes
in bacterial genomes. Antimicrob Agents Chemother 2014;58(1):
212–20.

86. Arango-Argoty, G, Garner, E, Pruden, A, et al. DeepARG: A deep
learning approach for predicting antibiotic resistance genes
from metagenomic data. Microbiome 2018. 6(1):23.

87. Arango-Argoty, GA, Guron, GKP, Guron, GKP, et al. ARGminer: A
web platform for the crowdsourcing-based curation of antibiotic
resistance genes. Bioinformatics 2020;36(9):2966–73.

88. Wallace, JC, Port, JA, Smith, MN, et al. FARME DB: A func-
tional antibiotic resistance element database. Database
2017;2017:baw165.

89. Buchfink, B, Xie, C, Huson, DH. Fast and sensitive protein align-
ment using DIAMOND. Nat Methods 2014. 12(1):59–60.

https://github.com/kblin/ncbi-genome-download


Mobilization of antibiotic resistance genes | 17

90. Alcock, BP, Raphenya, AR, Lau, TTY, et al. CARD 2020: An-
tibiotic resistome surveillance with the comprehensive an-
tibiotic resistance database. Nucleic Acids Res 2020. 48(D1):
D517–25.

91. Li, H, Handsaker, B, Wysoker, A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25(16):2078–9.

92. Danecek, P, Bonfield, JK, Liddle, J, et al. Twelve years of SAMtools
and BCFtools. Gigascience 2021;10(2):giab008.

93. Browne, PD, Nielsen, TK, Kot, W, et al. GC bias affects genomic
and metagenomic reconstructions, underrepresenting GC-poor
organisms. Gigascience 2020;9(2):giaa008.

94. Siguier, P. ISfinder: the reference centre for bacterial insertion
sequences. Nucleic Acids Res 2006;34(90001):D32–6.

95. Seemann, T. Prokka: Rapid prokaryotic genome annotation.
Bioinformatics 2014;30(14):2068–9.

96. Seemann, T. barrnap 0.9: rapid ribosomal RNA prediction. https:
//github.com/tseemann/barrnap. Accessed Juli 24th 2022.

97. Edgar, RC. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 2010;26(19):2460–1.

98. Nielsen, TK, Browne, PD, Hansen, LH. Supporting data for “An-
tibiotic resistance genes are differentially mobilized according
to resistance mechanism.” GigaScience Database. 2022. http://dx
.doi.org/10.5524/102232.

https://github.com/tseemann/barrnap
http://dx.doi.org/10.5524/102232

