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Species with separate sexes (dioecy) are a minority among flowering plants, but dioecy has evolved multiple times independently in

their history. The sex-determination system and sex-linked genomic regions are currently identified in a limited number of dioecious

plants only. Here, we study the sex-determination system in a genus of dioecious plants that lack heteromorphic sex chromosomes

and are not amenable to controlled breeding: Nepenthes pitcher plants. We genotyped wild populations of flowering males and

females of three Nepenthes taxa using ddRAD-seq and sequenced a male inflorescence transcriptome. We developed a statistical

tool (privacy rarefaction) to distinguish true sex specificity from stochastic noise in read coverage of sequencing data from wild

populations and identified male-specific loci and XY-patterned single nucleotide polymorphsims (SNPs) in all three Nepenthes

taxa, suggesting the presence of homomorphic XY sex chromosomes. The male-specific region of the Y chromosome showed little

conservation among the three taxa, except for the essential pollen development gene DYT1 that was confirmed as male specific

by PCR in additional Nepenthes taxa. Hence, dioecy and part of the male-specific region of the Nepenthes Y-chromosomes likely

have a single evolutionary origin.

KEY WORDS: Carnivorous plant, dioecy, molecular sexing, plant sex chromosome, privacy rarefaction, sex-determination, sex-

specific loci.

Impact Summary
One of the most striking polymorphisms observed in

organismal populations is the existence of male and

female individuals. In contrast to animals, where this

condition is common, plants are usually functional

hermaphrodites. Some plants, however, are dioecious,

that is, individuals are either of male or female sex.

Dioecy has evolved hundreds of times independently in

plants, which offers the potential for comparative studies

of sex chromosome evolution and for investigating the

genetic basis of transitions between hermaphroditism

and dioecy (Charlesworth 2015). Yet empirical data to

test hypotheses about why some species are dioecious

and others hermaphroditic, and how such transitions are

achieved, are lacking. Despite their potential, the sex-

determination mechanisms of most dioecious plants are

not known, and few new species have been investigated

since the seminal review by Westergaard (1958). Also,

markers for molecular sexing have important appli-

cations in agriculture, horticulture, and conservation.

Historically, the identification of sex-determination sys-

tems was limited to species that can be bred in controlled
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PITCHER PLANT SEX CHROMOSOMES

conditions or have heteromorphic sex chromosomes.

This is now changing with genome-scale sequencing

technology. Here, we investigated the sex-determination

system of carnivorous pitcher plants in the genus Ne-

penthes. We surveyed wild populations of three species

by genotyping a large number of loci throughout their

genomes. Because such data are noisy, we propose

a solution to the common problem of distinguishing

true signal from noise in presence–absence data by

generating null distributions through permutations of

the observed data. We discovered loci that occur only in

males and reveal an XY sex chromosome system. One

gene on the Nepenthes Y chromosome is particularly

interesting, because it is presumably essential for pollen

development and present only in males, and thus can

be used to diagnose the sex of nonflowering plants

Although the majority of flowering plant species are

functional hermaphrodites, plant sexual systems and sex-

determination mechanisms are highly diverse (Charlesworth

2002; Bachtrog et al. 2014). Only 5–6% of species have fe-

male and male flowers on separate individuals (dioecy), but the

evolutionary transition to dioecy may have occurred as many

as 800 times independently in angiosperms (Renner 2014). In

contrast to outcrossing–selfing transitions due to loss of self-

incompatbility, for some of which the underlying genetic changes

have recently been uncovered (e.g., Shimizu and Tsuchimatsu

2015), relatively little is known about the genes involved in tran-

sitions from hermaphroditism to dioecy and in sex determination

in plants (Charlesworth 2016), although sex-determining genes

have been identified in three dioecious plant species: persim-

mon (Diospyros lotus, Akagi et al. 2014), Asparagus officinalis

(Harkess et al. 2017; Murase et al. 2017), and kiwifruit (Actinidia,

Akagi et al. 2018). The main hypotheses for the evolution of sep-

arate sexes in plants involve a combination of trade-offs between

the sex functions, plus disadvantage of inbreeding (Charlesworth

and Charlesworth 1978).

Many dioecious plants have genetic sex determination, which

may involve sex chromosomes. Sex chromosomes differ from au-

tosomes by having suppressed meiotic recombination around the

sex-determining genes. These form a fully sex-linked chromo-

somal region whose transmission is limited to one sex. When

this sex is male, the system is referred to as male heteroga-

mety (male genotype XY, female XX), and female heterogamety

when the fully sex-linked region is transmitted via females (male

ZZ, female ZW). The sex-specific, fully nonrecombining regions

(male-specific region of the Y, termed MSY, or female-specific

region of the W) show a number of special properties. First, an

MSY may contain sequences that are absent from the X, and thus

male specific (Y-hemizygous, transmitted only from fathers to

sons). As X and Y chromosomes are thought to evolve from a

pair of autosomes, the gain of male-specific sequences can be

explained by several mechanisms, such as the rise of a new male-

determining mutation, or the translocation of a male-determining

cassette (Tennessen et al. 2018), or the localized expansion of

repetitive sequences due to the lack of recombination. Second,

over evolutionary time, the MSY may undergo genetic degenera-

tion and lose functional genes that were initially shared with the

X chromosome (Bachtrog 2013). Sex chromosomes have evolved

independently many times in plants, and will therefore proba-

bly have diverse ages and levels of degeneration. Heteromorphic

sex chromosomes have diverged sufficiently in size or structure

to be distinguished optically with a microscope, whereas homo-

morphic sex chromosomes may have more subtle differences that

can be detected only by molecular genetic methods. Despite their

great potential for comparative studies, few plant sex chromo-

somes have been studied in detail (Ming et al. 2011; Harkess

and Leebens-Mack 2017; Muyle et al. 2017). Knowledge of sex-

determination systems and the identification of fully sex-linked

genetic markers are important for molecular sexing of juveniles

or nonflowering adults in agriculture, breeding, and conservation.

Cytogenetics and linkage analysis in families are established

methods to study sex determination and discover sex linkage of

genes (Charlesworth and Mank 2010). However, these strategies

fail in many dioecious organisms because their karyotypes are

homomorphic (Filatov 2015), or because controlled breeding is

difficult, since many dioecious plants are woody and reproduce

only after many years (Renner and Ricklefs 1995). Several next-

generation sequencing techniques have now greatly increased

knowledge about sex-linked genes (reviewed by Muyle et al.

2017). However, they require either prior knowledge of heteroga-

mety, controlled breeding, or whole-genome sequencing, which

remains expensive and time consuming. An alternative class of

strategies uses population polymorphism to infer sex linkage of

loci (reviewed by Muyle et al. 2017), even without pedigrees.

These strategies can potentially allow sex-linked regions to be

discovered by cheaper reduced-representation sequencing (RRS)

methods such as RAD-seq (Baird et al. 2008; Elshire et al. 2011;

Peterson et al. 2012), although the gained information will remain

incomplete, because typically only a few percent of a genome

is covered. Nevertheless, the discovery of sex-linked markers

by RRS has been successful in organisms such as Crustaceans

(Carmichael et al. 2013), Anolis lizards (Gamble and Zarkower

2014), geckos (Gamble et al. 2015a), and frogs (Brelsford et al.

2017; Jeffries et al. 2018).

A major problem faced by approaches that use popula-

tion polymorphism to infer sex-linkage, and sex specificity in
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Figure 1. Sexual dimorphism in Nepenthes inflorescences. Left:

male inflorescence of N. rafflesiana s.l. Right: Female inflorescence

of N. mirabilis var. globosa. Photos: M. Scharmann

particular, is error in the measurement of locus presence and ab-

sence (Text S4). Presence–absence error has long been recognized

as a problem in fragment length genotyping methods, but it is ex-

acerbated in RRS data, in which missing loci occur in a highly

stochastic manner (Mastretta-Yanes et al. 2015; Bresadola et al.

2019), and can make sex-specific sequences appear in both sexes

(Bewick et al. 2013; Gamble and Zarkower 2014; Heikrujam

et al. 2015; Brelsford et al. 2017), and probably represent false

positive results. One suggested solution to reduce the number of

false positives is to compare increasing numbers of males and fe-

males (Gamble and Zarkower 2014; Gamble et al. 2015b). Unfor-

tunately, in RAD data the number of shared loci decreases with in-

creasing sample numbers (Mastretta-Yanes et al. 2015). Beyond a

number that is unpredictable and specific to each dataset, true sex-

specific loci may be missed because they are too rarely sequenced.

We developed a statistical procedure to deal with this prob-

lem, and applied it to characterize the sex-determination system of

Nepenthes pitcher plants. Nepenthes (Nepenthaceae, Caryophyl-

lales) includes at least 160 species of perennial vines and shrubs

occurring mostly in Southeast Asia (Cheek and Jebb 2001; Clarke

et al. 2018). They are carnivorous plants that supplement their nu-

trition by killing and digesting animals in their modified pitcher

leaves (Juniper et al. 1989; Moran and Clarke 2010; Pavlovič

and Saganová 2015). All Nepenthes are dioecious, whereas close

relatives (families Ancistrocladaceae, Dioncophyllaceae, Droser-

aceae, and Drosophyllaceae; Cuénoud et al. 2002; Renner and

Specht 2011; Walker et al. 2017) are hermaphroditic. The indi-

vidual male and female flowers (Fig. 1) are readily recognized be-

cause reproductive organs of the other sex abort early in develop-

ment (Subramanyam and Narayana 1971). We hypothesized that

sex in Nepenthes has a genetic basis, or is determined during early

life stages, because there are no reports of sexual plasticity (Clarke

2001), or functional hermaphroditism. Nepenthes karyotypes

(2n = 80, Heubl and Wistuba 1997) do not suggest heteromorphic

sex chromosomes.

Here, we investigated the previously undescribed sex-

determination system of multiple Nepenthes species. Because

controlled breeding of these slow growing plants faces many

challenges, we sampled wild populations. We used Silene lati-

folia to test our method, as this species has well-studied hetero-

morphic sex chromosomes. Specifically, we asked the following

questions: (1) Are there sex-linked loci in Nepenthes? (2) Are the

same sex-linked loci shared among different Nepenthes species?

(3) Which expressed genes are sex linked? We discovered fully

male-specific and XY-patterned loci and developed a molecular

sexing assay for Nepenthes. The identified markers include two

candidate sex-determination genes, and these suggest that part of

the Y chromosome is ancestral in this genus.

Methods
SAMPLING, ddRAD-seq, AND GENOTYPING

Natural populations of Nepenthes were sampled in Brunei Darus-

salam (Borneo), Singapore, and the Seychelles. Fresh leaf material

was stored in a nucleic acid preserving buffer (Camacho-Sanchez

et al. 2013). The sexes of Nepenthes plants were recorded from

fresh or dry inflorescences. Scans for sex-linked loci were con-

ducted separately on three Nepenthes taxa: N. pervillei Blume,

N. gracilis Korth., and N. rafflesiana sensu lato (Table 1). We

extracted DNA from leaves using silica column kits (Nucleospin

Plant II; Macherey Nagel, Düren, Germany) and prepared se-

quencing libraries following the ddRAD-seq protocol (Peterson

et al. 2012) using the enzymes EcoRI and TaqI. Library pools (84

or 96-plex) were sequenced on an Illumina HiSeq 2500. Bioin-

formatic data filtering, de novo assembly of reference contigs

(“RAD-tags,” very short contigs with a mean length of c. 96

bases), read mapping, genotype calling, and quality filtering fol-

lowed a modified dDocent pipeline (Puritz et al. 2014) and code

is deposited at https://github.com/mscharmann.

The exploration of sex-specific markers in N. rafflesiana s.l.

followed an iterative strategy with two rounds of sexing, geno-

typing, bioinformatic analysis, and PCR validation (Text S1). To

increase the phylogenetic range of our study and to validate molec-

ular sexing, we also included individuals of known sex for addi-

tional species (Table S2-1in Text S2). To validate our method for

detection of sex-specific loci, we also genotyped populations of a

species with a well-known, heteromorphic XY sex-determination
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Table 1. Sample sizes and origin for the taxa sequenced in this study.

Taxon Sampling location
Number of
males

Number of
females Sequencing method

Nepenthes pervillei Blume Seychelles, Mahé 28 22 ddRAD-seq (Peterson et al. 2012)
Nepenthes gracilis Korth. Brunei Darussalam, Borneo 10 10 ddRAD-seq (Peterson et al. 2012)
Nepenthes rafflesiana sensu lato,

here defined as:
39 22 ddRAD-seq (Peterson et al. 2012)

Nepenthes rafflesiana “typical
form” (Clarke 1992, 1997)

Brunei Darussalam, Borneo 13 7

Nepenthes rafflesiana “giant
form”(Clarke 1992, 1997)

Brunei Darussalam, Borneo 5 3

Nepenthes rafflesiana Jack Singapore 10 4
Nepenthes hemsleyana Macfarl. Brunei Darussalam, Borneo 11 8

Nepenthes khasiana Hook.f. cultivated/artificially prop. 1 – RNA-seq
Silene latifolia Poiret Switzerland 27 32 GBS (Elshire et al. 2011)

system, S. latifolia Poiret, using a single-digest GBS protocol

(Elshire et al. 2011). Details of the Silene samples and genotyp-

ing are provided in Text S3.

DETECTION OF SEX-LINKAGE

We distinguished between sex-linked loci showing sex-specificity,

meaning without homology between the two sex chromosomes

(e.g., Y-linked loci whose fully X-linked copy is absent or

undetectable by our methods), and loci that are present on both

sex chromosomes but whose allele frequencies diverged between

the sex chromosomes, called ZW- or XY-patterned variants

(Gammerdinger and Kocher 2018). We define sex-specific loci as

contigs to which sequencing reads can be aligned from only one of

the sexes (presence–absence polymorphism). However, this need

not reflect true presence–absence, because observed absence may

be due to methodological factors (deliberate or random) specific

to each dataset. Imperfect detection may be caused by many

underlying factors, including the number of male and female

individuals investigated, their genetic relatedness, the species’

genome size and structure, the library preparation method,

sequencing depth, and bioinformatic processing. Consider, for

example, a particular genetic marker scored “present” in nine out

of ten males and “absent” in five out of five females. True complete

male specificity cannot be distinguished from technical artifacts

due to random variation, for example, in sequencing depth or

sampling bias. To improve the inference of sex specificity and fa-

cilitate comparisons of datasets from different species, sampling

schemes, and sequencing runs, we used a resampling strategy that

evaluates the biological signal among dataset-specific artifacts

and uncertainties. The procedure is implemented in python and

named “privacy rarefaction” (https://github.com/mscharmann).

Further details, including a performance analysis with simula-

tions, are presented in Texts S4 and S5.

We tested for completely or partially XY- or ZW-patterned

SNPs, that is, ones with different allele and heterozygote

frequencies in the two sexes, using genotypes and PLINK

version 1.07 (Purcell et al. 2007). Associations between biallelic

SNPs and sex were analyzed by chi-squared tests, and candidate

SNPs were accepted as sex associated at a false discovery rate

of 5% (Benjamini and Hochberg 1995), and then classified as

XY-patterned if males were predominantly heterozygous, or as

ZW-patterned if females were predominantly heterozygous. To

perform this test on a reasonable number of SNPs, we allowed

data from up to 25% of individuals to be missing per SNP.

POPULATION GENETICS OF CANDIDATE SEX-LINKED

LOCI

We tested whether linkage disequilibrium (LD), that is, the non-

random association of alleles at separate loci, differed in male

samples between sex-linked regions and the genomic background

(represented by 15,000 randomly selected pairs of nonsex-linked

SNPs). Stringent quality filters were applied: singleton SNPs

were removed, SNPs in male-specific contigs were excluded if

any heterozygous genotypes were called in the males (because Y-

hemizygosity implies that heterozygosity is not true, so these were

probably paralogous sequences), and for non-sex-linked contigs

any excessively heterozygous SNPs (Hardy–Weinberg test with

significance level 5%) were excluded. Excessively heterozygous

SNPs were retained for XY-patterned contigs. LD (r2) was calcu-

lated exclusively for SNPs from different contigs using PLINK.

The same contrasts were made for nucleotide diversity π, which

was averaged per contig for all SNP-containing contigs (including

singleton SNPs) in VCFtools version 0.1.15 (Danecek et al. 2011)

and for contigs without SNPs taken directly from bam alignments.

The same filters were applied to both data (minimum read depth

3, maximum read depth 75, and minimum population presence
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0.75). The significance of differences of the means was evaluated

by randomization (10,000 rounds of re-sampling without replace-

ment from the two groups, randomizing group membership).

COMPARISON OF CANDIDATE LOCI TO A MALE

INFLORESCENCE TRANSCRIPTOME

We sequenced and assembled the transcriptome of a single de-

veloping male inflorescence of Nepenthes khasiana Hook.f. (Text

S6) to identify and annotate sex-linked candidate loci. Fresh inflo-

rescences of the species used for ddRAD-seq were not available

in cultivation. The transcriptome was searched (a) by BLAST

for similarity to candidate contigs (thresholds �90 aligned bases

and �75% identity) and (b) by repeating privacy rarefaction with

ddRAD-seq reads directly mapped to the transcriptome rather

than the RAD-tag reference (bwa mem; Li 2013; retaining multi-

ple mappings).

Candidate transcripts from both approaches were annotated

by BLAST search against the NCBI Genbank nucleotide col-

lection (November 7, 2016 version) and the nonredundant protein

collection (March 26, 2016 version). Transposable elements (TEs)

were detected using RepeatMasker 4.0.6 (Smit et al. 2013) ver-

sion 20150807 (eukaryota). Proteins with at least 50 amino acids

were predicted by TransDecoder (Trinity package) and annotated

against nr, UniProt Swiss-Prot (August 17, 2016 version), and

Arabidopsis thaliana proteins in UniProtKB (April 3, 2016 ver-

sion). PFAM domains were detected using hmmer 3.1b1 (Eddy

et al. 2016), accepting hits at e-value �10−5.

PCR VALIDATION

Candidate sex-specific contigs were chosen for PCR validation

based on a ranking of the privacy rarefaction results (using the

highest stringency level reached and the bootstrap support), tax-

onomic overlap, and the quality of annotation of matching tran-

scripts. PCR primers were designed in Geneious R6 (Biomatters

Ltd., Auckland, New Zealand), and tested according to the proto-

col described in Text S2.

Results
SEX-LINKED LOCI

We first searched for sex-specific contigs in the illustrative exam-

ple of S. latifolia GBS data using privacy rarefaction. When small

numbers of individuals of each sex were analyzed, the procedure

yielded similar numbers of male- and female-specific candidates

(Table S8; Fig. 2, top, dark gray zone), which decreased mono-

tonically with greater numbers of individuals, as expected. When

the numbers of males and females analyzed were increased, a

clear signal of male heterogamety emerged. With four or more

individuals of each sex analyzed, the proportion of male-specific

candidate loci increased and finally became significantly greater

than the number of female-specific candidates (Fig. 2, top, light

gray zone). At 11 and more individuals of each sex analyzed, the

number of female-specific candidates dropped to zero, whereas

the number of male-specific candidates remained high (Fig. 2,

top, white zone). Hence, these curves correctly diagnosed an

XY-system for S. latifolia, and rejected a ZW-system. Due to

this characteristic drop-out of false-positives, we also refer to the

numbers of analyzed individuals of each sex as “privacy rarefac-

tion stringency.” Some of the herein identified male-specific S.

latifolia contigs were previously reported to be sex-linked (Text

S3, Table S11).

Qualitatively consistent signatures of male-specific contigs

were detected independently in N. pervillei, N. gracilis, and N. raf-

flesiana s.l. (Fig. 2, Table S8). The proportion of male-specific loci

among all loci was, however, about 10-fold lower in Nepenthes

than S. latifolia. Estimates based on subsamples of 10 males and

10 females were only 0.02% for N. pervillei (11.8/51,002), 0.11%

for N. rafflesiana s.l. (43.7/40,508.7), and 0.06% for N. gracilis

(13/22,789), versus 1.52% for S. latifolia (586.4/38,455).

In N. pervillei and N. rafflesiana s.l., as well as in S. latifo-

lia, we also detected XY-patterned SNPs, but not in N. gracilis,

while none of the species yielded any ZW-patterned SNPs. The

XY-patterned SNPs for S. latifolia recovered 289 contigs already

known to be sex linked in that species, which, however, represent

only a small fraction of the known and theoretically expected

S. latifolia sex-linked sequences (c. 1/7 of the genome; Text S3,

Table S11). This low power was expected for a sequencing strat-

egy that targets only a small subset of the genome. Almost all

XY-patterned SNPs had an allele frequency close to 0.5 and

near-complete heterozygosity in males, but were homozygous

in females (Table S9). The proportions of XY-patterned SNPs

were also much lower in Nepenthes than in S. latifolia (2376/149,

311 = 1.6%, similar to the proportion of male-specific loci): the

estimates were, respectively, 0.25% and 0.017% for N. pervillei

(97/38,783) and N. rafflesiana s.l. (37/222,188).

POPULATION GENETICS OF SEX-LINKED LOCI

Fully Y-linked loci experience no recombination, which should

lead to increased population LD between different male-specific

contigs. All three testable male-specific contigs of N. pervillei

showed perfect LD (r2 = 1, which was c. 0.7 units higher than

the genomic background; N = 3 SNP pairs, P = 0.06). Like-

wise, the male-specific contigs of N. rafflesiana s.l. (contain-

ing 82 SNP pairs) had an r2 that was on average c. 0.4 above

the genomic mean (P < 10−5); the median value was complete

LD (r2 = 1). Among contigs with XY-patterned SNPs, r2 was

0.15 higher than the background mean in N. pervillei (P = 10−5,

N = 147), but was no different from the mean in N. rafflesiana

s.l. (P = 0.56, N = 11). Our observation of some low LD values

between sex-specific contigs is likely due to the discreteness of
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Figure 2. Evidence for male-specific loci and XY sex-determination systems in Silene latifolia and three Nepenthes spp. (privacy rarefac-

tion curves). Shown are counts of sex-specific contigs (y-axis) as a function of the number of individuals of each sex sampled to score

sex specificity (x-axis, stringency). Sex-specific contigs are defined as those to which sequencing reads from only one sex can be aligned.

Dots represent averages, and whiskers one standard deviation of 200 bootstrapped combinations of males and females. Note natural

log-scale of y-axis and hence undefined zero and negative values in the SD ranges. The background shading of the plots indicates three

relevant zones that are directly informative on the sex-determination system: a dark gray zone (low stringency) indicates no difference

between the sexes, the light gray zone (intermediate stringency) highlights where significant differences between sexes are found, and

white background (highest stringency) shows the biologically plausible zone where sex-specific markers are obtained in only one sex.

Male-specific candidates were found in all species up to the maximum possible stringency (the minimum number of male individuals and

female individuals), except in N. pervillei (asterisk).

allele frequency estimates from small sample sizes, and the allele

frequency dependence of LD metrics, whose maximum possible

value is frequently much less than 1.0 (VanLiere and Rosenberg

2008).

The mean nucleotide diversity π in male-specific (putatively

Y-linked) contigs tended to be lower than the genomic background

in all three taxa (Fig. 3), consistent with theoretical expectations

for Y-specific loci, whose effective population size is only 1/4

of that of autosomal genes, and can be reduced much further by

genetic hitchhiking and high variance among males in the number

of sired offspring (Wilson Sayres et al. 2014). This difference was

significant for N. rafflesiana s.l. (P < 10−3), but not for N. pervillei

EVOLUTION LETTERS DECEMBER 2019 5 9 1
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Figure 3. Mean per-site nucleotide diversity π of contigs in male Nepenthes of three taxa for male-specific, XY-patterned, and random

nonsex-linked contigs. All contigs mapping 3–75 reads in �75% of males per population were included. The same sets of individuals are

considered in each category. No XY- or ZW-patterned contigs were found in N. gracilis. Median = white dot, box = 25–75% quartiles,

whiskers = 1.5∗interquartile range, violin = estimated kernel density.

or N. gracilis (P = 0.13 and P = 0.055, respectively). In contrast,

mean π of males in contigs with XY-patterned SNPs was higher

than the genomic mean for both N. pervillei (P = 10−5, Fig. 3)

and N. rafflesiana s.l. (P = 0.002; Fig. 3), a consequence of high

male heterozygosity in the XY-patterned SNPs.

SHARED CANDIDATE LOCI BETWEEN SPECIES,

FUNCTIONAL ANNOTATIONS, AND PCR VALIDATION

Six candidate sex-specific contigs were found at privacy rarefac-

tion stringency level �5 that were shared between N. gracilis and

N. rafflesiana s.l. No sex-specific candidates were shared between

N. pervillei and the other species (Table S10). There was no over-

lap in XY-patterned SNPs between the Nepenthes species, and no

direct overlap between male-specific contigs and XY-patterned

ones. However, one male-specific contig of N. gracilis and one

XY-patterned contig of N. rafflesiana s.l. both matched (full

length alignment, e-value �1 × 10–19) to the same inflorescence

transcript containing a DUF4283 (domain of unknown function,

http://pfam.xfam.org/family/PF14111, November 9, 2016).

One male-specific contig of N. pervillei aligned to the tran-

script of a bHLH transcription factor, and the best matches in all

accessed databases were consistently to predicted orthologs of

the Arabidopsis gene DYSFUNCTIONAL TAPETUM1 (DYT1).

A further XY-patterned contig of N. pervillei matched a tran-

script annotated as A. thaliana SEPALLATA-1 (SEP1), which

aligned to the predicted 3′-UTR of the putative N. pervillei

SEP1-ortholog, and contained two SNPs that were both homozy-

gous in 95% of females and heterozygous in 96% of males. No

estimate of SEP1 X–Y divergence was possible because the male

inflorescence transcriptome reads were not heterozygous. In N.

gracilis, a male-specific contig matched a long transcript similar

to a mitochondrial NADH-ubiquinone oxidoreductase from Beta

vulgaris (Swiss-Prot). This finding was unexpected and may rep-

resent either an unspecific match of the short (96 bp) contig to

the inflorescence transcript, or else a cyto-nuclear transfer to the

sex chromosomes. The occurrence of organellar genes on plant

sex chromosomes has been documented in other species (Steflova

et al. 2013).

All other candidate loci either included traces of TEs, or had

no known sequence motifs (Table S10). In particular, of the 38

sex-linked inflorescence transcripts identified here (by 41 match-

ing sex-linked contigs), 34 (89%) could not be annotated, or con-

tained TEs. TEs were commoner than in nonsex-linked transcripts

(χ2
df = 1 = 5.2, P = 0.02). Nine out of 13 sex-linked TE-transcripts

annotated as gypsy-like retrotransposons, a significant overrepre-

sentation relative to nonsex-linked TE transcripts (χ2
df = 1 = 8.85,

P = 0.003).

Complementary to the sex-specificity scan on the ddRAD-

de novo reference, we repeated privacy rarefaction by directly

mapping the ddRAD reads to the male inflorescence transcrip-

tome to find further annotated sex-linked genes. This identified

seven transcripts (Table S10) that map male-specific regions of

the genomes. We recorded only high-confidence male-specific

candidate transcripts present in at least four males and absent

in at least four females, and bootstrap support greater 0.5 in at

least one species. No female-specific transcripts (false positives)
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reached these support levels. A single transcript was male-specific

in N. rafflesiana s.l. but could not be annotated. Four close tran-

script “isoforms” (contigs that share sequence but differ slightly

in structure, as assembled by Trinity; Haas et al. 2013) were male

specific in both N. gracilis and N. rafflesiana s.l., but they lacked

similarity to any known motif except for one isoform similar to

a Jockey-1 Drh retrotransposon. However, two transcripts were

male specific in both N. pervillei and N. rafflesiana s.l., and one of

these also matched a N. pervillei male-specific contig (see above).

These two transcripts appear to be close isoforms (putative intron

presence–absence), and both annotated as DYT1 (see above).

We tested by PCR whether the putative DYT1-ortholog is

male specific in a broad range of Nepenthes species. A single

PCR product of approximately 290 bp length was observed exclu-

sively and consistently in phenotypically sexed male Nepenthes

but never in females (Text S2). Multiple males and females were

screened in eight taxa, and 1–2 individuals from 14 further taxa.

Presence–absence of the PCR product was fully consistent with

the phenotypic sex of all 56 individuals. Sanger sequencing of the

PCR product confirmed the identity of the target region. Hence,

this locus is male specific across a phylogenetically broad range

of Nepenthes species and can be used for molecular sexing.

PERFORMANCE OF THE RESAMPLING STRATEGY

We tested the performance of privacy rarefaction on simulated

datasets resembling typical RAD-seq experiments under a range

of missing data levels, sampling schemes, and sizes of the sex-

specific region (Text S5). The procedure correctly identified the

heterogametic sex in >90% of simulations when the proportion

of sex-specific contigs in the genome was at least one permil, and

virtually all contigs classified as sex specific were true positives.

A naive scoring method, in contrast, failed to detect the heteroga-

metic sex in most scenarios because sex-specific contigs appeared

in both sexes, and it typically reported many false positives. How-

ever, most of the true sex-specific contigs were not detected in

simulated RAD-seq data because of the missing data inherent to

this sequencing method (low sensitivity). Nevertheless, the rela-

tive size of the sex-specific regions was usually estimated to the

true order of magnitude (Table S5-1 in Text S5).

Discussion
THE NEPENTHES SEX-DETERMINATION SYSTEM

Our findings reveal that sex determination has a genetic basis

in Nepenthes and involves a nonrecombining region in males.

Nepenthes karyotypes suggest that the sex chromosomes are

homomorphic (Heubl and Wistuba 1997), consistent with the

lower proportions of sex-linked contigs in Nepenthes compared

to S. latifolia with its large and heteromorphic Y-chromosome.

The proportions of male-specific contigs allow us to hypothesize

Figure 4. Summary of results on the sex-determination sys-

tem for Nepenthes, annotated on a plastid phylogeny (after

Meimberg and Heubl 2006). The crown of the genus is c. 17.7 (CI

11.0-24.3) million year old (Text S7). It constrains the minimum age

at which dioecy evolved and DYT1 became a male-specific gene.

NA = not available/not tested. Genome sizes were quantified

by flow cytometry. The proportion of Y-specific contigs is given

at 10 individuals of each sex (stringency). Nepenthes rafflesiana

s.l. contains several entities, for which the PCRs were conducted

separately.

that the size of the MSY relative to the whole genome is about

10-fold smaller in Nepenthes than in S. latifolia, and that within

the genus, it is smallest in N. pervillei. However, we note that the

characterization of sex chromosomes via reduced-representation

sequencing methods necessarily remains incomplete (Text S3),

and very strict analyses, such as the resampling procedure we

propose here, are required to avoid false inferences (Text S5).

Furthermore, our sampling included several subpopulations in

S. latifolia and N. rafflesiana s.l., which may have impeded the

detection of deme-specific sex-linked loci.

The MSY of Nepenthes appears to contain a “core region”

that is conserved throughout the genus. The DYT1 gene was

male specific in both N. pervillei and N. rafflesiana s.l., and

part of it was consistently PCR amplified in known males but

never in females of 22 Nepenthes species (Text S2), representing

all major clades (Fig. 4; Mullins 2000; Meimberg et al. 2001;

Meimberg and Heubl 2006; Scharmann et al. unpubl. data). The

shared MSY locus therefore suggests a single origin of dioecy

in Nepenthes that most likely predates the most recent com-

mon ancestor of extant Nepenthes at 17.7 (CI 11.0–24.3) mil-

lion years ago but followed the split between Nepenthaceae and
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hermaphroditic Droseraceae at least 44.2 million years ago (av-

erage 71.1 with CI 44.2–98.0; Text S7). However, the age of the

shared MSY core does not necessarily reflect the age of the sex

chromosomes: their identity could have changed over time and

may also differ between Nepenthes species because the ancestral

MSY could have been translocated to other chromosomes in a

process called “sex-chromosome turnover” (Blaser et al. 2014;

Jeffries et al. 2018; Tennessen et al. 2018). Nevertheless, the Ne-

penthes MSY core is probably older than the heteromorphic S.

latifolia sex chromosomes (�11 million years, Krasovec et al.

2018). These alternatives can be explored in future comparative

whole genome sequencing or mapping studies.

During the radiation of Nepenthes, the MSY has diverged

between species, as is expected over such long divergence times,

particularly for noncoding sequences. Only six out of 135 male-

specific contigs were shared between N. rafflesiana s.l. and N.

gracilis, and none were shared with the more distant N. pervillei

(Fig. 4). Male-specific loci shared between N. pervillei and N.

rafflesiana s.l. were only recovered with the help of longer, tran-

scriptome contigs to align ddRAD reads. Absence of shared male-

specific contigs should not, therefore, be interpreted as evidence

for independent origins of sex chromosomes, but rather reflects

sequence divergence between species. Further evidence for a com-

mon origin followed by interspecific divergence is found in a

DUF4283 transcript, which is male specific in N. gracilis but

XY-patterned in N. rafflesiana s.l., suggesting X and MSY alleles

(i.e., gametologs) have lost sequence similarity in the former but

not in the latter species.

NONCODING DNA AND SPECIAL SIGNIFICANCE OF

DYT1 AND SEP1

Nonrecombining regions of sex chromosomes accumulate repet-

itive, noncoding sequences and TEs in species with both hetero-

morphic or largely homomorphic sex chromosomes (Čermák et al.

2008; Wang et al. 2012). In Nepenthes, most sex-linked genomic

regions detected by our approach were noncoding sequences and

TEs and only a few genes with putative developmental functions

were identified. Of these, a Nepenthes homolog of DYT1 appears

to be located in the MSY of all Nepenthes species. DYT1 is es-

sential for tapetum development and thus pollen fertility in A.

thaliana (Zhang et al. 2006), rice (Jung et al. 2005; Wilson and

Zhang 2009; Cai et al. 2015), and tomato (Jeong et al. 2014).

Given this gene’s functional conservation in these distantly re-

lated Angiosperms, we speculate that its function is the same in

Nepenthes, and future ork could validate this hypothesis, for ex-

ample, via transient transformation of Nepenthes (Miguel et al.

2019). Our analysis suggests that DYT1 is absent from Nepenthes

females and must thus be absent from the X chromosome. Such a

deletion of DYT1 from the X chromosome would constitute a re-

cessive male-sterility mutation, as required early in the evolution

of dioecy for the transition from a hermaphroditic to a gynodioe-

cious mating system (Charlesworth and Charlesworth 1978). It is

notable that in Arabidopsis, DYT1 directly regulates the expres-

sion of TDF1 (Gu et al. 2014), a gene that in dioecious asparagus

is essential for male fertility and, like DYT1 in Nepenthes, is

located in the MSY (Harkess et al. 2017; Murase et al. 2017).

Apparently, this pollen development pathway was involved twice

independently in the evolution of angiosperm XY chromosomes,

and possibly in the transition to dioecy.

The second Nepenthes gene of interest is a homolog of the

homeotic MADS box gene SEP1, an early-acting regulator of flo-

ral organ identity in A. thaliana (Pelaz et al. 2000), which was

XY-patterned in N. pervillei. Two SEP1-linked SNPs were het-

erozygous in 27 of 28 males, whereas 21 of 22 females were

homozygous, consistent with the existence of strongly X- and Y-

linked copies. If SEP homologs in Nepenthes are involved in the

determination of floral organ identity (as in A. thaliana, Theißen

et al. 2016), the sex-linked Nepenthes SEP1 homolog could be

involved in unisexual flower development. In particular, sequence

differences between the Nepenthes SEP1 X- and Y-linked copies

might modify their functions such that they suppress the develop-

ment of either carpels or stamens. In S. latifolia, however, SEP1

homologs are not directly involved in sex determination and are

not located on the sex chromosomes (Matsunaga et al. 2004).

The possible roles of DYT1 and SEP1 in the origin of

dioecy in Nepenthes require further attention. Even if these are

not primary sex-determining genes in extant Nepenthes, they

might have been under sexually antagonistic selection during the

evolution of dioecy because loss of function of DYT1 or SEP1

alleles might abort nonfunctional organs at early developmental

stages, thus saving resources. The fully unisexual morphology

of extant Nepenthes flowers (Subramanyam and Narayana 1971)

implies further developmental genetic differences between males

and females.

Conclusion
This study reports the discovery of an XY sex-determination sys-

tem in dioecious pitcher plants (Nepenthes spp). The sex chromo-

somes are homomorphic with a small Y-specific region, which

has a relatively old core that is shared between distinct species.

The nonrecombining region is enriched for noncoding sequences

and TEs, but also contains several expressed genes with putative

developmental functions.

ACKNOWLEDGMENTS
We thank N. Zemp for data of Silene latifolia. We are indebted to H.
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