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Prebiotics are the non-digestible carbohydrate, which passes through the small intestine
into unmetabolized form, reaches the large intestine and undergoes fermentation
by the colonic bacteria thus; prebiotics stimulate the growth of probiotic bacteria.
Further, bile salt hydrolase (BSH) is an enzyme that catalyses the deconjugation of
bile salt, so it has enormous potential toward utilizing such capability of Lactobacillus
plantarum RYPR1 toward detoxifying through BSH enzyme activity. In the present
study, six isolates of Lactobacillus were evaluated for the co-aggregation assay and
the isolate Lactobacillus plantarum RYPR1 was further selected for studies of prebiotic
utilization, catalytic interactions and molecular docking. The prebiotic utilization ability
was assessed by using commercially available prebiotics lactulose, inulin, xylitol,
raffinose, and oligofructose P95. The results obtained revealed that RYPR1 is able
to utilize these probiotics, maximum with lactulose by showing an increase in viable
cell count (7.33 ± 0.02 to 8.18 ± 0.08). In addition, the molecular docking of
BSH from Lactobacillus plantarum RYPR1 was performed which revealed the binding
energy –4.42 and 7.03 KJ/mol. This proves a considerably good interactions among
BSH and its substrates like Taurocholic acid (–4.42 KJ/mol) and Glycocholic acid
(–7.03 KJ/mol). These results from this study establishes that Lactobacillus plantarum
RYPR1 possesses good probiotic effects so it could be used for such applications.
Further, molecular dynamics simulations were used to analyze the dynamic stability
of the of modeled protein to stabilize it for further protein ligand docking and it
was observed that residues Asn12, Ile8, and Leu6 were interacting among BSH and
its substrates, i.e., Taurocholic acid and Lys88 and Asp126 were interacting with
Glycocholic acid. These residues were interacting when the docking was carried out with
stabilized BSH protein structure, thus, these residues may have a vital role in stabilizing
the binding of the ligands with the protein.

Keywords: probiotics, prebiotic utilization, molecular docking, Glycocholic acid, bile salt hydrolase (BSH),
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INTRODUCTION

Probiotics are live microbial food supplements which, when
administrated in adequate amounts, exerts various health benefits
to consumers (Vinderola et al., 2008). Probiotics is a promising
field in dairy and food industry with tremendous growth
potential (Mitropoulou et al., 2013). These bacteria exert various
health benefits to the host, such as immunomodulation, lipid and
cholesterol reduction, anticancer, antimicrobial, antiallergic,
antioxidative properties, prevention of gastrointestinal
infections, improvement of lactose metabolism, etc. (Lee et al.,
2014). Probiotics produce diverse inhibitory substances (organic
acids, antimicrobial substances, exoploysaccharides, bacteriocins
etc.) which depress growth of pathogenic microorganisms in
the gut (Pessione, 2012; Maldonado et al., 2015; Yadav and
Shukla, 2015). There are various in vitro tests for the selection
and study of functional properties of a probiotic strain. The
co-aggregation study of probiotic bacteria with pathogens helps
in evaluating the pathogen interaction with bacteria which
prevents pathogen colonization in the gut (Gupta and Malik,
2007). The interactions of probiotics with prebiotics have a
beneficial role in improving the growth of normal microflora,
resulting in immune system modulation of the host. A number
of systems biology tools have been studied to comprehend the
interactions between microorganisms and plant or human cell
(Kumar et al., 2016). Furthermore, various genetic modifications
which involve the introduction of desired genes may also have
a constructive impact in the probiotic field (Gupta and Shukla,
2015). There are many reports on molecular docking of enzymes,
which gives good insights of various protein interactions and
their effective binding patterns (Singh and Shukla, 2011, 2014;
Singh et al., 2011, 2016; Karthik et al., 2012; Baweja et al., 2015,
2016).

In the present study probiotic properties, prebiotic utilization
and the molecular docking of Lactobacillus plantarum RYPR1,
isolated from indigenous fermented beverage raabadi was
performed. The development of nano-encapsulated probiotics is
an emerging field and showing new possibilities of probiotics
in food industry. The viability of probiotic bacteria in the
human body could extend by using nanoencapsulated bacteria,
so that it could show better interaction with receptors of
the gastrointestinal tract. The results reported from our
previous studies showed that L. plantarum RYPR1 possess good
antimicrobial activity so its probiotic effect could be further
improved by the development of nano-encapsulated probiotics
by using nanotechnology applications.

MATERIALS AND METHODS

Isolation and Probiotic Properties of
Lactobacillus Isolates
A total of 11 curd (6) and raabadi (5) samples were collected
from different regions of Haryana, India following the standard
microbiological protocols. Moreover, the Kanji (fermented
beverage made up of carrot) samples were prepared in laboratory
under aseptic conditions for isolating lactic acid bacteria. The

isolation and purification of lactic acid bacteria, was done using
De Man Rogose Sharpe (MRS) medium (Goyal et al., 2013).
The purified cultures isolated from these samples were tested
for grams staining, endospore staining, catalase test and further
tested for various probiotic properties as reported in our previous
studies (Yadav et al., 2016).

Co-aggregation Assay
Co-aggregation involves the process of aggregation of bacterial
cells of more than one type (Kumar et al., 2012). Co-aggregation
ability provides a close interaction of probiotic bacteria with
pathogenic bacteria (Singh et al., 2012). In this experiment, E. coli
was taken as indicator organism which can co-aggregate with
selected isolates. Overnight grown Lactobacilli (16–18 h) and
E. coli cultures were centrifuged (10000 rpm, 15 min) and the
pellets obtained were washed twice with phosphate buffer saline
(PBS) solution (pH 6.0). The pellets were resuspended in PBS,
vortexed and the absorbance was set 0.5 at 600 nm. After this,
500 µl of culture and 500 µl of the pathogen were mixed and
optical density (OD) was measured at 600 nm and incubated at
37◦C for 2 h. Upper phase was carefully removed and absorbance
was measured at 600 nm. Decrease in absorbance was taken as
a measure of cell co-aggregation. The co-aggregation percentage
was calculated by using the following formula:

Percent co-aggregation- [(OD1 +OD2)− 2(OD3)/

(OD1 +OD2) × 100]

OD1: optical density of Lactobacillus isolates, OD2: optical
density of E. coli, OD3: optical density of mixture.

Prebiotic Utilization
Commercially available five prebiotics Lactulose, Xylitol, D+
raffinose, Inulin and Oligofructose P95 were used for the test.
Prebiotics were solubilized in distilled water and filter sterilized.
Isolates were inoculated with 3 ml of modified MRS medium (2%
of each probiotic) and incubated at 37◦C for 24 h under anaerobic
conditions. OD of each culture was measured at 560 nm and the
cell growth rate was calculated by using the formula:

Prebiotic utilization- (MRSp−MRSb) × 100/MRSg−MRSb

Molecular Dynamic Simulation
Molecular dynamics was performed with Gromacs 4.5.5 using
the Gromos96 force field. All the water molecules were deleted
and polar hydrogen atoms were added. The hydrogen atoms were
minimized with 500 steps of Steepest Descent (SD) optimization;
spc water was added in a sphere with a radius of 18 Å
around the reaction center (the Cl and NA ions). Before the
unconstrained MD simulation, the solvent was subjected to 1000
steps of SD minimization, and equilibrated for 2.5 ps at 300 K
with solute fixed. The production simulation was carried out
for 5,000 ps (5 ns). The average conformation was calculated
for the desired represented frame of MD simulations. This
was achieved by averaging the snapshots of the last 500 ps,
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then choosing a typical structure with the lowest RMSD to
the average conformation, and using this in the binding mode
analysis.

Molecular Docking and Analysis of Bile
Salt Hydrolase (BSH)
The Bile Salt Hydrolase (BSH) activity of the selected isolate as
reported previously was further taken as standard for the catalytic
interaction. The study of enzyme modeling was performed
with SWISS-MODEL, it is a fully automated protein structure
homology-modeling server, accessible via the ExPASy web server,
or from the program DeepView (Swiss Pdb-Viewer). SWISS-
MODEL provides graphical representation as well as numerical
calculations for the alignment of structures. In SWISS-MODEL
we have to submit sequence of protein of which we have
to model structure and it will provide a structure after few
hours (Arnold et al., 2006; Guex et al., 2009; Kiefer et al.,
2009). The Stereochemical quality of a protein was checked by
PROCHECK it analyses the structure by analyzing residue-by-
residue geometry and overall structural geometry of the modeled
structure (Laskowski et al., 1993, 1996). ERRAT Analyzes the
statistics of non-bonded interactions between different atom
types and compare with the highly refined structures.

RESULTS

Isolation and Probiotic Properties of
Lactobacillus Isolates
A total of 119 isolates were isolated from curd, kanji, and
raabadi samples and 90 were purified. On the basis of colony
morphology, gram staining, endospore staining and catalase test
54 isolates were identified and selected as Lactobacillus isolates.
These isolates were further tested for probiotic properties. It
has been shown that among the tested Lactobacillus isolates,
isolate Lactobacillus plantarum RYPR1 as identified by 16S
rRNA sequencing and phylogenetic analysis (GenBank accession
number KX620369) showed the maximum probiotic potential
and it was selected for further studies. Moreover, cell co-
aggregation, prebiotic utilization, BSH activity and in silico
studies are presented in this paper.

Cell Co-aggregation
Cell co-aggregation involves interaction of probiotic
microorganism with surface components of pathogenic bacteria.
The co-aggregation activity involves biofilm formation which
helps the host by prevention of pathogen colonization in the gut.
The co-aggregating cell clumps together and settled at the bottom
of the tube, resulting in decreasing absorbance of suspension.
Percent co-aggregation of selected isolates ranged from 17 to
40% (Figure 1). Strain RYPR1 showed highest co-aggregation
potential followed by RYPR9.

Prebiotic Utilization
The viable cell counts of L. plantarum with prebiotics after 24 h
incubation are presented in Table 1. Based on viable cell count, it

FIGURE 1 | Co-aggregation percent of selected isolates.

was observed that isolate RYPR1 showed the maximum survival
with lactulose followed by raffinose and inulin. So, with this study
it was concluded that RYPR1 growth could be stimulated by
tested probiotics.

Molecular Docking Analysis of BSH
Isolate RYPRI was grown in the presence of bile salts
(sodium tauroglycocholate, sodium taurocholate, sodium
taurodeoxycholate) to evaluate its ability to hydrolyze
high concentration of bile salts. The results obtained
from this study concluded that RYPR1 is not only able
to survive the toxicity of bile salts, but also carries out
bile salt deconjugation which helps in the colonization
of bacteria to intestinal epithelial cells. The results from
in vitro studies were further confirmed by in silico
studies.

Homology Modeling and Structure Validation
The sequence for modeling was submitted to Swiss Model1

for structural modeling. During the study, the template
chosen for modeling demonstrated similarity of 70.01%
with 4wl3 chain B, Crystal structure determination of BSH
from Enterococcus feacalis having resolution of 2.01 Å.
Structure validation was performed using SAVES server.

1http://swissmodel.expasy.org

TABLE 1 | Prebiotic substrate utilization by Lactobacillus plantarum
RYPR1 after 24 h incubation.

Prebiotic substrate log cfu/ml (after incubation)

0 h 24 h

Lactulose 7.33 ± 0.02 8.18 ± 0.08

Xylitol 7.1 ± 0.01 6.44 ± 0.07

D+ raffinose 7.98 ± 0.17 8.05 ± 0.10

Inulin 7.91 ± 0.09 7.90 ± 0.04

Oligofructose P95 7.62 ± 0.10 6.88 ± 0.09
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FIGURE 2 | Substrate binding studies on the surface of Bile Salt Hydrolase (BSH) from L. plantarum with Taurocholic acid. Gly10, Pro67 involved in the
interaction with 1.903 and 2.022 Å; of h-bond, respectively, with the enzyme.

FIGURE 3 | Substrate binding studies on the surface of BSH from L. plantarum with Glycocholic acid. Lys32 formed hydrogen bonding with the
Glycocholic acid with bond length of 1.879 Å.

TABLE 2 | Docking studies of Bile Salt Hydrolase (BSH) from L. plantarum with Taurocholic acid and Glycocholic acid.

Ligand Protein Binding energy (kc/mol) Inhibition constant Hydrogen bonds Hydrogen bond length

Taurocholic acid BSH –4.42 580.35 mM Gly10, Pro67 1.903 and 2.022 Å

Taurocholic acid (after
stabilizing protein)

BSH (after stabilizing
protein)

–3.01 6.26 mM Asn12, Ile8 and Leu6 2.570, 2.037, and 2.940 Å

Glycocholic acid BSH –4.91 252.24 mM Lys32 1.879 Å

Glycocholic acid (after
stabilizing protein)

BSH (after stabilizing
protein)

–3.45 7.66 mM Asp136 and Lys88 2.042 and 2.155 Å

ERRAT Overall quality factor was obtained was 96.349 which
represent a stable structure. PROCHECK also exhibited
favorable result for protein model to proceed for molecular
docking.

Molecular Dynamic Simulation and Docking Analysis
The modeled BSH from L. plantarum was stabilized by molecular
dynamic simulation of 5,000 ps (5 ns) (Figure 4). Further,
the stabilized protein was docked with Taurocholic acid and
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FIGURE 4 | Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of BSH.

FIGURE 5 | Substrate binding studies on the surface of BSH from L. plantarum with Taurocholic acid (A) and Glycocholic acid (B) after stabilizing the
protein.

Glycocholic acid and the result was compared with the docking
result of unstabilized protein. The BSH activity of the selected
isolate as reported previously was further taken as standard
for the catalytic interaction of BSH with Taurocholic acid and
Glycocholic acid. The docking was carried out with AutoDock42.
In AutoDock4, enzyme BSH from L. plantarum docked with
Taurocholic acid and Glycocholic acid The result was recorded as
the least binding energy with Glycocholic acid as –7.03 KJ/mol,
followed by docking with Taurocholic acid with –4.42 KJ/mol,
least binding energy signifies the strong binding between
substrate and enzyme. The minimum inhibition constant of
Glycocholic acid also came to be minimum, i.e., 252.24 µl. Lys32
formed hydrogen bonding with the Glycocholic acid with bond
length of 1.879 Å. Gly10, Pro67 involved in the interaction with
1.903 and 2.022 Å of h-bond, respectively, with the enzyme
(Figures 2 and 3). The comparison of the minimum binding
energy of both the substrate observed with AutoDock Table 2.

2http://autodock.scripps.edu

The docking result of BSH from L. plantarum docked with
Taurocholic acid and Glycocholic acid after stabilizing the protein
gave different results. The least binding energy raised, however,
Lys88 was involved in the interaction with the Glycocholic acid,
which implies that Lys plays an important role in the active site of
BSH (Figure 5).

DISCUSSION

The objective of the present study was to assess the probiotic
potential of Lactobacillus isolates from food samples. Among
tested isolates, isolate L. plantarum RYPR1 showed good
probiotic potential and therefore it was selected for further
studies. It is a commonly used and well studied probiotic
strain and it is used for development of various probiotic based
food products (Pisano et al., 2008). In vitro assessment of co-
aggregation ability of isolate with E. coli was also studied as it
is also an important selection criterion. The co-aggregation rate
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was observed for 2 h and it was observed that RYPR1 showed the
maximum co-aggregation (40%). Similar studies were conducted
by Ramos et al. (2013) and reported that L. plantarum CH41
showed highest co-aggregation ability with E. coli. Furthermore,
another study reported that L. plantarum S1 showed the
maximum co-aggregation ability (37–41%) with common enteric
pathogens (Jankovic et al., 2012). Based on viable cell count after
24 h incubation with probiotics it was analyzed that RYPR1
is able to utilize probiotics. The prebiotic study of RYPR1
with commercially available prebiotics is important as prebiotics
stimulates their growth in GIT (Macfarlane et al., 2007). A few
studies have been reported with L. plantarum which confirms a
correlation of prebiotics and β-galactosidase enzyme (Pennacchia
et al., 2006). Moreover, few other researchers conducted studies
related to probiotics functionality, safety, γ-amino butyric acid
production; genomics and metabolomics etc., however, the
catalytic binding and interaction studies are included in the
present work which provides further lead to carry out such work
in prebiotic utilizations. (Devi et al., 2016; Shekh et al., 2016;
Stefanovic et al., 2017). In the present study, the BSH activity of
RYPR1 was further taken as standard for studying the catalytic
interaction of BSH with Taurocholic acid and Glycocholic acid.
The study was done using SWISS-MODEL which provides
a model structure of tested protein. The BSH enzyme from
L. plantarum was docked with Taurocholic acid and Glycocholic
acid and the results revealed that Glycocholic acid showed the
least binding energy (–7.03 KJ/mol) followed by Taurocholic acid
(–4.42 KJ/mol). Minimum the binding energy more will be the
interaction resulting in good BSH activity. The study showed
that L. plantarum RYPR1 is able to hydrolyse these salts, which
assume that it can survive the toxicity of bile salts and also
carry out deconjugation of these salts which may help in their
colonization in the intestine.

CONCLUSION

In our previous study, we have reported the probiotic potential of
L. plantarumRYPR1. Consequently, concluded that it can be used
as a starter culture for the preparation of probiotic food products.
The results of co-aggregation studies with pathogenic bacteria
indicate that L. plantarum RYPR1 could be used to prevent
pathogen colonization in the gut. The present study concludes
that L. plantarum RYPR1 is able to utilize most of the prebiotics.
However, the best growth was observed among lactulose followed
by raffinose. Thus, we could use these prebiotics along with
our selected strain to develop an effective synbiotic, which
can stimulate the overall human gut microflora. Due to its
good antimicrobial activity and other aspects, this indigenous
isolate could be used in other relevant applications. Furthermore,
the catalytic interaction of BSH with Taurocholic acid and
Glycocholic acid proves further that it can act as an excellent
source for various probiotic applications.
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