
Hidden Addressing Encoding for DNA
Storage
Penghao Wang, Ziniu Mu, Lijun Sun, Shuqing Si and Bin Wang*

The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian
University, Dalian, China

DNA is a natural storage medium with the advantages of high storage density and long
service life compared with traditional media. DNA storage can meet the current storage
requirements for massive data. Owing to the limitations of the DNA storage technology, the
data need to be converted into short DNA sequences for storage. However, in the process,
a large amount of physical redundancy will be generated to index short DNA sequences.
To reduce redundancy, this study proposes a DNA storage encoding scheme with hidden
addressing. Using the improved fountain encoding scheme, the index replaces part of the
data to realize hidden addresses, and then, a 10.1 MB file is encoded with the hidden
addressing. First, the Dottup dot plot generator and the Jaccard similarity coefficient
analyze the overall self-similarity of the encoding sequence index, and then the sequence
fragments of GC content are used to verify the performance of this scheme. The final
results show that the encoding scheme indexes with overall lower self-similarity, and the
local thermodynamic properties of the sequence are better. The hidden addressing
encoding scheme proposed can not only improve the utilization of bases but also
ensure the correct rate of DNA storage during the sequencing and decoding processes.

Keywords: DNA storage, DNA encoding, random access, hidden addressing, encoding sequence local
performance, index overall self-similarity

1 INTRODUCTION

With the rapid development of information technologies such as the Internet and artificial
intelligence, the amount of global information has exploded. In the future, the amount of global
data will soon exceed the storage capacity of the current storage media. Therefore, a high-capacity
storage medium is urgently needed to store a large amount of data. DNA data storage is a new storage
method that can play an important role in saving storage energy and promoting the development of
data storage (Newman et al., 2019; Choi et al., 2020; Dong et al., 2020). DNA is a natural information
storage mediumwith high data storage density, long storage time, and low loss rate (Chen et al., 2019;
Matange et al., 2021). In the aspects in which the traditional storage methods cannot meet the
information needs, DNA data storage has gradually become a popular topic in the research field of
biological information (Ceze et al., 2019; Xu et al., 2021).

The basic process of DNA data storage comprises four main steps: encoding, synthesis,
sequencing, and decoding (Chen K et al., 2020; Cao et al., 2022; Nguyen et al., 2021), as shown
in Figure 1. Church et al. (2012) of Harvard Medical School stored 650 KB of data in DNA. The
success of this experiment broke the notion that one could only use DNA to store a small number of
bytes as in the early days. Moreover, this experiment stored data in vitro for the first time. This
method realized the DNA storage of a larger amount of data and a practical application of DNA
storage. Subsequently, the use of DNA to store data has become a hot topic in global research. Many
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research institutions have conducted research on DNA storage
(Mathews et al., 2016; Organick et al., 2020). Grass et al. (2015)
encoded an 83 KB file into 4,991 DNA fragments and then
encapsulated each fragment with silica gel to finally achieve
error-free data recovery. Blawat et al. (2016) developed an
efficient and robust forward error correction scheme, which is
suitable for DNA storage and can cope with errors in DNA
synthesis, sequencing, replacement, etc. This encoding scheme
demonstrates the viability of DNA as a long-term storage
medium. Erlich and Zirlinsky (2017) used fountain codes to
efficiently and concisely construct DNA encoding schemes.
Their protocol generates varying numbers of oligonucleotides
to achieve highly tunable redundancy without complicating the
algorithm design. Erroneous oligonucleotides are removed
during encoding, thus preserving high-quality sequencing
fragments to ensure highly robust decoding. In their work,
2.15 MB of data was encoded into DNA sequences, and data
recovery was realized. Song et al. (2018) proposed a scheme to
convert binary sequences into DNA base sequences. The
proposed encoding scheme not only achieved a high storage
density of 1.9 bit/nt but also reduced the probability of base errors
in the DNA sequence during synthesis and sequencing. Lopez
et al. (2019) designed and validated an assembly strategy for DNA
storage that can be extended to any DNA amplification process
requiring nanopore sequencing. Zhang et al. (2020) developed an
optimized Base64 method to achieve a high specific storage
density of 1.77 bits/nt in DNA single strands. In this strategy,
through Base64 encoding, code reconstruction and balance, and
data mapping, some random text information was encoded into
DNA sequences and the corresponding DNA molecules were
synthesized. Then, they were inserted into circular plasmids for
long-term information storage. The introduction of balanced
codes in the transcoding process effectively controlled the GC
content and homopolymers and reduced the error rate of
encoding DNA synthesis and sequencing. The method enabled
robust and efficient storage, and accurate readout of digital data.

Research has found that achieving random access of DNA
sequences not only makes the DNA storage data scheme more
functional but also reduces the cost of DNA storage data.

Bornholt et al. (2016) described the architecture of a DNA-
based archival storage system. The system maps keyword
values to data functions and provides random access using
common PCR amplification and primer identification. They
also proposed a new coding scheme in the coding system that
provides controlled redundancy. The feasibility, random
accessibility, and robustness of the proposed coding were
demonstrated through the synthesis of 151 and 42 KB data.
Yazdi et al. (2017) first implemented a portable random-access
platform using a nanopore sequencer. They designed an
integrated processing pipeline that encodes the data to avoid
costly synthesis and sorting errors, and enables random access via
addressing. It uses efficient portable sorting through new
iterations and includes the removal of error-correcting codes.
They implemented a random-access DNA data storage system
that used an error-prone nanopore sequencer but still produced
error-free reads with the highest reported information rate/
density. Therefore, their scheme represents, to a certain extent,
a critical step in the practical application of DNA molecules as
storage media. Organick et al. (2018) designed a large primer
library that could individually read a particular file stored in the
DNA. An algorithm was also developed to greatly reduce the
coverage of sequencing reads required for error-free decoding by
maximizing the information from all the sequence reads.
Experiments demonstrated a feasible large-scale DNA data
storage and retrieval system that utilizes the primer library to
achieve random access to data. Tomek et al. (2019) used chemical
processing in this scheme to selectively extract unique files from a
complex DNA database simulating 5 TB of data. They designed
and implemented a nested file address system that increased the
theoretical maximum capacity of DNA storage systems by five
orders of magnitude. This advancement enables the development
and future expansion of DNA-based data storage systems with
modern capacity and file access. Banal et al. (2021) encoded data
as the sequences of DNA files encapsulated in silica capsules
labeled with DNA barcodes on their surfaces. The scheme utilized
Boolean logic operations to directly select barcodes to find files. It
was demonstrated that image files were derived from a prototype
2 KB image database using fluorescence sorting, and the

FIGURE 1 | Overall schematic of DNA storage.
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corresponding files were accessed. Banal et al. (2021) thus
provided a scalable concept that can implement random access
capabilities for large datasets in archive files.

In traditional DNA storage systems, DNA sequences are used
to store data. Given that it is unrealistic to synthesize ultralong
DNA sequences, files are divided into sub-blocks of fixed length,
and each piece of data is stored in a short DNA sequence. As the
storage of DNA sequences in the DNA pool is unordered, it is
necessary to store the index (the position of the sub-block of the
file in the file) into the DNA sequence so that the DNA sequence
can be sequenced and decoded to restore the original file (Ceze
et al., 2019). Li et al. (2018) proposed a DNA-based storage
system that uses data concealment (steganography) to process
addressing information. The idea is to embed the index into the
DNA sequence corresponding to the data and use redundancy to
embed the index in the data block. Hiding the index from
sequences encoded by traditional schemes reduces unnecessary
overhead in DNA storage systems. However, the encoding
method using steganography has the problem that the index
first needs to be restored from the data in the sequencing and
decoding process to complete the sequencing and decoding.

To simplify the steganography decoding process and reduce the
cost of the index in theDNA sequence, this article proposes using the
hidden addressing method to process the index information for the
DNA storage system and directly using the data instead of the index.
The hidden addressing data can also directly participate in the
decoding process. Compared with steganography to write indexes
into data, the process of this solution is simpler and easier to operate.
This article not only encodes the data using an encoding scheme of
hidden addressing but also analyzes the local performance of the
encoded sequence and the indexed overall self-similarity of hidden
addressing in the results, and conducts experiments to simulate
sequencing. The results showed that the variance of the GC content
of the sequenced fragments was 0.004, indicating that the GC
content of the coding sequence fragments of this scheme was
relatively stable. The local thermodynamic properties of the
sequences were better, which promoted the stability of DNA
sequencing. The encoding sequence index was replaced by the
data and the data were independent of each other, so the overall
self-similarity of the index was low, which reduced the probability of
errors in the DNA decoding process. The better sequencing effect
proves the encoding performance to a certain extent.

The article is organized as follows. In chapter two, the article
introduces encoding schemes with the hidden addressing
properties and good sequence fragment performance. In
chapter three, the results and analysis of the general encoding
scheme evaluation indexes such as the overall self-similarity of
the encoding scheme index, GC content of the sequence
fragments, and net information density are presented. Finally,
the fourth chapter contains the conclusion and suggestions for
future work.

2 ENCODING OF HIDDEN ADDRESSING

This chapter gives a detailed description of the DNA storage
encoding scheme with the hidden addressing. This scheme not

only achieves the characteristic of hidden addressing in the
encoding process but also has the characteristic of a more
stable thermodynamic property of the encoded sequence
fragments. The specific flow and schematic are also given.

The pseudocode is shown in Algorithm 1. This scheme
replaces the index with a few bits of data in the DNA
sequence and suppresses the index of DNA sequence. First,
the data are grouped so that each group of data is
independent of each other, and then, each group of data is
segmented to convert each segment of data into a sufficient
amount of DNA fragments according to the fountain encoding
method. This is because the fountain encoding method can
generate a large number of DNA fragments that meet the
conditions. In this scheme, each set of data will retain all
fragments that satisfy the constraints to facilitate the
subsequent selection of indexes from a large number of
reserved shards. Therefore, one index DNA fragment and
seven DNA fragments that can be decoded with the index are
then selected from a large number of retained DNA fragments.
Finally, the selected index DNA fragments and the DNA
fragments decoded with the index are concatenated into a
single DNA sequence output. This process is performed for
each set of data until all data encoding is complete.

Algorithm 1. Encoding for DNA storage using data hiding
addressing information.

1 Divide the data into N groups, each group goes through such a
process;

2 then divide the data into n groups within the group;
3 generate Robust Solitary Distribution Functions from

Segmented Data;
4 generate random seed → seed;
5 randomly select several pieces of data to XOR the data as di;
6 Di =[seed di];
7 Si � Di → {A, T, G, C};
8 If meeting the constraints
9 deposit S;

10 else delete;

11 end

12 end

13 for each S-sequence

14 pick out the index sequence that satisfies the condition;

15 end

16 return final sequence;

2.1 Hidden Addresses and Indexes
Erlich and Zielinski (2017) proposed a fountain encoding scheme
to construct DNA sequences through Luby transform encoding
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(Luby, 2002). The data are first grouped, then randomly XORed
using a special robust isolation distribution function, and finally
packed into many droplets. The droplets that did not meet the
constraints were excluded. The droplets that met the constraints
were used to synthesize oligonucleotide sequences, and
sequencing decoding experiments were performed to achieve
complete data recovery. In the fountain encoding scheme,
Erlich and Zielinski (2017) used the seed as the index of the
sequence to restore the original file. In this article, the method of
group encoding is used to conduct fountain encoding in the
group, and a hidden addressing method is used with blocks of
data instead of indexes. This hides the index in the sequence.
More detailed pseudocode for Algorithm 2 is shown.

Algorithm 2. Use data instead of addressing information.

1 Each set of data corresponding to a large number of DNA
fragments;

2 for N sets of DNA fragments with enough data
3 select a representative DNA fragment for each set of data;
4 If repeats of DNA fragments are selected in the i-th and j-th

groups of data (where N> i > j)
5 select another DNA fragment from the j-th group of data; end
6 If the high similarity of the DNA fragments is selected in the

i-th and j-th datasets (where N > i > j)
7 select another DNA fragment from the j-th group of data;
8 end
9 end

10 return record all selected indices representing the set of data;

11 forN sets of data, each set of data has enough DNA fragments

12 select 7 DNA fragments from each set of data;

13 end

The index is hidden from the traditional encoding algorithm,
which saves the cost of adding additional indexes. Figure 2 shows
the number of bases required for encoding the same piece of data
using the hidden addressing scheme and without the hidden
addressing scheme. It is clear that the encoding scheme with
hidden addressing requires fewer bases than the encoding scheme
without the hidden addressing. In the DNA fountain encoding

experiment, the author uses the “seed” as an identifier for
sequence splicing. The seed is randomly generated, and the
sequence similarity corresponding to some seeds is too high,
which results in sequence splicing errors. However, in this study,
the use of XOR data instead of an index makes the overall self-
similarity of the hidden addressing “index” weaker, which can
prevent the sequence from being too similar in the process of
splicing and avoid sequence splicing errors.

2.2 Constraint Control of Sequence
Fragments
2.2.1 Restrictions
Errors such as substitution, insertion, and deletion of bases are
prone to occur during the synthesis of DNA sequences during
DNA storage and DNA sequencing (Wang et al., 2019). The error
rate of each base in the DNA sequencing process is about 1%
(Press et al., 2020; Zan et al., 2021). When there are some special
sequences in the DNA sequence (GC content is high in the entire
DNA sequence and existence of homopolymers of certain bases),
this will easily lead to nonspecific hybridization of DNA during
storage (Wang et al., 2019). Once the abovementioned
hybridization reaction occurs in DNA, it will directly affect the
normal progress of the DNA sequencing process, resulting in data
read errors and read failures due to sequencing deviations (Chen
Y. J et al., 2020; Zan et al., 2021). As this situationmay easily cause
instability of the DNA sequence, the sequence is generally
required to comply with the constraints to reduce the
incidence of nonspecific hybridization and reduce the error
rate in the process of sequence reading and writing.

(1) The number of GC base pairs contained in the DNA has a
great influence on the changes in melting temperature and
free energy of DNA molecules. Therefore, under normal
circumstances, the G and C content of a DNA sequence
should be kept between 45% and 55% (Yin et al., 2021; Cao
et al., 2022; Wu et al., 2022). The mathematical formula is as
follows:

GC(content) � |G| + |C|
|A| + |T| + |G| + |C| × 100%.

(2) DNA sequences with longer homopolymer runs (DNA
fragments of contiguous nucleotides or repeating bases)
are prone to errors during synthesis, amplification, and
sequencing (Ross et al., 2013). For example, in
ACCCCAT, the presence of base repeats can easily be
misinterpreted during sequencing as sequences such as
ACCCAT. Therefore, it is necessary to limit the presence
of three or more repeating bases in the DNA sequence. The
mathematical formula for this is as follows:

Si ≠ Si+1 ≠ Si+2, i ∈ [1, n − 2].

2.2.2 Sequence Fragments
A hidden addressing DNA storage coding scheme encodes the
sequence. The procedure is as follows. First, group the data and

FIGURE 2 | Comparison of the required sequence lengths with and
without the hidden addressing scheme.
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then segment the data within the group. Each piece of data in the
group is subjected to fountain coding XOR to convert each piece
of data into a DNA sequence. Finally, the GC content and

homopolymer constraints control the constraint filter to select
the DNA that meets the constraints. Sequences that satisfy the
constraints are retained, and those that do not satisfy the

FIGURE 3 | Schematic illustration of an example DNA storage encoding scheme for hidden addressing.
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constraints are discarded directly. In this way, several short
sequence fragments corresponding to each set of data are
connected into a long sequence. The DNA sequence
corresponding to each set of data satisfies the local GC
content constraint and the homopolymer control constraint,
which makes the sequence more stable than the sequence
without local constraints control. The stability of the local GC
content also ensures better local thermodynamic properties of the
sequences. The local thermodynamic properties of the sequence
are better, and the homopolymer control also ensures the
sequence’s local stability and reduces the probability of errors
during sequence sequencing.

2.3 Process and Schematic
The overall schematic of the scheme is shown in Figure 3. It has
three parts: file preprocessing, fountain encoding, and DNA
fragment selection.

2.3.1 Program-Specific Process
2.3.1.1 File Preprocessing
The binary data are divided into N groups equally according to
the size, and then the size of each group of data is divided into n
segments. This allows each group of data to be independent of
each other and makes it easy to read the data randomly. The
segmented data fountain encoding control constraints in each set
of data also make the GC content and homopolymer control of
the encoding sequence fragments more stable.

2.3.1.2 Fountain Encoding
First, distribution function Φ (Erlich and Zielinski, 2017) is
generated according to the number of groups in the segment,
and each time, a linear shift register is used to generate different
random seeds. Second, d (where d ∈ [1, n]) data segments are
randomly selected to be XORed according to the distribution
function. After the XOR, the seed is placed at the starting position
of the XOR data, and then according to the {00, 01, 10, 11}→{A,
C, G, T} method, seeds and data are converted into corresponding
characters. Then, the converted string is filtered through the
constraint filter, and in the filter, it is judged whether the sequence
satisfies the constraints that it does not contain homopolymers
and the GC content is kept at 45%–55%. Short sequence Si that
satisfies the condition is temporarily saved, and short sequence Si
that does not satisfy the constraint condition is directly discarded.
Iteration is continued until the number of seeds is exhausted, and
this set of data also produces a large number of strings
S1, S2, S3, ...Sj that satisfy the constraints. In this step, N groups
of data all go through such a process. Therefore, each set of data
produces a corresponding S1, S2, S3, ...Sj.

2.3.1.3 Select DNA Fragments
From the strings S1, S2, S3, ...Sj corresponding to each set of data,
select Sk, k ∈ [1, j] representing the sequence as the index DNA
fragments. If the index DNA fragments selected by the i-th
sequence and the j-th sequence are the same or similar
(where, N> i> j), another Sm,m ∈ [1, j], m ≠ k is selected
from the j-th sequence. After determining the index of the
DNA sequence corresponding to each set of data, seven DNA

fragments are selected from S1, S2, S3, ...Sj for each set of data. A
total of seven DNA fragments in each set of data and the selected
index can be decoded. In this way, index DNA fragment selected
from each set of data is ligated with the seven DNA fragments.
Finally, an RS error correction code is added at the end of each
sequence for the error correction of the sequence.

2.3.2 Scheme Example Diagram
Figure 3 shows a schematic diagram of a DNA storage encoding
scheme for the hidden addressing. First, the TXT file is divided
into N groups of data, and then each group of data is subjected to
fountain coding, and each group generates a corresponding large
number of DNA fragments. According to the similarity of the
indexes, the DNA fragment sets corresponding to the N groups of
data are horizontally compared, and the index DNA fragments of
each group of data are selected. At the same time, seven DNA
fragments were selected from each set of data and spliced with the
selected index DNA fragments. Finally, RS error correction is
added at the end of each sequence for the error correction after
sequence sequencing.

In this section, based on the scheme of constructing high-
efficiency DNA sequences with fountain codes, the hidden
addressing scheme of this article is proposed, which is
different from steganography, as data blocks are used to
replace indexes in this scheme, whereas steganography embeds
indexes into the data blocks. In the sorting phase, since the index
is technically embedded into the sequence, the index is first solved
from the data, and then processed through sorting, sequence
assembly, and other operations. In this scheme, the sequencing
can directly use the hidden addressing data blocks for sequence
sorting, splicing, and other processes. Comparing the two, the
process of this scheme is relatively simple and easy to decode.
Based on the hidden addressing, it not only ensures that the local
thermodynamic properties of the sequence are better but also uses
the XOR data to replace the index, which reduces the overall self-
similarity of the index and the incidence of sequence errors
during splicing.

3 RESULTS

To verify the performance of the index and sequence fragments of
DNA sequences constructed by the hidden addressing DNA
storage encoding scheme, this chapter compares and analyzes
the Ehrlich and Zelinsky (2017) encoding scheme from two
aspects: the overall self-similarity of the index and the
constraint control analysis of the encoding sequence fragments
by means of comparative experiments. The results show that the
encoding experimental results of this scheme are better than
Ehrlich and Zelinsky (2017) encoding experimental results. The
net information density of the encoding scheme and its support
for random access are also important indicators for evaluating the
performance of the encoding scheme, which directly determine
the scheme implementation cost. These are also compared in this
chapter. The results show that the scheme has a high net
information density and also has the functions of supporting
random reading of files, decoding, and error correction. At the
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same time, the encoding sequence was also simulate-sequenced
using the ART simulated sequencing tool.

3.1 Overall Self-Similarity
The overall index self-similarity of the encoding sequence is one
of the important indicators to evaluate the encoding scheme. If
the index similarity of the designed sequence is too high, it will
lead to splicing errors after sequencing and affect the final
decoding accuracy. Similarly, if the sequence similarity of the
encoded payload is too high, the decoding accuracy will also be
affected (Akhmetov et al., 2018). To verify the overall irrelevance
of the sequence index design of the hidden addressing DNA
storage encoding scheme, the self-similar visualization generator
(Madeira et al., 2019) is used in this study to generate the resulting
graph shown in Figure 4 for verification.

In Figure 4, the indices of the two storage schemes are used as
input, and both use a word length of 10 as the input parameter for
dot map generation. The encoding scheme using data-hiding
addressing replaces the index with data blocks in the DNA
sequence and omits the index from the DNA sequence. As the
data are independent of each other, as shown in Figure 4A, there
are not too many continuous repeating sequence fragments,
indicating that the encoding sequence using the data-hidden
addressing in this scheme does not have too many repetitions,
which improves the accuracy of decoding. The sequence designed
by the Erlich and Zielinski’s (2017) encoding scheme uses a seed
as an identifier for sequence splicing. There will be two adjacent
representation numbers between a single seed. After converting it
into a DNA sequence, the similarity is high, so using the self-
similarity visualization generator generates a graph showing that
there will be a large number of concentrated and relatively
continuous sequences. As shown in Figure 4B, there is a large
number of concentrated repeated fragments in the sequence near
the diagonal line, indicating that the seed used in this scheme as
the sequence index has a large number of repeated short
sequences.

In addition to using the Dottup dot plot generator to generate
dot plots to visually compare the differences in overall self-
similarity of coding scheme indices, the Jaccard similarity
coefficient can also effectively calculate the overall similarity of
the two encoding scheme index sequences and evaluate the
overall self-similarity of encoding scheme indexes. The Jaccard
similarity coefficient is a common way to calculate the similarity
of two strings: The proportion of the number of elements in the
intersection of two sets A and B in the union of A and B is called
the Jaccard similarity coefficient of the two sets, and is
represented by the symbol Jaccard(A, B). The Jaccard
coefficient is an indicator to measure the similarity of two
strings. The higher the value, the higher the similarity between
the two strings. On the contrary, the lower the similarity. The
formula is as follows:

Jaccard(A, B) � |A ∩ B|
|A ∪ B| �

|A ∩ B|
|A| + |B| − |A ∩ B|, A ≠∅ or B ≠∅.

To calculate the Jaccard similarity coefficient for the two DNA
sequences, we first transform each sequence into a set of k −mers.
Let Sk(q) be the k −mer set of sequence q containing the set
of all contiguous subsequences of q length k. For example,
the sequence q1 � ACGTTAGGC, maps to the 5 −mer set
S5(q1) � {ACGTT, CGTTG, GTTAG, TTAGG, TAGGC} For
q2 � GTACCTTAGG, sequence mapping to 5−mer set
S5(q2) � {GTACC,TACCT,ACCTT,CCTTA,CTTAG,TTAGG},
calculation of the Jaccard similarity coefficient of the two strings
q1, q2 is as follows:

Jaccard(q1, q2) �
∣∣∣∣q1 ∩ q2

∣∣∣∣
∣∣∣∣q1 ∪ q2

∣∣∣∣
�

∣∣∣∣q1 ∩ q2
∣∣∣∣

∣∣∣∣q1
∣∣∣∣ + ∣∣∣∣q2

∣∣∣∣ − ∣∣∣∣q1 ∩ q2
∣∣∣∣
� 1
10
.

We compute the Jaccard similarity coefficients indexed in the
two encoding schemes. In the two encoding schemes, each index
sequence and the other sequences are divided by k −mers first,
and then Jaccard calculation is performed and added to obtain a

FIGURE 4 | Self-similarity comparison between encoding indices. (A)Utilize data instead of overall self-similarity between indices. (B)Overall self-similarity between
seeds used for splicing sequences in fountain coding experiments.
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sum of the Jaccard similarity coefficients of each sequence.
Finally, the Jaccard similarity coefficients of each sequence are
summed up (Table 1).

The differences of hidden addressing indexes are analyzed
through the visual analysis and quantitative analysis. This result
shows that the index of the encoding scheme proposed in this
study is better than the seed used by the encoding scheme of
Ehrlich and Zelinsky (2017).

In addition to the comparative experiments on the overall self-
similarity between the encoding scheme sequence indices, the
overall experiments on self-similarity were carried out on DNA
sequence encoding payloads. As shown in Figure 5, the input of
this figure is the sequence of the scheme encoding payload. Using
a word length of 12 as a parameter, there is no obvious long-
sequence repetition in the figure. The repetition of individual
short sequences has little effect on the final sequencing result
(Akhmetov et al., 2018).

3.2 Code Fragment Performance Analysis
When reading the DNA storage data, the DNA sequence needs
to be sequenced. For example, the sequencing-by-synthesis
method is used in sequencing on the Illumina platform. In this
process, for the continuously extended sequence fragments,
satisfying the local GC content and homopolymer control
constraints will make the sequencing fragments more stable,
and the more stable sequencing fragments will also improve
the sequence accuracy during the sequencing process
(Akhmetov et al., 2018). To analyze the performance of
sequence fragments in a DNA storage encoding scheme
with hidden addressing, a statistical analysis of the GC

content in the encoding sequence fragments was performed,
as shown in Figure 6.

The scheme first divides the data into groups and segments,
and then encodes the data into DNA fragments according to the
fountain encoding conversion method. Each generated DNA
fragment is added to a constrained screening process, and
finally, the encoded DNA fragments are spliced into a
nucleotide sequence. As shown in Figure 6A, most sequences
can guarantee a GC content of 40%–60%, with a GC content
variance of 0.004. It can be seen that the fluctuation range is small,
and each fragment can satisfy the GC content balance constraint
and the homogeneity polymer control constraint, which ensures
that the local thermodynamic properties of the coding sequence
are more stable. In the case of encoding the same txt file, the
sequences encoded by the fountain encoding scheme in the
Ehrlich and Zelinsky (2017) encoding scheme only conduct
the overall GC content balance constraint of the sequence but
not the local GC content balance constraint. Therefore, the local
GC content of most sequences is unevenly distributed, and the
variance of GC content is 0.011, which shows that the fluctuation
range is large, as shown in Figure 6B. The length of each sequence
encoded by the encoding scheme in Figure 6A is 184 bpl, so the
GC content of each sequence is calculated as every 23 bases. In the
sequences encoded by the encoding scheme in Figure 6B, the
length of each sequence is 152 bp, so the GC content of each
sequence is calculated as every 19 bases.

3.3 Encoding Performance
By evaluating the general characteristics of the encoding scheme
and comparing it with the previous research results, we found

FIGURE 5 | Overall self-similarity generated dot plot of the encoded payload sequence.
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that the DNA storage coding scheme with hidden addressing also
has a high net information density, supports random access to
files, and has error correction properties (Table 2).

In the encoding scheme of DNA storage, the evaluation
indicators such as net information density (NID), random
access reading support (RA), and support for error correction
(EC) are important references for evaluating the encoding
scheme. Net information density is also an important
evaluation indicator to measure an encoding scheme, and its
size directly determines the cost of DNA storage in the synthesis,
sequencing, and error correction. Although the net information
density is 1.48 nt/bit in this scheme, this scheme realizes the
random access function of the DNA storage system. There are
eight seeds used for decoding in each sequence so that each group
of data is encoded separately to eliminate the integrity of the data
in the fountain encoding experiment. Therefore, the redundancy
in each sequence accounts for 26%, and the calculation formula is
as follows

Redundancy � seed(5nt) × 8 + RS(8nt)
Sequence length(184nt) × 100%.

Implementing random access to files in an encoding scheme is
also an important aspect to evaluate the performance of an
encoding scheme. In the DNA fountain encoding experiment,
there is a disadvantage of losing random readability. For example,
if file F1 is required, the DNA sequences of all the stored data in
the pool must be read to obtain required file F1. As DNA

sequencing can take longer time and cost more than reading
data from a hard drive, the encoding scheme designed in this
study takes into account random read operation of files in the
DNA storage system. Each file corresponds to several sequences
with hidden addressing. If one wants to read file F1 from the DNA
storage system, one only needs to read the sequence of the hidden
addressing data block corresponding to F1 to realize the random
reading of the file. This improves the random readability of the
fountain encoding scheme devised by Ehrlich and Zelinsky
(2017).

3.4 Sequence Decoding
To further validate the DNA encoding scheme using cryptic
addressing, we performed relevant simulate sequencing
experiments on the encoded data using simulate sequencing tools.

ART is an analog tool for the next-generation sequencing
reads (Huang et al., 2012). Simulated sequencing readings are
generated by simulating the sequencing process using built-in,
technology-specific read error models and baseline value profiles
that are empirically parameterized in large sequencing datasets.
All three major commercial next-generation sequencing
platforms are currently supported: Roche’s 454, Illumina’s
Solexa, and Applied Biosystems’ SOLiD. We used ART
Illumina simulate sequencing with encoding sequences directly
as input, reads were mock single-ended, 150 bp in length, the
maximum total number of inserts and deletes per read is set to 0,
20 × coverage, and the Illumina sequencing system profile was

FIGURE 6 | Statistical comparison of partial local GC base content in the two DNA storage systems. (A) This scheme carries out the local GC content control.
(B) Fountain coding scheme without the local GC content control.
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MiSeq v1 (250 bp). The results showed that more than 95% of the
bases in each sequence were detected by simulated sequencing.

After the N sequences in the pool are measured, the DNA
sequence is corrected according to RS error correction. The error-
corrected sequence is then fed into the file preprocessing system,
which automatically identifies the data used to hide the index.
The sequences are then sorted according to the reference ranking
table (each encoded data has a reference ranking table, as shown
in Supplementary Table S1. In this experiment, due to the large
number of sequences, the reference sorting table encoding the
40 KB data is only partially shown in the Supplementary
Material; the rest will be shown on Github: https://github.
com/wangpenghaoAA/Reference-order). Input the sorted
sequence into the decoding program in order. Each sequence
is converted to binary according to the conversion rule
{A, T, G, C} → {00, 11, 01, 10}. Each of the N groups of data
can decode the eight pieces of short data according to the seed,
and restore the inverse process of XOR (detailed code: https://
github.com/wangpenghaoAA/Fountain_imp). Finally, the
decoded data are spliced to restore the original data.

In this chapter, the hidden addressing DNA storage encoding
scheme proposed in this article was analyzed from the overall self-
similarity of the index, the performance of the encoding sequence
fragment, the general evaluation index of the encoding scheme,
and the related simulated sequencing experiments. The results
show that this scheme not only has a lower similarity between the
data using hidden addressing but also has better local
thermodynamic properties of the coding sequence, support for
random reading of files, support for file error correction, higher
net information density, and better simulation sorting results.

4 CONCLUSION

In this study, a hidden addressing DNA storage encoding scheme
was proposed, which is based on the fountain encoding construction
of DNA sequences. This encoding scheme uses data-hidden

sequence addressing. Using data instead of indexes in this
scheme not only saves indexes and reduces costs but also makes
it easier to operate than steganography. This study also analyzes the
overall self-similarity of coding sequence indices through the Jaccard
similarity coefficient and the Dottup dot plot generator. The index of
this scheme is replaced by data, and the data are independent of each
other and have low correlation. Therefore, the index replaced by the
independent data will reduce the overall self-similarity of the index,
and the encoding scheme with lower overall self-similarity of the
index will help to avoid splicing errors. At the same time, this study
also analyzed the GC content of the coding sequence fragments. The
data were first grouped; each group was segmented; and finally, they
were encoded into a scheme ofDNA sequences. TheGC content and
homopolymer control constraints were satisfiedwhen encoding each
data fragment. Therefore, the local thermodynamic properties of the
sequences were better, which increased the local stability of the
sequences. Finally, we also compared the general evaluation
indicators of the encoded data and performed related simulated
sequencing experiments. The results showed that the proposedDNA
storage scheme has the advantages of higher net information density,
support for random access, support for error correction, and better
sequencing results.

Current DNA storage and error correction schemes are fault-
tolerant to synthesis and sequencing errors, and even the loss of
complete sequences. If the encoding and error correction strategies
can be further optimized, DNA-based storage can be implemented
using low-cost and low-fidelity technology (Cai et al., 2021). In our
future work, we will continue to work onDNA storage with a focus
on DNA coding technology and DNA sequencing technology. We
believe that there is a lot of room for improvement in this
developmental path. A large amount of work has been done,
such as a comprehensive evaluation of DNA storage error
models. The future of synthetic DNA storage systems remains
bright and could have profound implications for areas such as
global data management and healthcare. With the joint efforts of
academia and industry, there will be many ways to build low-cost
and practical DNA storage schemes in the future.
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