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Immune checkpoint inhibitors (ICI) are being increasingly used to successfully treat several
types of cancer. However, due to their mode of action, these treatments are associated
with several immune-related adverse events (irAEs), including immune-mediated
autoimmune-like hepatitis in 5 to 10% of cases. The specific immune mechanism
responsible for the development of immune-mediated liver injury caused by immune
checkpoint inhibitors (ILICI) is currently unknown. This review summarizes the current
knowledge on hepatic irAEs during cancer immunotherapy. It also addresses the clinical
management of ILICI and how it is becoming an increasingly important clinical issue.
Clinical, histological, and laboratory features of autoimmune hepatitis (AIH) and ILICI are
compared, and their shared and distinctive traits are discussed in an effort to better
understand the development of hepatic irAEs. Finally, based on the current knowledge of
liver immunology and AIH pathogenesis, we propose a series of events that could trigger
the observed liver injury in ICI-treated patients. This model could be useful in the design of
future studies aiming to identify the specific immune mechanism(s) at play in ILICI and
improve immune checkpoint inhibitor cancer immunotherapy.
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INTRODUCTION

Very little is known about the origins of immune checkpoint inhibitor (ICI) hepatitis. Liver toxicity
depends on the type of immunotherapy administered, the dose, and the existence of pre-existing
liver conditions. The incidence of ICI hepatitis, now referred to as immune-mediated liver injury
caused by immune checkpoint inhibitors (ILICI) (1), is higher in patients who receive combination
therapy than in those on monotherapy (2–4). A pre-existing liver condition such as cirrhosis also
increases the risk of hepatotoxicity in patients treated for hepatocellular carcinoma (HCC) (5, 6).
However, the underlying responsible immune mechanism(s) are unknown.

Several mechanisms have been proposed to explain irAEs and ILICI. First, direct cytotoxicity of
the administered antibodies through complement activation has been suggested (7). This is
org June 2022 | Volume 13 | Article 9075911
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supported by the fact that PD-1 and PD-L1, the target of several
cancer immunotherapies, are also expressed by healthy tissue (7).
An early change in circulating B cells has also been correlated
with the frequency and timing of irAEs (8). However, these
proposed mechanisms link immunotherapies with irAEs but
none of these are specific to the liver and could explain how
cancer immunotherapies could lead to ILICI.

Herein, we will review the current knowledge on cancer
immunotherapy and hepatic irAEs and factors that can
influence the incidence of ILICI. We will then propose a
sequence of events that could lead to ILICI based on current
knowledge of liver immunology and the pathogenesis of
autoimmune hepatitis (AIH). This putative model could serve
as the basis for future studies aiming at reducing the occurrence
of hepatic irAEs and improving our knowledge of the
pathogenesis of ILICI.
CANCER IMMUNOTHERAPY

The use of ICI was first approved by the United States Federal
Drug Administration and European Medicines Agency in 2011
following the results of anti-CTLA-4 therapy in metastatic
melanoma (9). Since this milestone moment in cancer
therapeutics, ICIs have been granted approval by regulatory
agencies for multiple other cancers (Table 1) (5). There are
currently over 120 phase 3 studies actively recruiting on the
National Library of Medicine’s Clinical Trials website for
previously approved indications but also for other gastro-
intestinal cancers, leukemia, endometrial cancer, brain cancer,
and ovarian cancer.

Immune-Related Adverse Events
During initial trials, a specific immune-mediated pattern of
toxicity associated with ICI was reported and termed immune-
related adverse events (irAEs). The skin, colon, liver, lungs, and
endocrine organs are the most commonly affected sites; however
rarer cases of cardiac or neurological irAEs are associated with
severe adverse outcomes (10). Over time, an increased incidence
has been reported, likely due to the increased use of ICI (0.9
cases/month to 19.25 cases/month between 2015 and 2018) (11).
Toxicity is graded on the Common Terminology Criteria for
Adverse Events (CTCAE) scale with grade 5 representing death.
Reporting in oncology clinical trials is based on this scale, where
severe events are defined as ≥ grade 3. Overall, severe irAEs
involve 10-27% of patients in studies (12). The grading of hepatic
adverse events is described in Table 2.
Hepatic Immune-Related Adverse Events
Hepatic irAEs are a clinically relevant entity with an incidence of
5-10% in single-agent ICI therapy; however, severe toxicity
occurs in less than 2% of cases but with increased incidence in
combination therapy (12). Cases of ILICI present as an acute rise
followed by a progressive and rapid decrease of liver enzymes,
predominantly transaminases (ALT and AST) (13). Onset is
most often between 6 to 12 weeks after treatment initiation (14).
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Elevation of liver enzymes on ICI therapy is common and other
etiologies should not be overlooked; while liver injury occurred
in 14% of patients in one cohort, only 28% of cases could be
attributed to ILICI, with greater toxicity in patients with pre-
treatment liver metastases (15). In another retrospective study,
ILICI accounted only for 46% of cases of elevated liver enzymes
beyond grade 2 with multiple other causes identified (16).

Besides excluding other causes, assessment of ILICI
potentially requires hepatic imaging and histological
assessment. Imaging findings are non-specific and include
hepatomegaly, peri-portal edema, and lymphadenopathy, with
more prominent findings in cases of severe hepatitis (17).
Histological assessment reveals acute hepatitis, as is seen in
cases of viral hepatitis, AIH, or drug-induced liver injury (18).
The pattern is most often described as panlobular or restricted to
zone 3 with lesser involvement of the periportal area. A mixed
cellular infiltrate with lymphocytes (mostly CD8+ T cells),
plasma cells, or eosinophils is seen (19). A specific histological
pattern has been described for CTLA-4-induced toxicity
characterized by granulomatous hepatitis with fibrin ring
granulomas and central vein endotheliitis (20).

ILICI shares several histological traits with AIH such as
hepatitis with a panlobular distribution, presence of
hepatocellular necrosis, and a lymphocytic infiltrate. These
findings are distinct from classic AIH through the presence of
histiocytic sinusoidal infiltrates, microgranulomas, and central
vein endotheliitis and by the absence of a consistent plasma cell
predominant infiltrate (17, 21). Additionally, the increased
presence of CD8+ T cells with a lesser proportion of CD4+ T
cells in ILICI can assist in differentiating it from AIH (19, 22).

While the predominant pattern of histological liver injury is
hepatitis, a biliary pattern has also been observed, albeit less
commonly, and is usually associated with a higher metastatic
liver burden or other causes of liver injury (21). This pattern has
been mostly reported with PD-1 antagonist toxicity, typically
presenting as acute cholangitis or vanishing bile duct syndrome
and with a poor response to immunosuppressive therapy
(23, 24).

Incidence of Hepatic irAEs
The initial reports on the occurrence of ILICI were reassuring: in
the initial phase 2 study of ipilimumab for advanced melanoma,
liver adverse events ≥ grade 3 occurred in 3%, with complete
resolution of all liver-related AEs (25). The FDA licensing study
reported AST elevations in 0.8% and ALT elevations in 1.5% of
patients without any cases beyond grade 3 (9). This contrasts
with reports of a greater burden of hepatic irAEs in real-world
settings with over half of patients presenting with ≥ grade 1 AST
elevation and 23-27% with ≥ grade 3 liver injury (26, 27).

The incidence of hepatic irAEs appears to increase in patients
treated for primary liver cancers, most likely because of the
presence of underlying liver disease. While the incidence of ≥
grade 3 ALT elevation in patients treated with Nivolumab for
HCC was 8% in an initial trial (Checkmate 040) (28), the
reported incidence of a similar increase in major trials for lung
cancer was 0% (29–31) and ranged from 0-4% in trials for
melanoma (32–35). In a meta-analysis of 117 trials, the
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incidence of elevated liver enzymes was increased twofold in
patients with liver cancer when compared to other solid tumors
overall (36), higher than in patients treated for melanoma or
non-small cell lung cancer (6). However, this did not lead to an
interruption of therapy for HCC patients (6). The initial trials for
ICI in HCC after initial systemic therapy (CHECKMATE 040
with nivolumab and KEYNOTE-224 with pembrolizumab),
reported ALT elevations of any grade in up to 15% and grade
≥3 in 4-6% of patients (28, 37). However, while 13% of patients
required treatment for ILICI, only 3.4% of patients discontinued
study participation due to hepatitis (38). Recent trials have
evaluated a priming dose of tremelimumab (anti-CTLA-4)
with subsequent administration of durvalumab (anti-PDL1) to
minimize toxicity: this strategy seems to be associated with
favorable results since less than 4% of patients required
therapy for hepatic irAEs (39). The combination of ICI with
other molecules (such as VEGF inhibitors) has been associated
with favorable clinical outcomes, with ALT elevations reported
in 14% of cases overall and ≥ grade 3 in 3.6% of cases (40).

In a meta-analysis of 17 clinical trials, CTLA-4 inhibitors had
a higher propensity to cause hepatotoxicity than PD-1 inhibitors
(Odds ratio for high-grade hepatoxicity 1.52 vs 0.48) (41). In a
meta-analysis of 117 trials, any-grade ALT and AST elevation
was noted in less than 6% of cases and was slightly higher in anti-
PD-1 when compared to anti-PD-L1 therapy with ≥ grade 3
increase in 1.3% of cases (36). In combination therapy, up to a
third of patients developed elevated liver enzymes, with ≥ grade 3
hepatitis occurring in 6.4-31% of cases, of which 80% required
treatment, representing the most common ≥ grade 3 irAE (2, 3,
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42). Forty percent of patients developing irAEs on combination
therapy developed another immune event (hepatitis in 36%) or
recurrence (hepatitis in 17%) on anti-PD-1 monotherapy (4). In
another cohort, irAE recurrence ensued in 34% of patients, with
21% ≥ grade 3 in severity (43). In contrast, other cohorts
presented much lower rates with no recurrence of ILICI with
retreatment (44).

irAEs and Pre-Existing Autoimmunity
Data on whether underlying autoimmunity is associated with
increased irAEs often stems from retrospective trials.
Furthermore, whether ICI induces autoimmunity remains
unclear. In a systematic review, only 18% of patients
presenting hepatic toxicity had detectable anti-nuclear
antibodies, although rates were higher in other organ
toxicities (45).

Patients with autoimmune liver disease have not been
included in studies of patients with underlying autoimmunity
undergoing ICI therapy. Incidence of all-grade irAEs in patients
with autoimmune disease ranges from 29 to 45% (46–49).
Notably, the occurrence of irAEs did not impact overall
survival in these studies (46). Worsening of an underlying
autoimmune disorder, or “flares” with increased dermatological,
rheumatological, or gastrointestinal symptoms, were reported in
29% to 47% of patients (43, 47, 49). Some authors report that
most of these complications were easily managed and
discontinuation of therapy was not required. Moreover, clinical
response was achieved in 40% of patients (43). Nonetheless, in a
cohort of patients with lung cancer or melanoma, active
TABLE 1 | Immune checkpoint inhibitors approved by US and European regulatory authorities.

AGENT TARGET INDICATION FDA
approval

EMA
approval

atezolizumab
(Tecentriq)

PD-L1 melanoma, small cell and non-small cell lung cancer, hepatocellular carcinoma. urothelial carcinoma 2016 2017

ipilimumab
(Yervoy)

CTLA-
4

Melanoma, renal cell carcinoma, MSI high or MMR deficient colorectal cancer, hepatocellular carcinoma, non-small cell
lung cancer, mesothelioma

2011 2011

nivolumab
(Opdivo)

PD-1 melanoma, renal cell cancer, non-small cell lung cancer, Hepatocellular carcinoma, Head and neck squamous cell
carcinoma, urothelial carcinoma, esophageal or gastric cancer, colorectal cancer, Hodgkin lymphoma, mesothelioma

2014 2015

pembrolizumab
(Keytruda)

PD-L1 melanoma, non-small cell lung cancer, head and neck squamous cell carcinoma, urothelial carcinoma, gastric
adenocarcinoma, MSI high or MMR deficient colorectal cancer, Hodgkin lymphoma, cervical cancer, renal carcinoma,
Merkel cell carcinoma, cutaneous squamous cell carcinoma, triple-negative breast cancer

2014 2015

Avelumab
(Bavencio)

PD-L1 Merkel Cell Carcinoma, urothelial carcinoma, renal cell carcinoma 2017 2017

Durvalumab
(Imfinzi)

PD-L1 Small cell and non-small cell lung cancer 2017 2018

Cemiplimab
(Libtayo)

PD-1 Non-small cell lung cancer, cutaneous squamous cell carcinoma, Basal cell carcinoma 2018 2019
June 2022 | Volum
e 13 | Artic
FDA, United States Federal Drug Administration; EMA, European Medicines Agency; PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1, CTLA-4; Cytotoxic T-
lymphocyte associated protein 4, MSI; Microsatellite instability, MMR; mismatch repair.
TABLE 2 | CTCAE Grading of hepatic adverse events.

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Alanine aminotransferase (ALT) >ULN - 3x ULN 3-5 x ULN 5-20 x ULN >20 x ULN Death
Aspartate aminotransferase (AST) >ULN - 3x ULN 3-5 x ULN 5-20 x ULN >20 x ULN Death
Total Bilirubin >ULN - 1.5 x ULN 1.5-3 x ULN 3-10 x ULN >10 x ULN Death
Alkaline phosphatase (ALP) >ULN – 2.5 x ULN 2.5-5 x ULN 5-20 x ULN >20 x ULN Death
l
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au to immune d i s ea s e a t ba s e l ine and under l y ing
immunosuppression have been associated with shorter median
progression-free survival (49).

While the incidence of hepatic irAEs in patients with
underlying autoimmune hepatitis has not been reported, the
histological findings outlined previously can help in
differentiating both conditions. Additionally, ILICI was
compared to classical AIH in one study based on clinical
characteristics; overall, ILICI patients were older, had normal
IgG levels in 94% of cases, and were ANA positive in 25% of
cases, as opposed to 84% in AIH. Cases of ILICI often required
higher doses of steroids but shorter tapers without the need for
additional therapy (44).

Treatment and Outcomes
Clinical practice guidelines recommend corticosteroid therapy
(methyl(prednisolone) 1 mg/kg/day) for grade 2 toxicity with the
resumption of checkpoint inhibitor therapy once improvement is
noted and corticosteroids tapered. In cases of ≥ grade 3 toxicity,
treatment with corticosteroids at higher doses (1-2 mg/kg/day
(methyl)prednisolone) is recommended followed by
mycophenolate mofetil if no response is achieved (12). To
limit the toxicity of steroids, reducing the dose to 1 mg/kg of
methylprednisolone for ≥ grade 3 toxicity was reported to
produce similar rates of response with fewer side effects (50).
In addition, the use of budesonide has been described in case
reports to facilitate the re-introduction of immunotherapy (PD-1
antagonists) in patients with grade 3 toxicity (51). Initially,
permanent discontinuation of ICI and immunosuppressive
treatment was deemed necessary in all cases of ≥ grade 3 irAEs
(12). However, management of severe irAEs has evolved over the
years and individualized management is recommended based on
reports of grade 3 irAEs not requiring corticosteroid therapy
with ensuing spontaneous resolution (52). This has led to current
practice guidelines recommending ICI re-introduction in
patients with asymptomatic grade 3 toxicity and to
permanently discontinue only if symptomatic (14). However,
in a cohort of patients with severe ILICI, including grade 4
toxicity, re-introduction of ICI therapy (with the same agent in
78% of cases) led to recurrence in 35% of cases (53). In another
report, tailored therapy based on the severity of histological and
serological hepatitis was successful and spontaneous
improvement was noted in 37.5% of patients (20).
Recommendations on third-line therapy stem from case
reports with T cell-directed therapies using tacrolimus (54) and
anti-thymocyte globulins (ATG) (55–57). The use of anti-TNF
inhibitors is generally not recommended due to sparse reports of
adverse events; however, evidence is limited (58).

ILICI most often resolves in 4 to 6 weeks (13, 52). Protracted
biochemical resolution after liver injury has also been described
in a case report with a return to near-normal transaminase levels
only 5 months after treatment withdrawal (59). Case reports of
deaths due to liver failure after ILICI are rare (60), and overall
mortality due to ILICI is estimated to be inferior to 0.05% in a
systematic review and meta-analysis (61). Nonetheless, ILICI
represented 8 to 11% of deaths attributed to ICI-related toxicity
in the same cohort, a proportion that remained inferior to deaths
Frontiers in Immunology | www.frontiersin.org 4
due to colitis, pneumonitis, and cardiac toxicity (61). Other
repository-based studies have reported higher mortality with
hepatotoxicity, although without clear evidence of ILICI in all
cases (11).

Overall, a complex equilibrium between tumor response,
irAEs, and immunosuppressive therapy has emerged. Currently
published reports focus mostly on non-hepatic irAEs and data
pertaining specifically to ILICI is lacking. In an initial report,
patients developing irAE (all hypophysitis) had improved overall
survival; nonetheless, treatment with high-dose steroids led to a
reduced survival benefit when compared to low-dose steroids (≤
7.5 mg prednisone daily) (62). Subsequent reports have
highlighted improved anti-tumor efficacy and overall survival
in patients with irAEs (63). Meanwhile, baseline corticosteroid
use in non-small cell lung cancer for the treatment of neoplasia-
related symptoms (notably brain metastases, fatigue, and
dyspnea) has been associated with reduced overall and
progression-free survival (64). Strikingly, these reports
highlight adverse events at steroid doses (7.5 and 10 mg daily)
inferior to the recommended doses for treatment of irAEs (62,
64). Therefore, the judicious use of corticosteroids in cases of
irAEs might benefit the overall prognosis. Furthermore, a better
understanding of the pathophysiology of ILICI might eventually
lead to the selection of a more appropriate treatment regimen.
ETIOLOGY OF IMMUNE CHECKPOINT
INHIBITORS HEPATITIS

Several mechanisms have been proposed to explain the presence
of ILICI including direct cytotoxicity of the administered
antibodies through complement activation (7, 65). While this
could be possible since the targets of several cancer
immunotherapies, such as PD-1 and PD-L1, are expressed by
healthy tissue, it does not explain why the liver would be
specifically targeted. Other mechanisms that have also been put
forward include epitope spreading in which a diversification of
the immune response from the original anti-tumoral response
can lead to an indiscriminate autoimmune response (66), a loss
of Treg-mediated peripheral tolerance (67) and TNF-a-mediated
hepatotoxicity (68). We know that the presence of pre-existing
liver disease can increase the incidence of ILICI and that the
incidence of hepatic irAEs is increased in patients who received
combination therapy (5). However, the specific immune
mechanism(s) responsible for the development of ILICI during
ICI therapy remain(s) unknown.

The liver’s unique characteristics could be key in
understanding the pathogenesis of ILICI. The liver is a very
distinct anatomical and immunological site in which blood is
constrained through a network of sinusoids with circulating cells
being scanned by specialized liver-resident antigen-presenting
cells such as Kupffer cells and by highly differentiated liver
sinusoidal endothelial cells (LSECs).

The Liver as an Immunological Organ
The liver has unique immunological features that distinguish it
from other non-lymphoid organs (69, 70). Located at
June 2022 | Volume 13 | Article 907591
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the interface between the intestinal and systemic circulations, the
liver has evolved specific immune mechanisms to protect the
body against pathogens while maintaining a tolerogenic state
towards harmless antigens from food and intestinal flora. The
distinct microenvironment in which liver-resident immune cells
have to function has led to the development of immunological
mechanisms unique to the liver.

The liver is the only non-lymphoid organ able to induce the
primary activation of naïve CD8+ T cells (71). However, while
this activation can lead to fully functional and effective CD8+ T
cells (72), it can also lead to tolerance through ineffective
activation of CD8+ T cells with defective cytotoxic capacities
and shortened half-life (73). This phenomenon is believed to be
involved in the development of oral tolerance and the induction
of tolerance in liver allografts (70).

The constant exposure of the liver to bacterial lipopolysaccharides
(LPS) from the intestinal flora has several consequences on the
development of its immune responses. One of these is a
phenomenon called “endotoxin tolerance” where exposure of cells
to low concentrations of LPS, the natural ligands of TLR4, make
them refractory to subsequent stimulation by TLR4 (74).
This exposure also leads to the release of immunosuppressive
cytokines such as IL-10, TGF-b, HGF (hepatocyte growth factor),
and retinoic acid by stellate-Ito cells (74). Therefore, LPS exposure
leads to the establishment of an immunological microenvironment
in the liver that influences the development of subsequent
immunological responses.

At the end of an immune response, the population of
activated T cells contracts, leaving only a small population of
memory T cells. This deletion of CD8+ T cells from the
periphery is associated with the accumulation of apoptotic
CD8+ T cells in the liver and, in some cases, liver damage
(75). This is linked with one of the more interesting effects of LPS
on the liver: the induction of low-level expression of adhesion
molecules such as ICAM-1 and VCAM-1 by LSECs and Kupffer
cells in hepatic sinusoids. ICAM-1 and VCAM-1 adhesion
molecules are usually expressed at the sites of inflammation to
allow entry into the parenchyma of activated CD8+ T cells. The
constitutive expression by the liver of these adhesion molecules is
therefore in direct competition with inflamed tissues for the
sequestration of circulating activated T cells (76). The ICAM-1
and VCAM-1 expression and the slow blood flow in liver
sinusoids that facilitates cellular interactions between
circulating activated T cells and LSECs and Kupffer cells,
explains the preferential accumulation of activated CD8+ T
cells in the liver during the contraction of an immune response
(77, 78). This has been shown using a model of experimental
activation of CD8+ T cells by either a superantigen, a soluble
peptide specific to the T cell receptor, or by an anti-CD3
antibody, which leads to their disappearance from lymphoid
organs and the accumulation of apoptotic CD8+ T cells in the
liver (79).

While the liver preferentially retains activated CD8+ T cells,
CD4+ T cell retention also occurs in the liver but through a
different mechanism (76, 80). While activated CD8+ T cell
trapping occurs either through VCAM-1/a4b1-integrin or
Frontiers in Immunology | www.frontiersin.org 5
ICAM-1/LFA-1 interaction, activated CD4+ T cells are mostly
retained through VCAM-1/a4b1-integrin interactions for Th1
CD4+ T cells, and VAP-1/Siglec-10 for Th2 CD4+ T cells (76,
80). Of note, ICAM-1 and VCAM-1-mediated trapping is
responsible for up to 90% of lymphocyte retention in the liver
while the remaining 10% is thought to be VAP-1 mediated (76).

This preference for activated CD8+ T cells is due, among
other things, to the level of expression of LFA-1, the ICAM-1
receptor (77). LFA-1 is expressed at a much higher level by
activated CD8+ T cells than by activated CD4+ T cells (77). In
isolated perfused liver experiments, ICAM-1-deficient livers
accumulate far fewer activated CD8+ T cells than control livers
(77). Additionally, during infection with lymphocytic
choriomeningitis virus (LCMV), the migration of activated
CD8+ T cells to the liver and other sites of infection is
inhibited in the absence of ICAM-1 (81).

Once sequestered by the liver, these activated CD8+ T cells
encounter Kupffer cells and, via the binding of their FasL
molecules to Fas expressed on Kupffer cells and their secretion
of IFN-g, induce the secretion of TNF-a by Kupffer cells (75).
TNF-a is then responsible for inducing apoptosis of activated T
cells in the liver (75). In a murine model of circulating activated
CD8+ T cells, treatment of these mice with anti-TNF-a
antibodies led to increased numbers of activated CD8+ T cells
in the lymph nodes, spleen, and liver (75). However, apoptosis
and caspase activity decreased only in liver CD8+ T cells, but not
in lymphoid organs (75). These results indicate that TNF-a is
responsible for inducing apoptosis in the liver and suggest that
CD8+ T cells escaping this mechanism of deletion can recirculate
into the periphery (75).

The secretion of TNF-a during the arrival of massive
numbers of activated CD8+ T cells in the liver can cause liver
toxicity and lead to hepatocyte death, a phenomenon coined
bystander hepatitis. This phenomenon can be observed during
infection by non-hepatotropic viruses, such as influenza and the
Epstein-Barr virus, that induce a strong immune response and
the activation of large numbers of T cells (82). This bystander
hepatitis, generally moderate or light, can also be observed in
other inflammatory diseases such as inflammatory bowel disease
or celiac disease given the direct link with the liver through the
portal circulation (83, 84). This bystander hepatitis and the
associated increase in ALT levels caused by the induction of
apoptosis of activated CD8+ T cells is likely directly related to
Kupffer cells since their depletion in an experimental model of
bystander hepatitis prevents the development of hepatitis (85).
PROPOSED MECHANISM FOR HEPATIC
IRAES IN CANCER IMMUNOTHERAPY

Cancer immunotherapy targets immune checkpoint molecules,
namely CTLA-4 and PD-1, that send inhibitory signals that
reduce T cell function, activation, and proliferation (86).
Therefore, inhibition of these molecules induces an increased
activation of T cell immune responses thereby inducing an anti-
tumoral response in these patients. It is this increase in
June 2022 | Volume 13 | Article 907591
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circulating activated T cells that have become refractory, at least
in parts, to inhibitory signaling due to the ICI blockade therapy
that could be responsible for the development of ILICI.

Based on current knowledge of liver immunology, the
pathogenesis of AIH, and key observations made about ILICI
(65), we propose the following series of events to explain the
development of immune-mediated hepatitis following the
administration of immune checkpoint inhibitors (Figure 1).

Adhesion of Activated T Cells to
Hepatic Sinusoids
Activated T cells generated by ICI therapy would be sequestered
by the liver through binding of a4b1-integrin and LFA-1,
expressed by activated CD8+ T cells, with adhesion molecules
VCAM-1 and ICAM-1, respectively, that are expressed in
hepatic sinusoids by LSECs and Kupffer cells (76, 87).
Activated CD4+ T cells could also be retained by liver cells
through VCAM-1/a4b1-integrin and VAP-1/Siglec-10
interactions for Th1 and Th2 CD4+ T cells respectively (80).

Apoptosis of Activated T Cells
Following their retention in the liver, activated T cells would
interact with Kupffer cells through ligation of Fas death receptor
on activated T cells and FasL expressed on LSECs and Kupffer
cells. The activation of Fas by FasL and IFN-gamma secretion by
activated CD8+ T cells would induce the expression and
secretion of TNF-a by Kupffer cells. This would then lead to
the apoptosis of activated T cells by Fas/FasL interactions,
Frontiers in Immunology | www.frontiersin.org 6
binding of TNF-a with its cognate receptor tumor necrosis
factor receptor 1 (TNFR1) and LSECs- and Kupffer cell-
expressed TRAIL binding with TNF-related apoptosis-inducing
ligand receptor (TRAILR) expressed by activated T cells (88).

Apoptosis of Hepatocytes
The activation of Kupffer cells by activated T cells, through the
combined effect of Fas/FasL ligation and Interferon-gamma
secretion by activated T cells, would lead to increased secretion
of cytotoxic TNF-a by Kupffer cells, TNF-a acting as an
autocrine amplifier of Kupffer cell function (75). This would
sensitize hepatocytes that would then be susceptible to Fas-
induced and IFN-gamma-mediated apoptosis by infiltrating
activated T cells (89, 90). Hepatocyte injury would also be
likely further enhanced due to the immune checkpoint
blockade therapy that limits the physiological mechanisms
responsible for restricting the immune response against self
(PD-1/PD-L1 for example) or inhibiting T cell responses
(CTLA-4/B7 for example).

While this is a theoretical model of how an immune-mediated
liver injury could occur following ICI treatment, it remains
compatible with several observations made during ICI therapy
and ILICI. For example, we know that anti-PD-1/anti-CTLA-4
combination treatment induces a profound increase in T cell
proliferation and activation (91). Based on the proposed model
of ICI hepatitis, this increased number of activated T cells could
explain the observed increased incidence of hepatic irAEs in
patients with combined anti-PD-1/anti-CTLA-4 treatment (12).
FIGURE 1 | Putative mechanisms of liver damage during immune checkpoint inhibitor cancer immunotherapy. We propose the following series of events leading
to liver damage during ICI therapy. 1) Adhesion of activated T cells in hepatic sinusoids. First, activated CD8+ T cells would be trapped by the liver through
binding of their a4b1-integrin to LSECs and Kupffer cell-expressed VCAM-1 and ICAM-1. Activated CD4+ T cells could also be retained by the liver through
a4b1-integrin and Siglec-10 binding to LSECs- and Kupffer cell-expressed VCAM-1 and VAP-1. 2) Apoptosis of activated T cells. Following their retention in the
liver, activated T cells Fas death receptor would bind FasL expressed on LSECs and Kupffer cells. This Fas/FasL interaction and the IFN-gamma secretion by
activated CD8+ T cells would induce the expression and secretion of TNF-a by Kupffer cells. This would lead to the apoptosis of activated T cells by both Fas/
FasL interactions and the ligation of TNF-a to their tumor necrosis factor receptor 1 (TNFR1). Apoptosis could also occur through binding of LSECs- and Kupffer
cell-expressed TRAIL with TNF-related apoptosis-inducing ligand receptor (TRAILR) expressed on activated T cells. 3) Apoptosis of hepatocytes. The activation
of Kupffer cells by activated T cells through the combined effect of Fas/FasL ligation and Interferon-gamma secretion by activated T cells would lead to the
secretion of large amounts of cytotoxic TNF-a by Kupffer cells. This would sensitize hepatocytes that would then be susceptible to Fas-induced and IFN-
gamma-mediated apoptosis by infiltrating activated T cells.
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In addition, adhesion molecules such as ICAM-1, VCAM-1,
and VAP-1 are known to be over-expressed in the setting of liver
inflammation (80, 92, 93). Based on our model, this could impact
the sequestration of activated T cells in the liver potentially
leading to the increased incidence of ILICI observed in patients
with pre-existing liver disease (5, 6).

Interestingly, several observations have linked CD8+ T cells
and the development of ILICI including an increased level of
perforin- and granzyme B-positive cytotoxic CD8+ T cells in
patients with ILICI compared to checkpoint inhibitor-treated
patients without ILICI and healthy controls (94, 95), a
predominance of CD8+ T cells among liver-infiltrating
lymphocytes in patients treated with anti-CTLA4 who
developed ILICI (19) and in a murine model of amodiaquine-
mediated idiosyncratic drug‐induced liver injury using PD1-/-
mice, the depletion of CD8+ T cells prevented liver injury (96).

A key question is why only certain patients treated with ICI
will develop ILICI while most do not. Using experimental
models, it has been shown that invalidation of immune
checkpoint inhibitors, such as PD-1 in PD-1 -/- mice for
example, per se, does not lead to liver injury (97). However,
several drugs, including amodiaquine (96), nevirapine, and
isoniazid combined with CTLA4 inhibitors (98) and
epigallocatechin gallate (the main catechin in green tea)
combined with CTLA4 blockade (99), lead to liver injury.
Despite being made in models of idiosyncratic drug‐induced
liver injury, these observations suggest that liver injury results
from immune checkpoint inhibition combined with a triggering
event such as exposure to a drug or xenobiotic. These triggering
events could allow the number of activated CD8+ T cells or their
level of activation to overcome a threshold necessary to elicit a
liver injury. For example, based on our proposed model, a certain
number of liver-infiltrating activated CD8+ T cells could be
required before a hepatotoxic level of Kupffer cell-secreted TNF-
a is reached. This could explain why only certain patients will
develop ILICI and others will not.

In this model, we have addressed the most frequent cases of
ILICI where liver inflammation is rapidly resolved upon ICI
treatment cessation or immunosuppressive treatment. However,
there are more severe cases, and given the heterogeneity of liver
histology and response to treatment (22, 100), we can postulate
that an autoreactive immune response with subsequent
autoimmune hepatitis could develop in such conditions. We
know that there likely is a triggering event in the development of
an AIH in susceptible individuals (101). In refractory cases of
ILICI, these patients could have existing circulating autoreactive
T cells that, upon ICI treatment, would become activated,
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possibly through epitope spreading (66), and if they could
escape apoptosis in the liver, could have recognized their
cognate autoantigen in the liver and proliferated. In these rare
cases, the ILICI could have been a trigger and a first step into the
development of a bona fide AIH. Further research is needed to
characterize the immune responses in these patients and
determine if a break of immunological tolerance and the
development of an autoimmune response can indeed be caused
by ICI therapy.
CONCLUSION

The success of immune checkpoint inhibitors therapy against
several types of cancer has led to their use in an increasing
number of patients. Since these treatments are associated with
immune-related adverse events, including immune-mediated
autoimmune-like hepatitis, these have become an increasing
concern for clinicians. The fact that the liver has become one
of the targets of these immune-related adverse events is likely in
part due to its unique immunological characteristics and
microenvironment. Herein, we proposed a series of events,
based on the current knowledge of liver immunology and of
the pathogenesis of autoimmune hepatitis, that could trigger the
liver injury observed in ICI-treated patients. This model could be
useful to design further studies aimed at identifying the specific
immune mechanism(s) at play in ILICI.
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