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Abstract: The novel glycosphingolipid, β-D-GalNAcp(1→4)[α-D-Fucp(1→3)]-β-D-

GlcNAcp(1→)Cer (A), isolated from the marine sponge Aplysinella rhax has a unique 

structure, with D-fucose and N-acetyl-D-galactosamine moieties attached to a reducing-end 

N-acetyl-D-glucosamine through an α1→3 and β1→4 linkage, respectively. We 

synthesized glycolipid 1 and some non-natural di- and trisaccharide analogues 2-6 

containing a D-fucose residue. Among these compounds, the natural type showed the most 

potent nitric oxide (NO) production inhibitory activity against LPS-induced J774.1 cells. 

Our results indicate that both the presence of a D-Fucα1-3GlcNAc-linkage and the 

ceramide aglycon portion are crucial for optimal NO inhibition. 

Keywords: glycosphingolipid; Aplysinella rhax; D-fucose; nitric oxide 

 

1. Introduction  

Carbohydrates in the form of glycoconjugates, for example glycoproteins, glycolipids and 

proteoglycans, play an important role in many intracellular and extracellular events including cell-cell 
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adhesion, cell differentiation, signal transduction, cancer metastasis and immune responses [1]. The 

majority of these studies have focused on higher animals and relatively little is known about the 

functions of glycoconjugates in lower animals [2]. In order to study the biological properties of 

glycans in glycoconjugates, over the past decade we have synthesized novel glycolipid and 

glycoprotein derivatives found in various invertebrates [3-12]. Organic synthesis is a powerful method 

to explore structure activity relationships by providing access to large amounts of homogeneous and 

structurally defined oligosaccharides including not only natural compounds, but also non-natural 

compounds [13]. Recently, Zollo et al. isolated and characterized a novel neutral glycosphingolipid (A, 

Figure 1) from the marine sponge Aplysinella rhax which features a D-fucose and an N-acetyl-D-

galactosamine attached to a reducing-end N-acetyl-D-glucosamine through a α1→3 and a β1→4 

linkages, respectively [14]. This was the first report on glycolipids containing D-fucose. Furthermore, 

these glycolipids have been found to exhibit significant inhibitory activity on LPS-induced nitric oxide 

(NO) release by J774.1 macrophages. In order to study the structure-activity relationships of these 

compounds inhibiting NO release, we previously reported the synthesis of β-D-GalNAcp(1→4)[α-D-

Fucp(1→3)]-β-D-GlcNAcp(1→)aglycon trisaccharide analogues, containing a 2-branched fatty alkyl 

residue and a 2-(trimethylsilyl)ethyl (TMS-Et) residue, respectively [6]. Moreover, biological 

evaluation of these novel glycosphingolipid analogues using an LPS-induced NO release assay 

demonstrated that the presence of D-fucose is crucial for the NO inhibitory effect, while structural 

modifications at the aglycon moiety appeared to have little to no effect on LPS-induced NO release [6]. 

In this study, we describe for the first time the total synthesis of glycosphingolipid 1 and its structural 

analogues 3-6 to elucidate the structure activity relationships on LPS-induced NO production in more 

detail (Figure 1).  

 

Figure 1. Target glycosphingolipid and the analogue compounds 
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2-(Trimethylsilyl)ethyl β-D-galactopyranosyl-(1→4)-[α-D-fucopyranosyl-(1→3)]-2-acetamido-2-

deoxy-β-D-glucopyranoside (3) was selected to explore how the presence of a terminal β-D-galacto-
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pyranosyl linkage instead of a 2-acetamido-2-deoxy-β-D-galactopyranosyl linkage affects the 

biological effect. Disaccharide-based regioisomers 4 and 5 were selected to explore differences in the 

connectivity of the α-D-fucopyranosyl moiety to the-β-D-GlcNAc portion while trisaccharide 6 was 

chosen to study the effect of two α-D-fucopyranosyl linkages linked to the core -D-GlcNAc moiety. 

The NO-inhibitory affect of commercially available ceramide 7 and known trisaccharide 2 was 

included in these experiments for comparison. 

2. Results and Discussion  

2.1. Chemical synthesis  

Synthesis of glycosphingolipid 1: Glycosylation of phytoceramide acceptor 9 [15] with the glycosyl 

imidate 8 [6] was carried out in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) 

[16] and 4 Å molecular sieves (MS4 Å) to obtain the desired glycolipid derivative 10 in 33% yield 

with complete β-steroselectivity. Deprotection of the Troc group was achieved with Zn in a mixture 

containing acetic anhydride and acetic acid, followed by catalytic hydrogenolysis over 10% Pd/C in 

MeOH/THF to provide 11 in 47% yield. Deacetylation of 11 using Zemplén conditions and 

purification by column chromatography on Sephadex LH-20 afforded target glycolipid 1 quantitatively 

(Scheme 1).  

Scheme 1. Synthesis of glycosphingolipid 1. 
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Syntheses of oligosaccharides 3-6: Glycosylation of known disaccharide acceptor 12 [3] with the 

known D-fucopyranosyl donor 13 [6] in the presence of N-iodosuccinimide (NIS), trifluoro-

methanesulfonic acid (TfOH) [17] and MS4 Å in dichloromethane provided the desired α-glycoside 14 

in 88% yield with complete α-stereoselectivity. The newly formed α-glycosidic linkage was confirmed 

by 1H-NMR spectroscopy. The anomeric proton of the fucose moiety in 14 appeared at 4.85 ppm as a 

doublet with a homonuclear proton-proton coupling constant of 3.7 Hz (H-1 of Fuc, δ  = 4.85 ppm, 

JH1,H2 = 3.7 Hz). Deprotection of the Troc group in 14 was achieved with Zn in a mixture containing 

acetic anhydride and acetic acid, followed by catalytic hydrogenolysis over 10% Pd-C in MeOH and 
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acetylation to provide 15. Zemplén deacetylation and purification by column chromatography on 

Sephadex LH-20 produced trisaccharide 3 quantitatively (Scheme 2).  

Scheme 2. Synthesis of oligosaccharide 3. 
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The synthesis of disaccharides 4 and 5 and trisaccharide 6 is outlined in Schemes 3-5. Glycosylation 

of known glycosyl acceptors 16, 19 [6] and 22 [18] with the D-fucopyranosyl donor 13 in the presence 

of NIS, TfOH and MS4 Å in dichloromethane gave the desired α-glycosides 17 (68%), 20 (78%) and 

the trisaccharide 23 (42%) with complete α-steroselectivity, respectively. The newly formed α-

glycosidic linkage was confirmed by 1H-NMR spectroscopy. The Troc-protecting group of 17 was 

converted into an acetamido group by reduction with Zn-AcOH followed by debenzylidenation and 

debenzylation with catalytic hydrogenolysis over 10% Pd/C in MeOH-AcOH and acetylation to afford 

18 in 44% yield. Finally, standard deacetylation and purification by column chromatography on 

Sephadex LH-20 furnished disaccharide 4 in 86% yield (Scheme 3).  

 

Scheme 3. Synthesis of oligosaccharide 4. 
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Disaccharide 5 was synthesized from the disaccharide 20 in a six steps deblocking/blocking 

procedure (Scheme 4). At first, the chloroacetyl protecting group in 20 was deblocked with thiourea in 

an ethanol/pyridine solvent mixture before conversion of the Troc group into an acetamido group using 
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standard conditions. Debenzylation using catalytic hydrogenolysis followed by acetylation provided 

protected disaccharide 21 in 45% yield which was deprotected using standard conditions to provide 

disaccharide 5 (Scheme 4).  

 

Scheme 4. Synthesis of oligosaccharide 5 
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The remaining trisaccharide 6 was prepared from protected trisaccharide 23 in a five steps 

procedure. Initially, the phthalimido-protecting group of 23 was removed using hydrazine 

monohydrate in ethanol followed by standard acetylation, debenzylation by catalytic hydrogenation 

over 10% Pd-C in MeOH-THF and acetylation to provide peracetylated trisaccharide 24 in 47% yield. 

Finally, standard deacetylation and purification by column chromatography on Sephadex LH-20 

provided disaccharide 6 (Scheme 5).  Oligosaccharide 2 was prepared according to a procedure 

previously reported by us [6]. 

 

Scheme 5. Synthesis of oligosaccharide 6 
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3.2. Inhibitory Effects of Synthetic Compounds on NO Production 

The synthetic compounds were evaluated for their ability to inhibit nitric oxide (NO) production by 

LPS-induced macrophage-like J774.1 cells [19] (Figure 2). NO, a short living mediator is synthesized 

by a family of enzymes termed NO-synthase. Two types of NOS are recognized: constitutive isoforms 

and inducible isoforms (iNOS). iNOS is regulated by inflammatory mediators (LPS, cytokines) and the 

excessive production of NO by iNOS has been implicated in the pathogenesis of the inflammatory 

response [14]. The glycolipid 1 showed comparable NO inhibitory activity in high concentration (100 

μM) to NG-monomethyl-L-arginine (L-NMMA) used as the positive control. Related compounds 

having the common D-Fucα1-3GlcNAc structure (i.e. 2, 3 and 4) also showed significant inhibitory 

activity resulting in a 20% reduction of NO release at 50 μM and 100 μM concentrations. However, 

very little or no inhibition of NO release were seen at these concentrations for disaccharide 5 and 

trisaccharide 6 bearing an unnatural D-Fucα1-4GlcNAc linkage. Interestingly, glycosphingolipid 1 

showed stronger activity than 2, suggesting that the ceramide-based aglycon contributes to the 

inhibition of NO release more efficiently than a 2-(trimethylsilyl) ethyl-based aglycon. Moreover, 

commercial ceramide 7 showed inhibitory activity at higher concentration (100 μM). However, the 

activity of ceramide is strongly enhanced by glycosylation to the trisaccharide β-D-GalNAcp(1→4)[α-

D-Fucp(1→3)]-β-D-GlcNAc indicating that both the trisaccharide and ceramide-based aglycon portion 

of the glycosphingolipid contribute to the inhibition of cellular nitric oxide release. 

 

Figure 2. Inhibitory effects on NO production in LPS-activated J774.1 cells of compounds 

1-7. Each data represents the mean ± SD for quadruplet experimentals. P: Positive control 

(L-NMMA), 50 μM. 
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3. Experimental  

3.1. General  

 

Optical rotations were measured with a Jasco P-1020 digital polarimeter. 1H- and 13C-NMR  spectra 

were recorded with JMN A500 and ECP 600 FT NMR spectrometers with Me4Si as the internal 

standard for solutions in CDCl3 and CD3OD. MALDI-TOFMS was recorded on an Applied 

Biosystems Voyager DE RP mass spectrometer. High-resolution mass spectra were recorded on a 

JEOL JMS-700 under FAB conditions. TLC was performed on Silica Gel 60 F254 (E. Merck) with 

detection by quenching of UV fluorescence and by charring with 10% H2SO4. Column 

chromatography was carried out on Silica Gel 60 (E. Merck). The compounds 3,4,6-Tri-O-acetyl-2-

deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-D-

fucopyranosyl-(1→3)]- 6-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-D-glucopyranosyl 

trichloroacetimidate (8) [6], 2-(trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-

(1→4)-6-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (12) [3], 

phenyl 2,3,4-tri-O-benzyl-1-thio-β-D-fucopyranoside (13) [6], 2-(Trimethylsilyl)ethyl 4,6-O-benzyl-

idene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (16) [6], 2-(trimethyl-

silyl)ethyl 6-O-benzyl-3-O-chloroacetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-gluco-

pyranoside (19) [6] and 2-(trimethylsilyl)ethyl 6-O-benzyl-2-deoxy-2-phthalimide-β-D-gluco-

pyranoside (22) [18] were prepared as reported. Benzylceramide 9 was prepared by the conventional 

four-steps procedure [15] from phytosphingosine, which was purchased from Degussa (The 

Netherlands).  

 

3,4,6-Tri-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-galactopyranosyl-(1→4)-

[2,3,4-tri-O-acetyl-α-D-fucopyranosyl-(1→3)]-6-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonyl-

amino)-β-D-glucopyranosyl-(1→1)-(2S,3S,4R)-3,4-di-O-benzyl-2-hexadecanamido-octadecane-3,4-di-

ol (10). Four Å molecular sieves  (250 mg) were added to a solution of 8 (21 mg, 16.5 μmol) and 

(2S,3S,4R)-3-O-benzoyl-2-hexadecanamido-4-octa-decene-1,3-diol 9 (24 mg, 30.0 μmol) in dry 

CH2Cl2 (0.5 mL) and the mixture was stirred for 16 h at room temperature, then cooled to 0 °C. 

TMSOTf (3 μL, 0.01 mmol) was added, and the mixture was stirred for 1 h at 0 °C, then neutralized 

with Et3N. The solids were filtered off and washed with CHCl3. The combined filtrate and washings 

were successively washed with water, dried (MgSO4), and concentrated. The product was purified by 

silica gel column chromatography using 3:1 toluene-EtOAc as eluent to give 10 (10 mg, 33%). [α]D
23 

= +18.2°(c 1.0, CHCl3); 
1H-NMR (500 MHz, CDCl3): δ 4.94 (d, 1H, J1,2=3.7Hz, H-1 of fuc), 4.50 (br. 

d, 1H, H-1 of GlcNAc), 4.34 (br. s, 1H, H-1, of GalNAc). MALDI-TOFMS: Calcd for 

C86H129Cl6N3O27Na [M+Na]+: m/z 1868.7 Found: 1869.4. 

 

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-D-fuco-

pyranosyl-(1→3)]-2-acetamido-6-O-acetyl-2-deoxy-β-D-glucopyranosyl-(1→1)-(2S,3S,4R)-hexa-

decanamido-octadecane-3,4-di-ol (11). To a solution of 10 (31mg, 16.8 μmol) in acetic anhydride (2 

mL) and AcOH (2 mL) was added zinc powder (100 mg). The reaction mixture was stirred for 16 h at 

room temperature. After completion of the reaction, the solids were filtered off and the filtrate was 
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concentrated with toluene. The solution of the product and Pd/C (10%, 100 mg) in 1:1 MeOH/THF 

(2.0 mL) was stirred for 16 h at room temperature under H2, then filtered and concentrated.  The 

product was purified by silica gel column chromatography using 2:1 toluene acetone as eluent to give 

11 as an amorphous powder (11 mg, 47%). [α]D
23 = +5.3°(c 0.7, CHCl3); 

1H-NMR (500 MHz, CDCl3): 

δ 5.15 (d, 1H, J1,2=3.7Hz, H-1 of fuc), 4.33 (br. d, 1H, H-1 of GlcNAc), 4.30 (br. s, 1H, H-1, of 

GalNAc). MALDI-TOFMS: Calcd for C70H119N3O25Na [M+Na]+: m/z 1424.8 Found: 1424.5. 

 

2-Acetamido-2-deoxy-β-D-galactopyranosyl-(1→4)-[α-D-fucopyranosyl-(1→3)]-2-acetamido-2-

deoxy-β-D-glucopyranosyl-(1→1)-(2S,3S,4R)–hexadecanamido-octadecane-3,4-di-ol (1). To a 

solution of 11 (11 mg, 7.8 μmol) in MeOH (2 mL) was added dioxane (2 mL) and NaOMe (25 mg) at 

40 °C. The mixture was stirred for 2 h and then neutralized with Amberlite IR 120 [H+]. The mixture 

was filtered and concentrated. The product was purified by Sephadex LH-20 column chromatography 

in 1:1 CHCl3-MeOH to give 1 as white solid (10 mg, quant.). [α]D
25 +17.0 (c=0.06, 1:1 CHCl3-MeOH). 

1H-NMR (500 MHz, 1:1 CDCl3-CD3OD): δ 5.13 (d, 1H, J=3.7Hz, H-1 of Fuc), 4.62 (d, 1H, J =8.3Hz, 

H-1 of GlcNAc), 4.32 (d, 1H, d, 1H, J =8.0Hz, H-1 of GalNAc). MALDI-TOFMS: Calcd for 

C56H105N3O18Na: m/z 1130.7 Found: 1130.4 [M+Na]+. HR-FABMS: Calcd for C56H105N3O18Na: m/z 

1130.7291. Found m/z 1130.7257 [M+Na]+. 

 

2-(Trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-benzyl-α-D-

fucopyranosyl-(1→3)]-6-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy- carbonylamino)-β-D-gluco-

pyranoside (14). To a solution of 12 (99 mg, 0.11 mmol) and 13 (89 mg, 0.17 mmol) in dry CH2Cl2 

(1.5 mL) was added powdered MS 4Å (200 mg), and the mixture was stirred for 2 h at room 

temperature, then cooled to -60 °C. NIS (57 mg, 0.03 mmol) and TfOH (1.5 μL, 0.01 mmol) were 

added to the mixture, which was stirred for 3 h at -60 °C, then neutralized with Et3N. The solids were 

filtered off and washed with CHCl3. The combined filtrate and washings were successively washed 

with aq Na2S2O3 and water, dried (MgSO4), and concentrated. The product was purified by silica gel 

column chromatography using 3:1 hexane-EtOAc as eluent to give 14 (128 mg, 88%). [α]D
24 +20.4 (c 

0.7, CHCl3); 
1H-NMR (500 MHz, CDCl3): δ 7.28–7.14 (m, 20H, 4Ph), 5.74 (d, 1H, NH), 5.26 (d, 1H, 

H-4 of Gal), 5.11 (t, 1H, H-2 of Gal), 4.92–4.84 (m, 2H, H-3 of Gal, benzylmethylene), 4.85 (d, 1H, 

J1,2=3.7 Hz, H-1 of Fuc), 4.75–4.54 (m, 7H, benzylmethylene x 5, CH2CCl3), 4.40 (d, 1H, J1,2=7.3 Hz, 

H-1 of GlcNAc), 4.38 (d, 1H, J1,2=7.9 Hz, H-1 of Gal), 4.27 (dd, 2H, benzylmethylene x 2), 4.06–4.02 

(m, 2H, H-6a of GlcNAc, H-5 of Fuc), 3.97–3.75 (m, 9H, H-2, H-3, H-6b of GlcNAc, H-5, H-6 of Gal, 

H-2, H-3 of Fuc, CH2CH2Si(CH3)3), 3.66–3.62 (m, 3H, H-4, H-5 of GlcNAc, H-4 of Fuc), 3.38–3.32 

(m, 1H, CH2CH2Si(CH3)3), 2.07–1.87 (m, 12H, CH3CO x 4), 1.09 (d, 3H, H-6 of Fuc), 0.88–0.73 (m, 

2H, CH2CH2Si(CH3)3), –0.09 (s, 9H, Si(CH3)3); 
13C-NMR (125 MHz, CDCl3): δ 170.2, 170.0, 154.2, 

139.0, 138.9, 138.7, 138.3, 128.4, 128.23, 128.20, 127.8, 127.74, 127.65, 127.59, 127.5, 127.3, 100.2 

(C-1 of GlcNAc), 100.1 (C-1 of Gal), 99.3 (C-1 of Fuc), 95.8, 79.5, 77.8, 76.4, 76.3, 75.6, 74.8, 74.6, 

74.1, 73.5, 73.2, 72.9, 71.0, 70.4, 69.0, 67.4, 66.8, 66.7, 61.1, 53.6, 29.7, 20.8, 20.62, 20.57, 18.2, 16.5, 

–1.4 (Si(CH3)3); MALDI-TOFMS: Calcd for C62H78Cl3NO20SiNa: m/z 1312.4 Found: 1312.9 

[M+Na]+. 
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2-(Trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-(1→4)-[2,3,4-tri-O-acetyl-α-D-

fucopyranosyl-(1→3)]-6-O-acetyl-2-acetamido-2-deoxy-β-D-glucopyranoside (15). To a solution of 14 

(107 mg, 0.08 mmol) in acetic anhydride (6 mL) and AcOH (6 mL) was added zinc powder (150 mg). 

The reaction mixture was stirred for 12 h at 40 °C. After completion of the reaction, the solids were 

filtered off and the filtrate was concentrated with toluene. The solution of the product and Pd/C (10%, 

100 mg) in MeOH (2.0 mL) was stirred for 16 h at room temperature under H2, then filtered and 

concentrated. The residue was acetylated with acetic anhydride (2 mL) in pyridine (3 mL) for 16 h at 

room temperature. The reaction mixture was poured into ice-water and extracted with CHCl3. The 

extract was washed sequentially with 5% HCl, aq NaHCO3 and water, dried (MgSO4), and 

concentrated. The product was purified by silica gel column chromatography using 5:1 toluene-acetone 

as eluent to give 15 (37 mg, 46%) as an amorphous powder.  [α]D
24 +11.8 (c 0.7, CHCl3); 

1H-NMR 

(500 MHz, CDCl3): δ 6.47 (d, 1H, NH), 5.36 (d, 1H, H-4 of Gal), 5.23–5.21 (m, 2H, H-2 of Gal, H-4 

of Fuc), 5.10–5.00 (m, 3H, H-3 of Gal, H-2, H-3 of Fuc), 5.08 (d, 1H, J1,2=3.7 Hz, H-1 of Fuc), 4.57 

(dd, 1H, H-6a of Gal), 4.52 (d, 1H, J1,2=7.9 Hz, H-1 of Gal),4.42 (dd, 1H, H-5 of Fuc), 4.37 (d, 1H, 

J1,2=7.9 Hz, H-1 of GlcNAc), 4.33 (dd, 1H, H-6b of Gal), 4.24 (br d, 1H, H-2 of GlcNAc), 4.09 (d, 2H, 

H-6 of GlcNAc), 3.93–3.85 (m, 4H, H-3, H-4 of GlcNAc, H-5 of Gal, CH2CH2Si(CH3)3), 3.69(s, 1H, 

H-5 of GlcNAc), 2.18–1.81 (m, 27H, CH3CO x 9), 1.13 (d, 3H, H-6 of Fuc), 0.98–0.80 (m, 2H, 

CH2CH2Si(CH3)3), –0.02 (s, 9H, Si(CH3)3); 
13C-NMR (125 MHz, CDCl3): δ 170.9, 170.7, 170.5, 

170.3, 170.2, 170.0, 169.9, 169.5, 99.5 (C-1 of Gal), 99.4 (C-1 of GlcNAc), 97.3 (C-1 of Fuc), 73.4, 

72.5, 71.8, 71.3, 71.2, 69.9, 68.8, 68.2, 67.9, 66.7, 66.3, 65.7, 64.9, 61.0, 48.5, 22.9, 21.0, 20.9, 20.7, 

20.6, 20.52, 20.47, 17.9, 15.7, –1.5 (Si(CH3)3); MALDI-TOFMS: Calcd for C41H63NO23SiNa: m/z 

988.3 Found: 988.4 [M+Na]+.  

 

2-(Trimethylsilyl)ethyl β-D-galactopyranosyl-(1→4)-[α-D-fucopyranosyl-(1→3)]-2-acetamido-2-

deoxy-β-D-glucopyranoside (3). To a solution of 15 (36 mg, 0.04 mmol) in MeOH (5 mL) NaOMe (25 

mg) was added at 40 °C. The mixture was stirred for 2 h and then neutralized with Amberlite IR 120 

[H+]. The mixture was filtered and concentrated. The product was purified by Sephadex LH-20 column 

chromatography in 1 : 1 CHCl3-MeOH to give 5 as white solid (24 mg, quant.). [α]D
24 +14.4 (c 0.3, 

CH3OH); 1H-NMR (500 MHz, CD3OD): δ 5.12 (d, 1H, J1,2=4.3 Hz, H-1 of Fuc), 4.42 (d, 1H, J1,2=7.9 

Hz, H-1 of GlcNAc), 4.32 (d, 1H, J1,2=7.9 Hz, H-1 of Gal); 13C=NMR (125 MHz, CD3OD): δ 173.4, 

104.1 (C-1 of GlcNAc), 102.2 (C-1 of Gal), 102.1 (C-1 of Fuc), 74.8, 73.6, 72.7, 71.5, 70.90, 70.86, 

68.5, 67.9, 62.9, 61.1, 56.7, 30.7, 23.5, 18.8, 16.8, –1.3 (Si(CH3)3); MALDI-TOFMS: Calcd for 

C25H47NO15SiNa: m/z 652.3 Found: 652.6 [M+Na]+. HR-FABMS: Calcd for C25H47NO15SiNa: m/z 

652.2613. Found m/z 652.2642 [M+Na]+. 

 

2-(Trimethylsilyl)ethyl  2,3,4-tri-O-benzyl-α-D-fucopyranosyl-(1→3)-4,6-O-benzylidene-2-deoxy-2-

(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (17). To a solution of 16 (329 mg,  

0.61 mmol) and 13 (479 mg, 0.91 mmol) in dry CH2Cl2 (1.5 mL) was added powdered 4Å MS  

(800 mg), and the mixture was stirred for 2 h at room temperature, then cooled to -60 °C. NIS (307 

mg, 1.37 mmol) and TfOH (16 μL, 0.18 mmol) were added to the mixture, which was stirred for 3 h at 

-60 °C, then neutralized with Et3N. The solids were filtered off and washed with CHCl3. The combined 

filtrate and washings were successively washed with aq Na2S2O3 and water, dried (MgSO4), and 
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concentrated. The product was purified by silica gel column chromatography using 7:1 hexane-EtOAc 

as eluent to give 17 (394 mg, 68%). [α]D
24 +18.9 (c 2.4, CHCl3); 

1H-NMR (500 MHz, CDCl3):  

δ 7.41–6.89 (m, 20H, 4Ph), 5.49 (br s, 1H, H-1 of Fuc), 5.31 (s, 1H, OCHPh), 5.14 (br s, 1H, NH), 

4.86–4.75 (m, 3H, benzylmethylene x 2, CH2CCl3), 4.64 (d, 1H, J1,2=8.6 Hz, H-1 of GlcNAc), 4.60 (d, 

1H, CH2CCl3), 4.48 (t, 2H, benzylmethylene x 2), 4.36–4.29 (m, 2H, benzylmethylene x 2), 4.25–4.18 

(m, 2H, H-3, H-6a of GlcNAc), 3.96–3.85 (m, 3H, CH2CH2Si(CH3)3, H-2, H-5 of Fuc), 3.81–3.67 (m, 

3H, H-4, H-6b of GlcNAc, H-3 of Fuc), 3.52–3.40 (m, 4H, CH2CH2Si(CH3)3, H-2, H-5 of GlcNAc, H-

4 of Fuc), 1.01 (d, 3H, H-6 of Fuc), 0.94–0.79 (m, 2H, CH2CH2Si(CH3)3), –0.07 (s, 9H, Si(CH3)3); 
13C-NMR (125 MHz, CDCl3): δ 153.7, 138.8, 138.4, 138.2, 136.9, 129.3, 128.5, 128.34, 128.27, 128.1, 

128.0, 127.5, 127.3, 127.1, 126.2, 101.6, 100.8 (C-1 of GlcNAc), 97.0 (C-1 of Fuc), 95.4, 82.5, 78.6, 

75.1, 74.8, 74.4, 73.6, 73.3, 71.4, 68.7, 67.6, 67.0, 65.8, 57.0, 29.6, 18.2, 16.7, –1.5 (Si(CH3)3); 

MALDI-TOFMS: Calcd for C48H58Cl3NO11SiNa [M+Na]+: m/z 980.3. Found: 980.1. 

 

2-(Trimethylsilyl)ethyl 2,3,4-tri-O-acetyl-α-D-fucopyranosyl-(1→3)-2-acetamido-4,6-di-O-acetyl-2-

deoxy-β-D-glucopyranoside (18). To a solution of 17 (113 mg, 0.12 mmol) in acetic anhydride (7 mL) 

and AcOH (7 mL) was added zinc powder (150 mg). The reaction mixture was stirred for 12 h at  

40 °C. After completion of the reaction, the solids were filtrered off and the filtrate was concentrated 

with toluene. The solution of the product and Pd/C (10%, 150 mg) in 3:1 MeOH-AcOH (2.0 mL) was 

stirred for 12 h at room temperature under H2, then filtered and concentrated. The residue was 

acetylated with acetic anhydride (6 mL) in pyridine (10 mL) for 12 h at room temperature. The 

reaction mixture was poured into ice-water and extracted with CHCl3. The extract was washed 

sequentially with 5% HCl, aq NaHCO3 and water, dried (MgSO4), and concentrated. The product was 

purified by silica gel column chromatography using 5:1 toluene-acetone as eluent to give 18 (35 mg, 

44%)as an amorphous powder. [α]D
24 +74.9 (c 0.3, CHCl3); 

1H-NMR (500 MHz, CDCl3): δ 5.85 (d, 

1H, NH), 5.25 (d, 1H, J1,2=3.7 Hz, H-1 of Fuc), 5.26–5.23 (m, 2H, H-3, H-4 of Fuc), 5.08 (dd, 1H, H-2 

of Fuc), 5.06 (d, 1H, J1,2=7.9 Hz H-1 of GlcNAc), 4.97 (dd, 1H, H-4 of GlcNAc), 4.67 (t, 1H, H-3 of 

GlcNAc), 4.25 (dd, 1H, H-5 of Fuc), 4.14 (dd, 1H, H-6a of GlcNAc), 3.99 (dd, 1H, H-6b of GlcNAc), 

3.92–3.87 (m, 1H, CH2CH2Si(CH3)3), 3.61–3.51 (m, 2H, H-5 of GlcNAc, CH2CH2Si(CH3)3),  

3.09–3.04 (m, 1H, H-2 of GlcNAc), 1.08 (d, 3H, H-6 of Fuc), 0.96–0.83 (m, 2H, CH2CH2Si(CH3)3), –

0.02 (s, 9H, Si(CH3)3); 
13C-NMR (125 MHz, CDCl3): δ 170.7, 170.5, 98.1 (C-1 of GlcNAc), 95.8 (C-1 

of Fuc), 73.7, 72.3, 71.5, 71.0, 67.6, 67.4, 67.2, 64.9, 62.5, 58.1, 23.8, 20.9, 20.8, 20.6, 18.1, 16.1 –1.4 

(Si(CH3)3); MALDI-TOFMS: Calcd for C29H47NO15SiNa [M+Na]+: m/z 700.3 Found: 700.5. 

 

2-(Trimethylsilyl)ethyl α-D-fucopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-glucopyranoside (4). 

Compound 4 was prepared from 18 (24 mg, 0.035 mmol) by the same method described for 

preparation of 3. The product was purified by Sephadex LH-20 column chromatography in 1:1  

CHCl3-MeOH to give 4 as white solid (14 mg, 86%). [α]D
24 +52.9 (c 0.1, CH3OH); 1H-NMR (500 

MHz, CD3OD): δ 4.93 (d, 1H, J1,2=3.1 Hz, H-1 of Fuc), 4.30 (d, 1H, J1,2=8.5 Hz H-1 of GlcNAc); 13C-

NMR (125 MHz, CD3OD): δ 173.3, 103.6 (C-1 of GlcNAc), 102.2 (C-1 of Fuc), 86.3, 79.5, 77.4, 73.7, 

72.5, 71.6, 70.8, 68.5, 67.9, 62.6, 60.2, 55.9, 30.7, 23.4, 18.8, 16.9, –1.26 (Si(CH3)3); MALDI-

TOFMS: Calcd for C19H37NO10SiNa: m/z 490.2 Found: 490.6 [M+Na]+. HR-FABMS: Calcd for 

C19H37NO10SiNa: m/z 490.2084. Found m/z 490.2072 [M+Na]+. 
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2-(Trimethylsilyl)ethyl 2,3,4-tri-O-benzyl-α-D-fucopyranosyl-(1→4)-6-O-benzyl-3-O-chloroacetyl-2-

deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (20). Compound 20 was prepared 

from 19 (226 mg, 0.36 mmol) and 13 (383 mg, 0.73 mmol) by the same method described for 

preparation of 17. The product was purified by silica gel column chromatography using10:1 hexane-

EtOAc as eluent to give 20 as syrup (296 mg, 78%). [α]D
24 +11.4 (c 4.0, CHCl3); 

1H-NMR (500 MHz, 

CDCl3): δ 7.37–7.10 (m, 20H, 4 Ph), 5.49 (d, 1H, NH), 5.22 (t, 1H, H-3 of GlcNAc), 4.89 (d, 1H, 

benzylmethylene), 4.87 (d, 1H, J1,2=3.7 Hz, H-1 of Fuc), 4.76–4.53 (m, 9H, H-4 of Fuc, 

benzylmethylene x 6, CH2CCl3), 4.50 (d, 1H, J1,2=7.3 Hz, H-1 of GlcNAc), 4.45 (d, 1H, 

benzylmethylene), 3.92–3.79 (m, 5H, H-4, 6a of GlcNAc, H-2, 5 of Fuc, CH2CH2Si(CH3)3), 3.75–3.62 

(m, 5H, H-2, H-6b of GlcNAc, H-3 of Fuc, ClCH2CO), 3.51–3.46 (m, 2H, CH2CH2Si(CH3)3, H-5 of 

GlcNAc), 0.97 (d, 3H, H-6 of Fuc), 0.98–0.83 (m, 2H, CH2CH2Si(CH3)3), –0.09 (s, 9H, Si(CH3)3); 
13C-NMR (125 MHz, CDCl3): δ 167.1, 154.1, 138.5, 138.2, 138.1, 128.6, 128.43, 128.36, 128.3, 128.1, 

127.62, 127.55, 127.47, 127.37, 100.1(C-1 of Fuc), 98.8(C-1 of GlcNAc), 95.5, 78.9, 77.7, 75.6, 74.9, 

74.8, 74.6, 74.2, 74.0, 73.3, 73.2, 68.7, 67.6, 67.1, 55.5, 40.8, 18.1, 16.6, –1.32 (Si(CH3)3); MALDI-

TOFMS: Calcd for C50H61Cl4NO12SiNa [M+Na]+: m/z 1058.3 Found: 1059.2. 

 

2-(Trimethylsilyl)ethyl 2,3,4-tri-O-acetyl-α-D-fucopyranosyl-(1→4)-2-acetamido-3,6-di-O-acetyl-2-

deoxy-β-D-glucopyranoside (21). To a solution of 20 (296 mg, 0.29 mmol) in EtOH (2.5 mL) was 

added pyridine (1.5 mL) and thiourea (173 mg, 2.32 mmol). The reaction mixture was stirred for 6 h at 

80 °C. The mixture was diluted with CHCl3, washed with aq 5%HCl, aq NaHCO3 and brine, dried 

(MgSO4) and concentrated. The solution of the residue in AcOH (2 mL) was added zinc powder  

(350 mg). The reaction mixture was stirred for 12 h at 60 °C. After completion of the reaction, the 

solids were filtered off and the filtrate was concentrated with toluene. The residue was acetylated with 

acetic anhydride (4 mL) in pyridine (7 mL). The reaction mixture was poured into ice-water and 

extracted with CHCl3. The extract was washed sequentially with 5% HCl, aq. NaHCO3 and water, 

dried (MgSO4), and concentrated. The solution of the product in MeOH (1.5 mL) and THF (0.5 mL) 

was hydrogenolysed under hydrogen in the presence of 10% Pd/C (150 mg) for 16 h at room 

temperature, then filtered and concentrated.  The residue was acetylated with acetic anhydride (3 mL) 

in pyridine (5 mL). The reaction mixture was poured into ice-water and extracted with CHCl3. The 

extract was washed sequentially with 5% HCl, aq NaHCO3 and water, dried (MgSO4), and 

concentrated. The product was purified by silica gel column chromatography using 5:1 toluene-acetone 

as eluent to give 21 as an amorphous powder (86 mg, 45%). [α]D
24 +49.6 (c 0.5, CHCl3); 

1H-NMR 

(500 MHz, CDCl3): δ 5.81 (d, 1H, NH), 5.34 (d, 1H, J1,2=3.7 Hz, H-1 of Fuc), 5.22–5.05 (m, 4H, H-3 

of GlCNAc, H-2,H-3, H-4 of Fuc), 4.58 (d, 1H, J1,2=7.9 Hz H-1 of GlcNAc), 4.46 (dd, 1H, H-6a of 

GlcNAc), 4.08–4.01 (m, 2H, H-6b of GlcNAc, H-5 of Fuc), 3.95 (t, 1H, H-4 of GlcNAc), 3.88–3.83 

(m, 1H, CH2CH2Si(CH3)3), 3.78 (dd, 1H, H-2 of GlcNAc), 3.61–3.57 (m, 1H, H-5 of GlcNAc),  

3.53–3.48 (m, 1H, CH2CH2Si(CH3)3), 2.11–1.82 (m, 18H, CH3CO x 6), 1.04 (d, 3H, H-6 of Fuc), 

0.91–0.78 (m, 2H, CH2CH2Si(CH3)3), –0.07 (s, 9H, Si(CH3)3); 
13C-NMR (125 MHz, CDCl3): δ 171.0, 

170.7, 170.5, 170.3, 170.1, 170.0, 99.8 (C-1 of GlcNAc), 96.0 (C-1 of Fuc), 75.5, 72.1, 71.8, 70.9, 

67.3, 67.2, 66.9, 65.5, 62.7, 54.6, 29.6, 23.1, 20.9, 20.8, 20.7, 20.6, 20.5, 17.8, 15.8, –1.5 (Si(CH3)3); 

MALDI-TOFMS: Calcd for C29H47NO15SiNa [M+Na]+: m/z 700.3 Found: 700.9. 
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2-(Trimethylsilyl)ethyl α-D-fucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (5). 

Compound 5 was prepared from 21 (86 mg, 0.13 mmol) by the same method described for preparation 

of 3. The product was purified by Sephadex LH-20 column chromatography in 1:1 CHCl3-MeOH to 

give 5 as white solid (61 mg, quant.). [α]D
24 +33.9 (c 0.3, CH3OH); 1H-NMR (500 MHz, CD3OD): δ 

4.98 (d, 1H, J1,2=3.7 Hz, H-1 of Fuc), 4.32 (d, 1H, J1,2=7.9 Hz H-1 of GlcNAc); 13C-NMR (125 MHz, 

CD3OD): δ 173.5, 103.5 (C-1 of Fuc), 102.0 (C-1 of GlcNAc), 82.2, 76.9, 75.9, 73.5, 71.7, 70.6, 68.6, 

67.9, 62.5, 56.8, 30.7, 23.0, 18.8, 16.7, –1.3 (Si(CH3)3); MALDI-TOFMS: Calcd for C19H37NO10SiNa: 

m/z 490.2 Found: 491.0 [M+Na]+. HR-FABMS: Calcd for C19H37NO10SiNa: m/z 490.2084. Found m/z 

490.2062 [M+Na]+. 

 

2-(Trimethylsilyl)ethyl 2,3,4-tri-O-benzyl-α-D-fucopyranosyl-(1→3)-[2,3,4-tri-O-benzyl-α-D-fuco-

pyranosyl-(1→4)]-6-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (23). Compound 23 was 

prepared from 22 (89 mg, 0.18 mmol) and 13 (757 mg, 1.44 mmol) by the same method described for 

preparation of 14. The product was purified by silica gel column chromatography using 10:1 hexane- 

EtOAc as eluent to give 23 as syrup (99 mg, 42%). [α]D
24 +48.3 (c 1.2, CHCl3); 

1H-NMR (600 MHz, 

CDCl3): δ  7.90–7.26 (m, 39H, NPhth, 8 Ph), 6.20 (d, 1H, J1,2=3.6 Hz, H-1 of Fuc b), 5.19 (d, 2H, 

J1,2=8.5 Hz H-1 of GlcNAc, J1,2=4.4 Hz H-1 of Fuc a), 5.07 (d, 1H, benzylmethylene), 5.01 (dd, 1H, 

H-3 of GlcNAc), 4.93–4.88(m, 3H, benzylmethylene x 3), 4.79–4.66 (m, 8H, benzylmethylene x 8), 

4.62–4.58 (m, 2H, benzylmethylene x 2), 4.41 (dd, 1H, H-2 of GlcNAc), 4.18–4.13 (m, 2H, H-4 of 

GlcNAc, H-2 of Fuc b), 4.10 (dd, 1H,H-3 of Fuc a), 4.07–3.99 (m, 2H, CH2CH2Si(CH3)3, H-5 of Fuc 

b), 3.97–3.84 (m, 6H, H-5, H-6 of GlcNAc, H-2, H-5 of Fuc a, H-3 of Fuc b), 3.63–3.57 (m, 2H, H-4 

of Fuc b, CH2CH2Si(CH3)3), 3.47(br.d, 1H, H-4 of Fuc a), 1.19 (d, 3H, H-6 of Fuc b) 0.95 (d, 3H, H-6 

of Fuc a,), 0.93–0.81 (m, 2H, CH2CH2Si(CH3)3), –0.01 (s, 9H, Si(CH3)3); 
13C-NMR (150 MHz, 

CDCl3): δ 139.1, 138.7, 138.52, 138.50, 138.3, 133.8, 128.3, 128.23, 128.18, 128.12, 128.05, 128.03, 

127.93, 127.87, 127.7, 127.6, 127.5, 127.42, 127.37, 127.35, 127.28, 127.23, 127.1, 123.1, 169.3, 9, 

97.6 (C-1 of GlcNAc), 97.5 (C-1 of Fuc a), 95.0 (C-1 of Fuc b), 78.8, 78.7, 78.4, 78.1, 78.0, 76.4, 76.3, 

74.9, 74.6, 73.5, 73.3, 73.1, 73.0, 72.9, 72.8, 69.7, 67.7, 67.0, 66.7, 56.3, 29.7, 17.8, 16.6, 15.8, –1.5 

(Si(CH3)3); MALDI-TOFMS: Calcd for C80H89NO15SiNa [M+Na]+: m/z 1354.6 Found: 1354.8. 

 

2-(Trimethylsilyl)ethyl 2,3,4-tri-O-acetyl-α-D-fucopyranosyl-(1→3)-[2,3,4-tri-O-acetyl-α-D-fuco-

pyranosyl-(1→4)]- 2-acetamido-6-O-acetyl-2-deoxy-β-D-glucopyranoside (24). To a solution of 23 

(60 mg, 0.05 mmol in EtOH (10 mL)) was added hydrazine monohydrate (3.3 mL, 0.07 mmol). The 

reaction mixture was refluxed for 3 h, then concentrated. The residue was acetylated with Ac2O (3 mL) 

in pyridine (5 mL). The mixture was poured into ice-water and extracted with CHCl3. The extract was 

washed sequentially with 5% HCl, aq NaHCO3 and water, dried (MgSO4), and concentrated. The 

solution of the product in MeOH (1 mL) and THF (1 mL) was hydrogenolysed under hydrogen in the 

presence of 10% Pd/C (100 mg) for 15 h at room temperature, then filtered and concentrated.  The 

residue was acetylated with acetic anhydride (5 mL) in pyridine (7 mL). The reaction mixture was 

poured into ice-water and extracted with CHCl3. The extract was washed sequentially with 5% HCl, aq 

NaHCO3 and water, dried (MgSO4), and concentrated. The product was purified by silica gel column 

chromatography using 9:1 toluene-acetone as eluent to give 24 as syrup (19 mg, 47%). [α]D
24 +75.2 (c 

0.5 CHCl3); 
1H-NMR (500 MHz, CDCl3): δ 6.43 (d, 1H, NH), 5.28 (dd, 1H, H-3 of Fuc b), 5.23–5.18 
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(m, 3H, H-3, H-4 of Fuc a, H-4 of Fuc b), 5.13 (d, 1H, J1,2=3.7 Hz, H-1 of Fuc b), 5.08–5.03 (m, 2H, 

H-3 of GlcNAc, H-2 of Fuc b), 5.04 (d, 1H, J1,2=9.8 Hz H-1 of GlcNAc), 4.66 (d, 1H, J1,2=3.7 Hz H-1 

of Fuc a), 4.52 (dd, 1H, H-6a of GlcNAc), 4.43–4.36 (m, 2H, H-6b of GlcNAc, H-5 of Fuc b),  

4.13–4.08 (m, 2H, H-2 of GlcNAc, H-5 of Fuc a), 3.96 (t, 1H, H-5 of GlcNAc), 3.91–3.85 (m, 1H, 

CH2CH2Si(CH3)3), 3.60–3.55 (m, 2H, H-4 of GlcNAc, H-2 of Fuc a), 3.46–3.40 (m, 1H, 

CH2CH2Si(CH3)3), 2.13–1.87 (m, 21H, CH3CO) 1.10 (d, 3H, H-6 of Fuc b) 1.07 (d, 3H, H-6 of Fuc a), 

0.95–0.80 (m, 2H, CH2CH2Si(CH3)3), –0.03 (s, 9H, Si(CH3)3); 
13C-NMR (125 MHz, CDCl3): δ 170.5, 

170.43, 170.36, 170.31, 169.9, 169.5, 169.3, 98.5 (C-1 of Fuc a), 98.2 (C-1 of Fuc b), 97.6 (C-1 of 

GlcNAc), 76.9, 76.8, 76.7, 74.1, 74.0, 73.7, 73.4, 71.2, 70.9, 68.3, 68.00, 67.97, 67.3, 66.5, 65.8, 65.7, 

64.5, 49.3, 29.7, 23.4, 21.4, 20.9, 20.7, 20.6, 18.0, 16.0, 15.8, 15.7, 14.1, –1.5 (Si(CH3)3); MALDI-

TOFMS: Calcd for C39H61NO21SiNa [M+Na]+: m/z 930.3 Found: 930.5. 

 

2-(Trimethylsilyl)ethyl α-D-fucopyranosyl-(1→3)-[ α-D-fucopyranosyl-(1→4)]- 2-acetamido-2-deoxy-

β-D-glucopyranoside (6). Compound 6 was prepared from 24 (16 mg, 0.03 mmol) by the same method 

described for preparation of 3. The product was purified by Sephadex LH-20 column chromatography 

in 1:1 CHCl3-MeOH to give 6 as white solid (10 mg, 93%). [α]D
24 +72.2 (c 0.2 CH3OH); 1H-NMR 

(600 MHz, CD3OD): δ  4.97 (d, 1H, J1,2=3.9 Hz H-1 of Fuc b), 4.66 (d, 1H, J1,2=2.8 Hz H-1 of Fuc a), 

4.38 (d, 1H, J1,2=6.1 Hz H-1 of GlcNAc), –0.09 (s, 9H, Si(CH3)3); 
13C-NMR (150 MHz, CD3OD):  

δ 172.8, 101.8 (C-1 of GlcNAc), 101.6 (C-1 of Fuc a), 100.1 (C-1 of Fuc b), 79.3, 78.3, 74.8, 73.7, 

73.5, 71.4, 70.1, 69.8, 68.5, 68.3, 67.6, 63.1, 54.7, 27.0, 23.1, 18.9, 16.7, –1.3 (Si(CH3)3);  

MALDI-TOFMS: Calcd for  C25H47NO14SiNa: m/z 636.3 Found: 636.7  [M+Na]+. HR-FABMS: Calcd 

for C25H47NO14SiNa: m/z 636.2664. Found m/z 636.2681 [M+Na]+. 

 

3.2. Nitric Oxide Inhibitory Assay  

J774.1 cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM, GIBCO) and cultured 

at 37°C in humidified 5% CO2/95% air. The cells were suspended in medium, plated on 96-well 

culture plates (Falcon) at a density of 5.0 × 105 cells/mL/well, volume of 200 μL/well and allowed to 

adhere for 24 h. Then, the medium was replaced with fresh medium, containing LPS (1 μg/mL) from 

E. coli (Sigma) and test compounds dissolved in DMSO at various concentrations (13, 25, 50, 100 μM) 

were incubated for 24 h. NO production was determined by measuring the accumulation of nitrite  

(a stable metabolite of NO) in the culture supernatant using Griess reagent [20]. Briefly, 50 μL of the 

supernatant from incubates were mixed with equal volume of Griess reagent (1% sulfanilamide and 

0.1% N-1-naphthylenediamine dihydrochloride in 5% H3PO4) and were allowed to stand for 10 

minutes at room temperature. Absorbance at 550 nm was measured using a MTP-810 Microplate 

Reader (Corona Co.). The blank correction was carried out by subtracting the absorbance due to 

medium from the absorbance reading of each well. The reaction percentage was calculated as follows: 

% of control = [As/Ac] × 100, where As and Ac are absorbance of a run treated with LPS and a 

sample, and that treated with LPS alone, respectively. In this assay, NG-monomethyl-L-arginine  

(L-NMMA, IC50 32.0 μM), a non-selective nitric oxide synthase (NOS) inhibitor, was used as a 

positive control [21]. 
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4. Conclusions  

We have succeeded for the first time in carrying out the total syntheses of D-fucose-containing 

glycosphingolipids found in invertebrate species. Both the presence of a D-Fucα1-3GlcNAc-linkage 

and the ceramide aglycon portion resulted in a significant enhancement of their ability to inhibit NO 

production by LPS-induced macrophage-like J774.1 cells. The prepared glycolipids are  

easily-accessible target compounds in the field of carbohydrate chemistry and may serve as chemical 

probes to explore glycosphingolipid-mediated anti-inflammatory processes in biology and medicine.  
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