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Abstract

Propagating phenomena in networks have received significant amount of attention within

various domains, ranging from contagion in epidemiology, to diffusion of innovations and

social influence on behavior and communication. Often these studies attempt to model prop-

agation processes in networks to create interventions that steer propagation dynamics

towards desired or away from undesired outcomes. Traditionally, studies have used rela-

tively simple models of the propagation mechanism. In most propagation models this mech-

anism is described as a monolithic process and a single parameter for the infection rate.

Such a description of the propagation mechanism is a severe simplification of mechanisms

described in various theoretical exchange theories and phenomena found in real world set-

tings, and largely fails to capture the nuances present in such descriptions. Recent work has

suggested that such a simplification may not be sufficient to explain observed propagation

dynamics, as nuances of the mechanism of propagation can have a severe impact on its

dynamics. This suggests a better understanding of the role of the propagation mechanism is

desired. In this paper we put forward a novel framework and model for propagation, the RTR

framework. This framework, based on communication theory, decomposes the propagation

mechanism into three sub-processes; Radiation, Transmission and Reception (RTR). We

show that the RTR framework provides a more detailed way for specifying and conceptually

thinking about the process of propagation, aligns better with existing real world interven-

tions, and allows for gaining new insights into effective intervention strategies. By decom-

posing the propagation mechanism, we show that the specifications of this mechanism can

have significant impact on the effectiveness of network interventions. We show that for the

same composite single-parameter specification, different decompositions in Radiation,

Transmission and Reception yield very different effectiveness estimates for the same net-

work intervention, from 30% less effective to 70% more effective. We find that the appropri-

ate choice for intervention depends strongly on the decomposition of the propagation

mechanism. Our findings highlight that a correct decomposition of the mechanism is a

prerequisite for developing effective network intervention strategies, and that the use of
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monolithic models, which oversimplify the mechanism, can be problematic of supporting

decisions related to network interventions. In contrast, by allowing more detailed specifica-

tion of the propagation mechanism and enabling this mechanism to be linked to existing

interventions, the RTR framework provides a valuable tool for those designing interventions

and implementing interventions strategies.

Introduction

Propagating processes underlie many phenomena we observe in our daily lives; we are con-

stantly influenced socially, form opinions based on those with whom we interact, process

information from various sources to shape our view of our world, and are fighting off viral

threats in our environment. Academia has long recognized the value of using a network lens to

study such phenomena. Consequently, network analysis has been a cornerstone in domains

such as epidemiology [1–3], social contagion [4–6], intervention dissemination and imple-

mentation [7], information diffusion, [8] and learning [9, 10]. While the phenomena in each

of these domains differ from one another, they collectively belong to a generic class of propa-

gation processes. A propagation process we define as ‘a process by which the behavior or state
of an agent (A) will result in a change of behavior or state of connected neighbor (B)’.

Adopting a network lens has contributed to highlighting the role of the network structure

in driving the dynamics of propagating processes. For example, this body of work has better

informed us on the relevance of characteristic path length [11], clustering [12, 13], and net-

work topologies [11, 14]. In particular it has been found that most social systems contain

degree distributions with long tails or scale-free structures [14–16], and that nodes with high

degree facilitate spread [17–19]. Our social systems, combining these two features, are prone

to be affected by large propagating events, or cascades (of failure) [20]. Additionally, due to

increasing globalization and growing interconnectedness of our society, such cascades are

likely to become more profound and frequent in the future. The 2014 Ebola outbreak, the 2010

Arab Spring, or the 2008 financial crisis, are but a handful of recent high profile examples that

reveal the potential impact such propagating cascades can have, and these events signal the

high societal and scientific need for understanding how cascading dynamics come about.

A large body of work has focused on improving this understanding, and in doing so has

mainly highlighted the network structure and topology as the primary driver of propagation

dynamics. Similarly, embracing the path dependance that is inherent to many social phenom-

ena, a large body of work has focused on the effects of local structures, in particularly surround-

ing the seed of the propagation process (the location where in the propagation process

originates from). Many network intervention strategies are now aimed at finding the best posi-

tioned individuals to increase the momentum and reach of spreading phenomena [21–23].

While this body of work has made a strong case for network structure as a critical factor deter-

mining propagation dynamics, in identifying such effects it has largely ignored the impact that

different mechanisms of propagation—the way in which propagation process takes place—can

have, as propagation processes are generally treated as a class of uniform processes. While rec-

ognizing the importance of the network structure for understanding propagation dynamics, we

argue that it is not network structure alone that drives propagation dynamics, and that fully

understanding these dynamics requires one to consider the propagation mechanism.

In studies on propagation phenomena, the mechanism has generally been implemented

as a single rate or probability which summarizes the success rate of the propagation process.

RTR model for network interventions
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Yet many theories, e.g. social exchange theory [24], communication theory [25], and com-

plex contagion [26], and more recent studies in marketing [4, 27] and biological systems

[28] have suggested that the mechanism of propagation in reality can be much more compli-

cated. For example, recent marketing studies have incorporated individual level characteris-

tics that describe how likely someone is to spread or how susceptible one is to marketing,

highlighting how the mechanism can be different depending on the pair of agents that is con-

sidered, making it locally bound. Note that propagation literature has painted a relatively

clear picture on the impact of network structure, and based on this has developed various

targeting strategies, yet it remains largely unclear how (variations in) the propagation mech-

anism would affect propagation dynamics and thus our knowledge of how cascades occur

and can be influenced.

To address this gap, in this paper we propose a new framework for propagation which

incorporates a more nuanced notion of the propagation mechanism. Based on a framework

from communication theory [25] we consider the propagation mechanism to be composed

of three different sub-processes; Radiation, the process by which an agent sends out a signal,

Transmission, the process by which that signal reaches the alter, and Reception, the process by

which the signal is processed by the alter. We will show that decomposing the mechanism in

this way not only provides a more realistic way of capturing the propagation process and aligns

with existing intervention strategies, but also that it provides new insight into how to more

effectively intervene in propagation phenomena once they occur.

Propagation in networks

The definition of propagation describes it as dyadic process of influence between two agents

(‘a process by which the behavior or state of an agent (A) will result in a change of behavior or
state of connected neighbor (B)’). It highlights the initial shock at one agent that puts in motion

the consequent effect at another agent, making propagation effectively a process that should be

considered on the agent level. Note that the definition of propagation stays void of any refer-

ence to a propagation mechanism. Therefore we leverage a perspective from communication

theory to infer the propagation mechanism. Communication itself is an instance of propaga-

tion that describes the exchange of information between agents. However, whereas for propa-

gation processes the mechanism is obscured, for the communication process the mechanisms

has been made explicit and often been the focus of study. For decades communication theory

[25] has been applied to describe the dyadic mechanism of communication.

In describing the information exchange process, communication literature identifies a

mechanism of exchange using three entities, each with their own role; 1) a sender that encodes

information, 2) a medium that transports this information (from sender to receiver), and 3)

the receiver that decodes the information. It highlights the agency of each of these entities, and

the potential of loss of information during each of their actions. As such, the communication

perspective considers the propagation mechanism as an agent-driven process consisting of

three consecutive steps. Applying this lens to other propagation phenomena allows one to

identify these steps across the complete spectrum of propagation phenomena (e.g. [29]), sug-

gesting the decomposition of propagation into three sub-processes to be broadly applicable.

Following this observation, we formulate a framework of the propagation mechanism using

three sub-processes (Fig 1).

We modify the communication-theoretical framework in two ways. First, given our goal of

describing propagation phenomena that go far beyond the communication setting, we step

away from communication-specific terminology, and use the labels Radiation, Transmission

and Reception (RTR) for describing the sub-processes during propagation. Radiation refers to

RTR model for network interventions
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the process by which a change in the state or behavior of an actor results in that actor sending

out signals to its outgoing ties. Transmission refers to the process by which a signal is trans-

ferred from the sender to the receiver (via a tie). Reception refers to the process by which actors

respond to the incoming signal(s) and change their behavior or state accordingly. Like in com-

munication theory, these processes are sequential, meaning that radiation is required for trans-

mission and transmission is required for reception. Only when all three sub-processes have

taken place successfully one can speak of propagation.

Second, we step away from the purely dyadic notion of propagation, and consider it to be

an (agent-based) network process. Each of the sub-processes can be observed to adopt a differ-

ent logic: Radiation is sender-based, and a process from one actor to its outgoing ties, making

it potentially a one-to-many process. Transmission is medium-based, and occurs within a sin-

gle tie and hence is a dyadic process. Reception is receiver-based, and is a process potentially

from many incoming ties to one single actor, making it effectively a many-to-one process.

These differences highlight that while all sub-processes are part the composite propagation

process, each of them is conceptually different from one another. Furthermore, it shows that

while each dyad with propagation will require all three sub-processes to occur, the propagation

process itself is fundamentally a network process.

Revisiting the literature on propagation with the RTR framework in mind provides some

interesting insights (Table 1). First, to our knowledge, there are no studies that cover all three

sub-processes simultaneously. Second, each of the sub-processes is grounded in literature,

examples of each of them individually can be found in previous work. Third, as an integrated

framework for sub-processes has been missing, the labeling in current literature has proven to

be inconsistent. A single term has been used to refer to different parts of the mechanism in dif-

ferent articles, and different terms are used across articles for parts of the mechanisms that are

in fact identical. Fourth, propagation is often considered a one-sided process (rather than a

dyadic one). It is mostly described as a process by which agents change state/behavior, and

thus resembles the reception sub-process. Lastly, lessons learned and conclusions drawn in

propagation literature are generally assumed to translate across settings, disregarding the

potential impact of the propagation mechanism adopted, as such sub-processes have effectively

been considered to be inter-changeable.

Our exploration of the literature indicates that the propagation mechanism, the process

that describes how propagation between two (or more) agents occurs, has received relatively

little attention in propagation literature. In most studies, the mechanism of propagation

adopted is a direct consequence of the model type being used. Most commonly adopted types

of models are (variation or extensions of) of SIS/SIR model [54], threshold models [8, 55],

cascade models [56], or Bass(-like) models [57]. Each of these models has a slightly different

Fig 1. Propagation is composed of three distinct sub-processes; Radiation refers to the process with which an actor

translates a change in state into an outgoing signal, Transmission to the process by which this signal is transferred (via

a tie) towards the alter(s), and Reception to the process by which alters respond to the incoming signal and may change

state accordingly.

https://doi.org/10.1371/journal.pone.0207865.g001
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mechanism of propagation, yet all of them are unified in their assumption that propagation is

a monolithic process.

Recent work [26, 28, 40, 41] has started to make a case for stepping away from a monolithic

view of the propagation mechanism to better understand propagation dynamics. Centola &

Macy [26] in their study on complex contagion, a spreading mechanism which assumes an

agent requires stimuli from multiple sources to change state, has shown that both the speed

and pervasiveness of propagation are strongly influenced by such a variation in propagation

mechanism. Similarly, [28, 40, 41] highlight that agents can send out very different strengths of

signals and/or can be susceptible to different magnitudes of signals [28, 40], and that such het-

erogeneity in the mechanism has a strong influence on the dynamics of propagation. By incor-

porating variations in the propagation mechanism, these studies highlight the marked effect

the mechanism can have on the dynamics of the propagation process.

Although these examples have adopted more complex models to be able to capture nuances

in the propagation mechanism, there is still limited effort in making sure these more complex

models can be related to each other. Therefore, propagation literature runs the risk of entering

Table 1. This table depicts some examples of the way in which propagation has been operationalized in literature. Different streams of literature focus on different

sub-processes, and thus capture only part and not the whole propagation process.

Author Year Label of propagation Context Sub-process considered

Radiation Transmission Reception

Granovetter [30] 1973 Diffusion Information (job opportunities) x

Rogers [8] 1995 Diffusion Innovation (general) x

Szulanski [31] 1996 Transfer Knowledge transfer (best practices) x x

Reagans and McEvily [32] 2003 Transfer Knowledge transfer (R&D) x

Dodds and Watts [33] 2004 Contagion Epidemics / Social behavior (general) x

Valente [34] 2005 Diffusion Innovation (general) x x

Buzna et al. [35] 2006 Spreading Infrastructure (general) x

Ferguson et al. [36] 2006 Transmission Epidemics (influenza) x

Centola and Macy [26] 2007 Contagion Social behavior (general) x x

Rahmandad and Sterman [13] 2008 Diffusion Epidemics (general) x

Buldyrev et al. [20] 2010 Cascades Infrastructure (general) x x

Iyengar et al. [37] 2010 Contagion Innovation (medical drug) x

Gonzalez-Bailon et al. [38] 2011 Diffusion Social behavior (protests) x

Birken et al. [39] 2012 Influence Innovation (healthcare practice) x

Aral et al. [40] 2013 Influence Innovation (mobile app) x x

Banerjee et al. [41] 2013 Contagion Innovation (micro finance) x x

Falk et al. [42] 2013 Influence Innovation (tv shows) x x

Barasch and Berger [43] 2014 Sharing Information (general) x

Smilkov et al. [44] 2014 Spreading Epidemics (general) x

Contractor and DeChurch [45] 2014 Influence Innovation (medicine) x x

Goel et al. [46] 2015 Diffusion Information (tweets) x

Pei et al. [47] 2015 Diffusion Information (blogs) x

Sutton et al. [48] 2015 Diffusion Information (tweets) x

Valdez et al. [49] 2015 Spreading Epidemics (ebola) x x

Bardoscia et al. [50] 2016 Contagion Finance (financial distrss) x

Canini et al. [51] 2016 Transmission Epidemics (influenza) x

Fu et al. [52] 2017 Contagion Epidemics (influenza) x

Wang et al. [53] 2017 Spreading Epidemics (general) x

Wang et al. [28] 2017 Transmission Gene behavior (general) x x

https://doi.org/10.1371/journal.pone.0207865.t001

RTR model for network interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0207865 December 5, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0207865.t001
https://doi.org/10.1371/journal.pone.0207865


an era in which highly specific mechanisms are being used with limited contributions to gener-

alizable knowledge. The RTR-framework addresses this tension and allows us to build a model

which can be used to unify the various propagation models (including more complex ones),

and make explicit how mechanisms differ (or align). This model thus facilitates the propaga-

tion field to move to a place in which the impact of the propagation mechanism can be struc-

turally studied and better understood.

The RTR-model for propagation, in line with the RTR-framework, specifies the propaga-

tion mechanism using three sub-processes, each using the own function. Each of them can be

tailored depending on the needs of a specific setting and phenomena. For simple scenarios

these functions can be reduced into three single parameters (one for each sub-process) that

capture the success of the specific sub-process; Radiation (α), Transmission (ϕ), and Reception
(η), making the composite transmission likelihood (λ) equal to α × ϕ × η. For more complex

scenarios these function can be extended to include memory effects [58], threshold behavior

[55], and complex contagion effects [26] (a full model specification can be found in S3 File).

Steering propagation outcomes

For many propagation phenomena, understanding what drives dynamics is only a first step.

Generally, one wants to affect and steer the outcomes of the propagation process using one’s

knowledge of the process. For example, we want to understand disease spread so we can pre-

vent it, we want to understand opinion dynamics so we can influence them, and we want to

understand word-of-mouth so we can market our products better. There are various streams

of literature aimed at understanding propagation dynamics. Some have focused on identifying

the controllability of network structures [59], others have focused on the predictability of large

scale cascades [60], and yet others have tested the impact of interventions [21, 61, 62]. Each of

these streams has focused on a different dimension of understanding propagation dynamics,

yet all strive towards the goal of increasing our knowledge of propagation dynamics in the

hopes of improving our ability to intervene and more effectively steer such dynamics. As such,

understanding dynamics goes hand in hand with intervening in them.

Valente [62] provides an overview of network interventions, and classifies four distinct cat-

egories of interventions in networks: Individuals, Segmentation, Induction, and Alteration.

Interventions focused on individuals revolve around identifying key individuals as targets for

intervention, these can either be individuals who are very efficient in getting a message out, or

low-threshold change agents, those who will easily change their behavior/state, or those in

favorable network positions. Segmentation interventions aim to leverage the partitioning of a

system in clusters in order to facilitate maximum reach, and thus selects key individuals based

on system-level structure. Induction interventions highlight the relevance of the multiplex

nature of networks and aim to leverage existing structure beyond their normal use, ie. use

word-of-mouth (WOM) in social networks to facilitate product adoption. Alteration interven-

tions aim to change network structure, by adding or removing links or agents, in such a way

that spreading will become more (or less) likely. Based on this classification, three factors that

affect the impact of interventions can be identified; 1) agent level characteristics that affect the

mechanism by which propagation occurs, 2) the network structure, and 3) the location within

the network that is being affected. These three factors seem to address where to target interven-

tions, yet leave the question how to (most effectively) intervene largely unanswered. Valente

recognized this and states “because network interventions are based on accelerating social influ-
ence, they require a deeper understanding of the social mechanisms driving behavior change”
([62], page 52), suggesting that understanding impact of the mechanism of propagation might

provide an avenue to address how to best intervene.

RTR model for network interventions
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The monolithic mechanism that is adopted traditionally in propagation literature and mod-

els allows for only a single type of intervention—a change of the rate (or success) of propaga-

tion. While relevant lessons have been learned from studying such interventions, e.g. that

the epidemic threshold varies based on network topology [19, 63, 64], it leaves little room for

exploring how to best intervene, and thus provides little insight in how to best devise interven-

tion strategies. Comparing various types of interventions and devising intervention strategies

requires a framework in which effects of different types of interventions can be disentangled

and distinguished. The RTR framework of propagation, by decomposing the mechanism into

three sub-processes, does exactly this.

From a practical perspective, the three sub-processes identified in the RTR-model of propa-

gation align naturally with interventions. An overview of interventions made in practice to

improve/reduce spreading in various contexts (S2 File) shows that such interventions can be

easily translated into changes within specific single sub-process. Interventions thus seem to

map directly to changes in the mechanism. Combining this with the notion that propagation

dynamics are driven by the propagation mechanism (in combination with the network struc-

ture), this makes effective intervening a question of understanding how interventions change

the mechanism, and how this consequently translates into changed propagation dynamics.

This question can only be addressed when a model of propagation is adopted that incorporates

a more detailed view of the mechanism of propagation.

Similarly, from a conceptual standpoint, we find that the classification of network interven-

tions [62] aligns well with the RTR framework of propagation. Individual type of interventions

based on individual characteristics can be directly linked to specific sub-processes; selecting

individuals who are able to communicate well is an intervention that aims to leverage the

strong capacity for sending out signals, and thus can be considered a radiation-based interven-

tion. Selecting low-threshold agents who easily change their state or behavior would be a

reception-based intervention, and both induction and alteration type interventions (which

focus on enabling spread by improving the structure that underlies transfer) can be considered

transmission-based an intervention. The RTR framework thus provides a structured way to

distinguish between these network interventions. It should be noted that segmentation type

interventions are an outlier in this aspect. As such interventions consider system-wide network

structural properties (rather than anything mechanism related) such effects are nearly impossi-

ble to capture using an agent-level description of the propagation mechanism.

Interventions in traditional propagation models, which are generally monolithic, do not

allow for specific parts of the mechanism to be targeted. Consequently, in such setting the

various types of interventions are hard to be distinguished and are generally considered to

be inter-changeable. The fact that the sub-processes are conceptually different, and can be

associated to specific interventions, suggests that there are conceptual differences in inter-

vention that cannot be captured using traditional models, and are therefore overlooked in

current propagation research. For this reasons we argue that models incorporating a more

nuanced view of the propagation mechanism—like the RTR model presented in this

paper—are required for effectively studying network intervention effectiveness and interven-

tion strategies.

Materials and methods

The RTR framework describes the mechanism of propagation, allowing a change in state to

propagate from one actor to affect its connected neighbors (alters) using three distinct sub-

processes. The model that captures the propagation mechanism can therefore be described

by means of three separate functions: one for Radiation, one for Transmission, and one for

RTR model for network interventions
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Reception. The model described below is the most generic form of the model. It allows for cap-

turing both stochastic and deterministic processes, discrete and continuous agent states, more

complex non-linear propagation dynamics [26] and memory effects [33, 58]. The radiation

function describes how the change in state of an agent i (Δsi,t), if higher than the radiation

threshold (u), will result in signals being sent (pout
i;e;t 2 Pout

i;t ) to the outgoing ties (Eout
i ).

Xt

t0¼t� Tradþ1

X
ðAi;t0 � Pout

i;t0 � ðtradÞ
ðt� t0Þþ1

Þ ¼

(
Dsi;t if Dsi;t � u

0 if Dsi;t < u
ð1Þ

In which Ai,t (αi,e,t 2 Ai,t) is a vector capturing the characteristics which influence the radiation

per outgoing edge e at time t, Trad is the radiation memory duration, i.e. the number of time

units after a change of state that this change can cause radiation, and τrad is the memory infla-

tion factor, the extent to which past changes are amplified or dampened.

The transmission function describes how the signal radiated (pout
i;e;t 2 Pout

i;t ) is transformed

into the signal which is received by the alter j (pin
e;j;t)

pout
i;e;t ¼

Xt

t0¼t� Ttraþ1

ð�e;t0 � pin
e;j;t0 � ðttraÞ

ðt� t0Þþ1
Þ ð2Þ

In which Ttra is the memory duration for transmission, τtra is the memory inflation factor for

transmission, and ϕe,t is a vector of edge characteristics which influence transmission.

The reception function describes how transmitted signals (pin
e;j;t) received from the incoming

ties (Ein
j ) translate into a change of state of an alter if their combined effect passes the reception

threshold (q).

Dsj;t ¼

Xt

t0¼t� Trecþ1

X
ðPin

j;t0 �Cj;t0 � ðtrecÞ
ðt� t0Þþ1

Þ if :

Xt

t0¼t� Trecþ1

X
ðPin

j;t0 �Cj;t0 � ðtrecÞ
ðt� t0Þþ1

Þ � q

or

0 if :
Xt

t0¼t� Trecþ1

X
ðPin

j;t0 �Cj;t0 � ðtrecÞ
ðt� t0Þþ1

Þ < q

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð3Þ

In which Trec is the memory duration for reception, τrec is the memory inflation factor for

reception, and Cj,t (ηe,j,t 2Cj,t) is a vector capturing actor specific characteristics influencing

the reception per incoming edge e on time t. Using Eqs 1, 2 and 3, the RTR-model decomposes

the propagation process into three distinct sub-processes.

The study design

The generic RTR model allows for capturing the full range of propagation mechanisms and

thus provides much more flexibility compared to traditional propagation models. Note that

such flexibility comes at the cost of a more complex model, a tradeoff that is generally hard to

balance. Rather than making a statistical argument for more (or less) complex models of prop-

agation, our approach is to show the value of decomposing the propagation process (in RTR)

from an intervention perspective as this highlights the different affordances of the RTR model.

We do so for a relatively simple well-studied mechanism, the mechanism that is traditionally

used in SIS models in epidemiology.

RTR model for network interventions
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The generic RTR model can be aligned with the SIS model by making a set of restricting

assumptions relating to the propagation mechanism. First, it is assumed that memory plays

no role, second, that agent states are binary (infected/susceptible), third, that the mechanism

of propagation is stochastic, and lastly, that infected agents can infect others as long as they

remain in the infected state (effectively making radiation a function based on the state rather

than a change in state). Incorporating these assumptions into the RTR model, the generic

model can be rewritten as in the much simpler version below. Details on how the generic

model reduces to the SIS/SIR and other traditional models such as Bass(-like) models [57],

threshold models [8, 55] and cascade models [56] are provided in S3 File.

pout
i;e;t ¼

(
� Bernða�i;e;tÞ if si;t ¼ 1

0 if si;t ¼ 0
ð4Þ

pin
e;j;t � Bernð��e;tÞ if pout

i;e;t ¼ 1 ð5Þ

Dsj;t ¼

(
� Bernð1 �

Q
ð1 � C

�

j;tÞÞ if si;t ¼ 0

0 if si;t ¼ 1
ð6Þ

Then if one assumes homogeneous agents, no interaction effects among signals sent or

received, an unweighted network structure, and a stable propagation mechanism over time

(a�i;e;t ¼ a, and �
�

e;t ¼ �, and ð1 � C
�

j;tÞ ¼ Z) one can reduce propagation on the dyadic level

(between two agents) to λ =�Bern(α × η × ϕ).

Note that the only difference between traditional SIS model and this version of the RTR

model is the that traditional model assumes the sub-processes to be inter-changeable (and thus

the same), whereas the RTR model allows them to be independent. A comparative simulation

experiment with the above-stated SIS version of the RTR model is done to explore the implica-

tions of this assumption under various interventions.

The experimental setup is as follows: four scenarios with the same exact composite propaga-

tion rate/probability (λ = α × η × ϕ) are selected. One among them will be a scenario in which

sub-processes are indistinguishable, meaning that each sub-process has the exact same param-

eter value. This operationalization can be reduced to a single parameter mechanism which

captures the traditional SIS behavior, and will be considered the baseline to which behavior is

compared. The other three scenarios use different decompositions in sub-processes, while still

maintaining the exact same composite propagation rate (λ) as the baseline process with identi-

cal sub-processes. The decomposition of the four scenarios in our experiment can be found in

Table 2.

The RTR model describes the propagation mechanism on the agent level and is therefore

implemented as an Agent-Based Model (ABM). It has been shown [13] that, due to the discrete

nature of Agent-based models (ABMs), these models yield slightly different behavior com-

pared differential equation models (DEMs) traditionally used to describe SIS spreading

dynamics. In particular, small infection sizes can be affected by the discrete nature of an ABM,

yielding extinction events in ABMs that will not occur in DEMs. To avoid the effect of prema-

ture extinction events the recovery rate in our simulations is set such that R0 is well above

1 (ρ = 0.2 ! R0 = 2.88), which makes extinction highly unlikely. Consequently our scenarios

are expected to yield widespread cascades of infections. Additionally, should any early extinc-

tion event occur, their results are excluded from the analysis.
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As previously indicated both the network structure and seed chosen can have strong effects

on the propagation dynamics. As we aim to show the impact of the mechanism of propagation

both of these effects will need to be controlled for during the experiment.

We control for the impact of network structure by keeping it constant across simulations.

While this does not erase the impact of network structure, it does keep its effects constant

across simulations, and thus allows variations in dynamics to be attributed to variations in the

mechanism of propagation. Additionally, to make sure our results are generalizable, we run

our experiments on three network structures.

The first network, which will be used throughout this paper as the setting in which to pres-

ent results, is an undirected, non-weighted, scale-free network synthetically generated based on

the Barabasi-Albert approach [14]. It has has 10.000 nodes (n = 10.000) and an average degree

of 3 (m = 3). The second network used is a Facebook Ego-network [65]. It covers a giant com-

ponent of friendship ties, based on the social circles on Facebook platform, with n = 4.039 and

e = 88.234, and is thus denser than the original synthetic network. The Third network is the

Autonomous systems AS-733 network [66]. It describes the communication among a set of

autonomous systems, and is based on BGP (Border Gateway Protocol) logs. This network con-

sists of 6.474 nodes and 12.572 edges and is thus sparser then our synthetic network.

We control for the impact of the seeding strategy by considering two seeding strategies.

We will use random seeding as the default strategy, in this strategy a single seed is randomly

selected for each simulation. To control for the impact of seeding we also adopt a second strat-

egy which we label the betweenness strategy, in this strategy seeding is ‘optimized’ by selecting

the actor with the highest betweenness centrality as the seed in each simulation. To further

increase the reliability of our results, each setting will be bootstrapped 10000 times, and the

mean behavior across this set of bootstrapped iterations is then used in our analysis.

Following the mapping of interventions onto sub-processes in the RTR-model, the experi-

mental setup implements interventions as perturbations in a single sub-process. It is assumed

agents are homogenous, hence these perturbations will affect all agents equally and at the same

time. The SIS mechanism adopted in our model is generally associated with disease spread,

therefore we align our intervention logic to this setting. In a disease spreading setting, an inter-

vention could be to provide antibiotics (this would reduce their viral load and thus make the

population less infectious). Assuming this would reduce infectiousness by 20%, such an inter-

vention would result in a reduction of radiation by 20% (α� = α − 0.2). In line with this exam-

ple, interventions are implemented as a system-wide reduction in a single sub-process (and

corresponding parameter) halfway though the simulation (t = 25).

Analysis strategy

Leveraging the experimental setup we will take the following steps during our analysis. First,

to support the validity of decomposing the propagation mechanism, we will compare the

Table 2. Four scenarios with varying decomposition of the sub-processes of propagation.

Scenario Composite propagation probability (λ) Radiation probability (α) Transmissio probability (ϕ) Reception probability (η)

Scenario 1 0.192 0.4 0.6 0.8

Scenario 2 0.192 0.6 0.8 0.4

Scenario 3 0.192 0.8 0.4 0.6

Scenario 4 (baseline) 0.192 0.5769 0.5769 0.5769

All scenarios have the same composite propagation probability (λ = α × η × ϕ = 0.192). This probability is however decomposed differently across the sub-processes for

each of the scenarios.

https://doi.org/10.1371/journal.pone.0207865.t002
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behaviors of various decompositions in the RTR model without interventions. Second, to

show how RTR behaves differently compared to traditional models, we will introduce inter-

ventions into the model. Third, to highlight the extent to which misspecification of the mecha-

nism can have an impact on propagation dynamics under interventions, we will simulate

interventions in a set of extreme scenarios. And lastly, to show the impact of the decomposi-

tion has on intervention strategies, we compare the effects of interventions of different sizes

and at different targets.

Note that, due to the size of the experimental design, only a subset of results will be pre-

sented in the main text. We will use the synthetic network with random seeding and the sce-

nario of an intervention in the Radiation process to illustrate our results throughout the main

text. The remainder of the results, e.g. those for interventions in Transmission and Reception,

and robustness checks with different seeding strategies, and the Facebook and AS-733 network

structures, are included as part of the supplementary information (S5 File).

Results

The RTR framework, and the accompanying model, present a more detailed way of modeling

propagation, as with any new model its behavior needs to be verified prior to being adopted in

experiments. We do so by numerical comparing the prevalence numbers (% of the network

affected) across the various decomposition scenarios (described in Table 2). The four scenarios

are shown to achieve both propagation curves and dynamic equilibria levels that are graphi-

cally identical (Fig 2). A formal test of the resemblance of the equilibrium states reveals that

the prevalence for each of these processes are statistically indistinguishable (F = 1.512 and

P = 0.219), confirming that the differently decomposed scenarios are behaving identical.

Note that our baseline scenario matches the traditional SIS model of propagation directly and

behaves the same as all other decompositions, this indicates the SIS model is indeed a special

case of the RTR model. This in turn validates the choice of using RTR implemented scenarios

to compare to traditional SIS models.

Existing propagation literature suggests that, because of their similar composite propaga-

tion likelihoods, these scenarios will behave the same. This assumption is supported by results

from the unperturbed setting, in which behavior is shown to be independent of decomposi-

tion. However, when perturbations are included in the model, this logic breaks down. We find

that applying a single intervention (20% reduction in radiation) to the four scenarios results

different prevalence curves (Fig 3). While the curves for the baseline and second scenario are

very similar and lie nearly on top of one another, the first and thirds scenarios show clearly

identifiable differential behavior. Table 3, presenting the same results in numeric terms, more

clearly shows the effective reduction of prevalence obtained by intervening for each of the sce-

narios. These findings indicate that scenarios do behave differently when perturbed, and that

for intervention purposes these scenarios are fundamentally different. As scenarios differ only

in decomposition, it becomes evident that the decomposition is the driver of these differences

and what determines the effectiveness of interventions in propagation.

Note that while only a subset of results are presented in the main manuscript, these results

to be robust across intervention targets, network structures and seeding strategies. The radia-

tion intervention results are consistent with those from Transmission and Reception (see Figs

A and B, in S4 File). Similarly, (S5 File) shows that that the seeding strategy has no impact on

our results, and we find that while different overall prevalence levels across network structures

(and thereby different intervention effects in an absolute sense) occurs, the relative impact of

the decomposition (the extent that different decomposition scenarios differ from the baseline

scenario) remains constant across networks.
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Our intervention results highlight significant variation in intervention effectiveness stem-

ming from variations in the decomposition of the propagation mechanism. This should not

come as a surprise when one considers the decomposition of the propagation rate (λ = α × η ×
ϕ). From the decomposition itself we can deduce that the net effect of an intervention (an

absolute change in one of the parameters of the sub-processes) on the composite propagation

rate (λ) will be a multiplication of the intervention size and parameters for the remaining sub-

processes. While this net effect determines the observed intervention effectiveness in our simu-

lations, it becomes evident that the effective reduction of λ achieved by an intervention is con-

ditional upon the decomposition. Therefore, only when we know the decomposition we can

make informed decisions regarding the effects of an intervention strategy.

To further explore the effect of incorrect specification, we extend the radiation intervention

setting (in network 1 with random seeding) with two additional scenarios to investigate how

large the variation in effectiveness of a given intervention can be when the mis-specification

of the propagation process is substantial. We generated two additional scenarios that keep the

composite propagation likelihood the same (λ = 0.192), but differ in their resilience to the pro-

posed intervention. Building on the notion of that the net effect on the composite λ drives the

intervention effectiveness the first additional scenario (scenario 5) we will maximize the radia-

tion parameter pre-intervention (α = 1.0, ϕ = 1.0 and η = 0.192). We assume this to be the

most resilient scenario as the intervention has the smallest impact relative to the size of the

Fig 2. For network 1 with random seeding the mean prevalence over time is depicted for the four scenarios with the same overarching

propagation likelihood (λ = 0.192). Scenario1, the red open circles, is a process with α = 0.4, ϕ = 0.6 and η = 0.8. Scenario2, the green triangles, a

process with α = 0.6, ϕ = 0.8 and η = 0.4. Scenario3, blue pluses, a process with α = 0.8, ϕ = 0.4 and η = 0.6. Scenario 4, the pink crosses, a process with

homogeneous sub-processes (α = ϕ = η = 0.5769).

https://doi.org/10.1371/journal.pone.0207865.g002
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radiation parameter. In the second additional scenario (scenario 6) the radiation parameter is

set equal to the intervention size (α = 0.2, ϕ = 1.0 and η = 0.96), this will be the least resilient

scenario as the intervention effectively reduces the radiation to 0. The results of simulations

with these additional scenarios (Fig 4, Table 4) show that the effects of a given intervention can

Fig 3. For network 1 with random seeding the mean prevalence over time is depicted for the four scenarios with the same overarching

propagation likelihood (λ = 0.192). Scenario1, the red open circles, is a process with α = 0.4, ϕ = 0.6 and η = 0.8. Scenario2, the green triangles, a

process with α = 0.6, ϕ = 0.8 and η = 0.4. Scenario3, blue pluses, a process with α = 0.8, ϕ = 0.4 and η = 0.6. Scenario 4, the pink crosses, a process with

homogeneous sub-processes (α = ϕ = η = 0.5769). During the simulation at t = 25 an intervention (reduction of 0.2) in the radiation is applied.

https://doi.org/10.1371/journal.pone.0207865.g003

Table 3. Intervention effects for four scenarios, under random seeding on network 1.

Scenario Pre-intervention

prevalence

Post-intervention

prevalence

Intervention effect (relative

effect)

effect relative to

baseline

Composite λ post

intervention

Baseline:

(Rad = Tra =
Rec = 0.5769)

0.697 0.603 -0.091 (-13.1%) 100.0% 0.125

Scenario 1

(Rad = 0.4 Tra = 0.6
Rec = 0.8)

0.697 0.541 -0.156 (-22.4%) 176.0% 0.096

Scenario 2

(Rad = 0.6 Tra = 0.8
Rec = 0.4)

0.697 0.613 -0.083 (-12.0%) 94.3% 0.128

Scenario 3

(Rad = 0.8 Tra = 0.4
Rec = 0.6)

0.697 0.640 -0.057 (-8.4%) 64.4% 0.144

This table shows for each scenario the relative effects of an intervention (-0.2 reduction) in radiation

https://doi.org/10.1371/journal.pone.0207865.t003
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differ more than an order in magnitude for a given intervention, indicating just how important

the correct specification is.

Thus far, the presented results have assumed intervention size to be fixed, and while this

has been useful exercise for showing the relevance of correct specification, it might not be the

most realistic representation of interventions in practical settings. In practice a policy maker

Fig 4. For network 1 with random seeding the mean prevalence over time is depicted under random seeding on network 1 for the 3 scenarios with

the same overarching propagation likelihood (λ = 0.192). The baseline scenario, the red open circles, a process with homogeneous sub-processes (α =

ϕ = η = 0.5769). Scenario 5, the green triangles, a process with α = 1.0, ϕ = 1.0 and η = 0.192. Scenario6, blue pluses, a process with α = 0.2, ϕ = 1.00 and

η = 0.96. During the simulation at t = 25 an intervention (reduction of 0.2) in the radiation is applied.

https://doi.org/10.1371/journal.pone.0207865.g004

Table 4. Intervention effects for two additional extreme scenarios, under random seeding on network 1.

Scenario Pre-intervention

prevalence

Post-intervention

prevalence

Intervention effect (relative

effect)

effect relative to

baseline

Composite λ post

intervention

Baseline:

(Rad = Tra = Rec = 0.5769)
0.694 0.603 -0.091 (-13.1%) 100.0% 0.125

Scenario 5

(Rad = 1.0 Tra = 1.0
Rec = 0.192)

0.694 0.642 -0.045 (-6.4%) 48.8% 0.1536

Scenario 6

(Rad = 0.2 Tra = 1.0
Rec = 0.96)

0.686 0.032 -0.682 (-99.5%) 748.2% 0.0

The extreme scenarios again have the same overarching propagation probability (λ = α × η × ϕ = 0.192), but are decomposed differently. Scenario 5, the most resilient

scenario, has a decomposition of [α = 0.192, ϕ = 1.0 and η = 1.0], whereas scenario 6, the most fragile scenario, has a decomposition of [α = 0.2, ϕ = 0.96 and η = 0.1]

https://doi.org/10.1371/journal.pone.0207865.t004
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faces a given propagation phenomenon, and thus a given mechanism of propagation, for

which the policy maker wants to intervene most effectively. As an illustration, assume a policy

maker is faced with a phenomenon that is accurately described by scenario3 (for similar analy-

sis for the other scenarios see Figs A and B in S6 File) one wants to know the potential impact

of a given intervention, or how much one should intervene to obtain the desired impact. So

rather than assuming an intervention of fixed size the assumption is that intervention sizes can

vary. To incorporate this in our model we allow intervention sizes to span the full range (0% to

100%, with increments of 1%) for all three targetable sub-processes and explore the impact.

Similar to the results presented in the previous tables, for each such intervention we calculate

the effect on the prevalence (unperturbed prevalence—prevalence after intervention), and plot

these values. The results (Fig 5) indicate three things. First, in line with previous observations,

it shows that for an intervention of a given size (i.e. the vertical yellow dashed line corresponds

with the previously discussed intervention of size 0.2), the effectiveness of that interventions

varies strongly depending on which sub-process is targeted. Second, it shows that for a given

mechanism there seems to be a single most effective target for intervention. For this specific

scenario, the interventions in the transmission sub-process are particularly impactful. Com-

paring these results across various mechanisms (S6 File), however reveals that the best targeted

sub-process varies across scenarios, and that the most effective target for interventions (Radia-

tion, Transmission or Reception) depends on the decomposition of the propagation mecha-

nism. More specifically, we find that the most effective target for intervention is the sub-

Fig 5. The mean reduction in prevalence (y-axis) in scenario 3 (α = 0.8, ϕ = 0.4 and η = 0.6) for interventions of various size(x-axis) across the

different target processes, green circles for interventions in Radiation (α), blue triangles for interventions in transmission (ϕ), and gray pluses for

interventions in reception (η).

https://doi.org/10.1371/journal.pone.0207865.g005
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process that has the smallest parameter value. This is somewhat counter intuitive, as this

means that the most noticeable sub-process (the one that has the highest likelihood of being

observed) is in fact the least efficient target of intervention. Third, we observe a non-linear

effect of intervention size, meaning each additional 1% that can be added to size of the inter-

vention becomes increasingly effective (up until the point where that sub-process is effectively

eradicated).

Discussion

Modeling the propagation mechanism through our Radiation-Transmission-Reception

decomposition not only brings more conceptual clarity to the propagation process, but the

results presented in the previous section also show that such decomposition yields important

empirical insights that cannot be gained using a standard single parameter (λ) model.

Our results (Fig 3 / Table 3) show that the effectiveness of interventions, which conceptually

map onto changes in sub-processes, depend greatly on how the underlying propagation process

is decomposed; even with composite rate of propagation (λ) constant, one single intervention

can have effects that differ two orders of magnitude depending on the values for Radiation,

Transmission and Reception (see Fig 4 / Table 4), and that intervention effectiveness can differ

roughly by a factor eight from the traditional single parameter models in extreme settings. The

findings indicate that without decomposition of the mechanism of propagation, substantial

over- or underestimation of intervention effectiveness can occur.

Our findings highlight the responsibility of researchers to accurately adjust the model to a

given context, and their obligation to be critical when generalizing results from other settings.

Clearly specifying a model in RTR terms can be helpful for both these aspects, and has the

added benefit of informing one’s potential intervention strategies. For instance, an influenza

epidemic where spread is driven primarily by high radiation [51] will have different interven-

tion effectiveness profile (in terms of Fig 5) than for instance the propagation of financial dis-

tress among firms in which the reception component is strong [67].

Even within a specific context, competing conceptual interpretations of the same phenome-

non exist. For instance, the propagation of information on social media has been modeled

using an emphasis on radiation [46, 68], an emphasis on transmission [47] and an emphasis

on reception [4]. Similarly, the propagation of epidemics has been modeled using an emphasis

on radiation [51], an emphasis on reception [44, 52] and an emphasis on transmission and

reception [36]. Only by adopting a framework that encompasses all these models we can start

translating their outcomes and move the field of propagation forward.

Note that by highlighting these differences we do not imply that any of these authors are

wrong in their specific context or their modeling choices. Rather, our claim is that there are

implicit modeling assumptions being made about the nature of the propagation mechanism

that could greatly impact the generalizability of the respective results. This in turn leads to con-

flicting results about the effectiveness of interventions, which negatively impacts our chances

to build a cumulative body of knowledge.

Practical implications

From a practical point of view, the observed potential impact of mis-specification is undesir-

able. In practical settings such variance in the effectiveness is even more worrisome as design-

ing and implementing network intervention is too costly an endeavor to follow a shotgun

approach. The RTR model allows for a more targeted approach where the intervention can be

fine-tuned to the details of how the underlying propagation mechanism works in that particu-

lar context. What is more, the RTR model helps researchers make these mechanisms explicit,
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which will enable improved targeting of intervention, and facilitates communication of results

across the wide variety of scientific disciplines that deal with propagation. This in turn will

translate into a more generalizable understanding of propagation dynamics and interventions,

which can consequently be used by practitioners in different fields that aim to design and

implement effective interventions.

Various settings can be mentioned that could leverage this approach. For example in the

context of HIV prevention, understanding the mechanism responsible for HIV transmission

allows one to better target interventions strategies. In this specific setting various interventions

strategies are available; Anti-retro-viral drug treatment (ART) allow for viral suppression and

thus can lower radiation, Transmission can be reduced by safer sex and thus can be affected

by making sure condoms are being used, and recently developed Pre-exposure prophylaxis

(PrEP) allows for greatly reducing susceptibility to HIV and thus affects reception. While each

of these interventions is effective from a clinical standpoint and can reduce HIV incidence,

understanding the how to implement such intervention effectively requires a detailed under-

standing of the propagation mechanism.

Similarly in the context of marketing, being able to differentiate between the effectiveness

of strategies aimed at increasing the sharing of information regarding a product (Radiation),

the effects of different media used to send an advertisement (Transmission), and those that

affect the willingness to adopt (Reception) is crucial. Such insight can only obtained when a

model is used that allows for decomposing the propagation mechanism.

In the setting where more complex information needs to be exchanged, such as knowledge

transfer about best practices between business units in a multinational organization, the RTR

model can help to decide on the right intervention(s). For instance, [31] showed the difficulty

of knowledge transfer to depend, among other things, on the relationship between the knowl-

edge source and knowledge recipient (hinting at the relevance of the Transmission sub-pro-

cess) and the absorptive capacity of the knowledge recipient (hinting at the Reception sub-

process). Moreover, [31] investigated the effectiveness of a number of knowledge transfer

methods (i.e. radiation mechanisms) and found that some methods such as best practice man-

uals, newsletters and company video films are mostly effective in the initial phases of knowl-

edge transfer. Conversely, other methods such as personnel rotation and physical visits from

the knowledge source to the knowledge recipient (emphasizing Transmission and Reception)

were mostly effective during the later phases of knowledge transfer. The RTR model provides a

framework for studying such complex knowledge transfer methods by linking the methods to

specific sub-processes, which in turn allows such lessons to be adopted in other domains.

Limitations and future research

The simulation methodology adopted in this paper has its limitations, while we designed our

mechanism of propagation to fit our goals of showing the potential impact of decomposing the

propagation process, applying our model to specific context will require substantial effort. As

understanding the details of the propagation mechanism is likely hard, and our model is more

detailed in describing such mechanism, the need expert domain knowledge, or data, is sub-

stantially increased, which puts additional constraints on the requirements for effective model-

ing efforts.

Furthermore, the applied model makes some simplifying assumptions which need to be fur-

ther explored. For example it is currently assumed that all actors are homogeneous, and thus

behave the same. While such assumptions reduce the noise in the results, it is known that in

most real world systems actors in fact do differ in terms of their contagiousness, transmission

medium, and susceptibility, making the inclusion of heterogeneity crucial extension to our
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model. Similarly, the effects of network structure and network seeding as a key drivers of prop-

agation dynamics remains somewhat under explored. Exploring how the network structure

and the mechanism of propagation interact and have a combined effect on the propagation

dynamics, and exploring the interactions between seeding strategies and the mechanism will

be fruitful avenues of future research.
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