organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6a-Nitro-6-(2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)-6a,6b,7,8,9,11a-hexahydro-6H-spiro[chromeno[3,4-a]pyrrolizine-11,11'-indeno[1,2-b]quinoxaline]

T. Anuradha,^a J. Naga Siva Rao,^b P. R. Seshadri^a* and R. Raghunathan^b

^aPost Graduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: seshadri_pr@yahoo.com

Received 18 September 2013; accepted 28 November 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.124; data-to-parameter ratio = 14.5.

In the title compound, $C_{39}H_{38}N_4O_8$, the quinoxaline and indene subunits are essentially planar, with maximum deviations of 0.071 (2) and 0.009 (2) Å, respectively. The indenoquinoxaline system forms a dihedral angle of 72.81 (3)° with the chromenopyrrolizine system. The two dioxolane rings, as well as the pyran ring of the chromeno group and the terminal pyrrolizine, each adopt an envelope conformation with O and C as flap atoms. The central pyrrolizine ring adopts a twisted conformation. Intramolecular C-H···O and C-H···N hydrogen bonds occur. The crystal structure exhibits C-H···O hydrogen bonds, and is further stablized by C-H··· π interactions, forming a two-dimensional network along the *bc* plane.

Related literature

For some spiro compounds of biological importance, see: Kobayashi *et al.* (1991); James *et al.* (1991). For the pharmaceutical importance of quinoxaline derivatives, see: Seitz *et al.* (2002); He *et al.* (2003). For conformation analysis, see: Cremer & Pople (1975).

V = 3434.0 (6) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.10 \text{ mm}$

15819 measured reflections

6671 independent reflections

3789 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.059$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{39}H_{38}N_4O_8\\ M_r = 690.73\\ Orthorhombic, P2_12_12_1\\ a = 11.3150 \; (9) \; {\rm \AA}\\ b = 15.629 \; (2) \; {\rm \AA}\\ c = 19.419 \; (2) \; {\rm \AA} \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.981, T_{\max} = 0.991$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.050 & \Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3} \\ wR(F^2) = 0.124 & \Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3} \\ S = 0.97 & {\rm Absolute \ structure: \ Flack \ (1983),} \\ 6671 \ {\rm reflections} & 2933 \ {\rm Friedel \ pairs} \\ 460 \ {\rm parameters} & {\rm Absolute \ structure \ parameter:} \\ {\rm H-atom \ parameters \ constrained} & 0.30 \ (13) \end{array}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg8 is the centroid of the N1/C7/C14/N2/C13/C8 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C35-H35\cdots O2^{i}$	0.98	2.41	3.390 (4)	177
$C16-H16A\cdots O3$	0.97	2.59	3.237 (5)	124
$C21 - H21 \cdot \cdot \cdot N2$	0.98	2.48	3.305 (4)	141
$C30-H30\cdots Cg8^{ii}$	0.98	2.93	3.895 (4)	168

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2440).

References

- Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). *Bioorg. Med. Chem. Lett.* 13, 3097–3100.
- James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137–1140.
- Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). *Tetrahedron*, 47, 6617–6622.
- Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604– 5606.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2014). E70, o38-o39 [doi:10.1107/S1600536813032467]

6a-Nitro-6-(2,2,7,7-tetramethyltetrahydro-3a*H*-bis[1,3]dioxolo[4,5-b:4',5'*d*]pyran-5-yl)-6a,6b,7,8,9,11a-hexahydro-6*H*-spiro[chromeno[3,4*a*]pyrrolizine-11,11'-indeno[1,2-*b*]quinoxaline]

T. Anuradha, J. Naga Siva Rao, P. R. Seshadri and R. Raghunathan

1. Comment

Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi *et al.*, 1991; James *et al.*, 1991). Quinoxaline derivatives are an important class of benzoheterocycles. They have found applications as anticancer, antiviral, and antibacterial agents (Seitz *et al.*, 2002; He *et al.*, 2003).

In the title compound, $C_{39}H_{38}N_4O_8$, the quinoxaline (C7—C14\N1\N2) and indene (C1—C7\C14\C15) subunits are essentially planar with maximum deviations of -0.071 (2) Å for C14 and -0.009 (1) Å for C9, respectively. The dihedral angle between the chromeno-pyrrolizine (C15—C28\N2\N3\O1) and indeno-quinoxaline (C—C15\N1\N2) systems is 72.81 (3)° showing their almost orthogonal arrangement relative to each other.

The two dioxolane rings (C30—C32\O5\O6,C33—C35\O7\O8) which are fused with a pyran ring adopt an envelope conformation with O6 and C34 atoms as the flap. Puckering parameters are $q_2 = 0.3089$ (1) Å, $\Phi_2 = 108.05$ (2)° and $q_2 = 0.2905$ (1) Å, $\Phi_2 = 324.14$ (2)°, respectively. The pyran ring (C20—C22\C27\C28\O1) of the chromeno group and the pyrrolizine ring (C16—C19\N3) also adopt envelope conformations with O1 and C16 atoms as the flap. Puckering parameters are $q_2 = 0.3895$ (1) Å, $q_3 = -0.2566$ Å, $\Phi_2 = 235.74$ (2)°, $\Theta = 123.38^\circ$ for the pyran and $q_2 = 0.3781$ (1) Å, $\Phi_2 = 213.99$ (4)° for the pyrrolizine system, respectively. The pyrrolizine ring fused with the pyran ring adopts a twisted conformation along N3—C15 with puckering parameters of $q_2 = 0.301$ (1) Å, $\Phi_2 = 200.75$ (2)° (Cremer & Pople, 1975).

The structure is stabilized by an intermolecular C—H···O hydrogen bond and additional intramolecular C—H···O and C —H···N hydrogen bonds (Table 1). The crystal structure is further consolidated by C—H ···Cg8 interactions where Cg8 is the centroid of C7\C8\C13\C14\N1\N2 ring.

2. Experimental

To a solution of 11*H*-indeno[1,2-*b*]quinoxalin-11-one (0.3 g, 1.29 mmol) and proline (0.208 g, 1.8 mmol) in dry acetonitrile, was added 2,2,7,7-tetramethyl-5-(3-nitro-2*H*-chromen-2-yl)tetrahydro-3aH-bis[1,3] dioxolo[4,5 - b:4',5'-d]pyran (0.52 g, 1.29 mmol) under a nitrogen atmosphere. The reaction mixture was refluxed for 16 h in a Dean-Stark apparatus to give the cycloadduct. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product was extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate and concentrated *in vacuo*. Then the crude product was purified by column chromatography using hexane/EtOAc (7:3) as eluent (yield: 0.7 g, 80%). Colourless block shaped crystals were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

3. Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl H atoms and 1.2 $U_{eq}(C)$ for other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Figure 1

Molecular structure of the title compound showing 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.

Figure 2

A view of packing of the molecules with hydrogen bonds (dashed lines).

6a-Nitro-6-(2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)-6a,6b,7,8,9,11a-hexahydro-6H-spiro[chromeno[3,4-a]pyrrolizine-11,11'-indeno[1,2-b]quinoxaline]

Crystal data

C₃₉H₃₈N₄O₈ $M_r = 690.73$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 11.3150 (9) Å b = 15.629 (2) Å c = 19.419 (2) Å $V = 3434.0 (6) \text{ Å}^3$ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan F(000) = 1456 $D_x = 1.336 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8626 reflections $\theta = 1.7-28.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.20 \times 0.15 \times 0.10 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{min} = 0.981$, $T_{max} = 0.991$ 15819 measured reflections 6671 independent reflections

3789 reflections with $I > 2\sigma(I)$	$h = -13 \rightarrow 13$
$R_{\rm int} = 0.059$	$k = -19 \rightarrow 18$
$\theta_{\max} = 26.0^\circ, \theta_{\min} = 1.7^\circ$	$l = -23 \rightarrow 23$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.047P)^2]$
S = 0.97	where $P = (F_o^2 + 2F_c^2)/3$
6671 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
460 parameters	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2933 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.30 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.03697 (19)	0.83284 (16)	-0.00002 (10)	0.0524 (6)
O2	-0.1751 (2)	0.73787 (18)	0.04849 (14)	0.0690 (8)
O3	-0.3060 (2)	0.8322 (2)	0.07234 (15)	0.0819 (9)
O4	0.00221 (19)	0.73589 (14)	0.16455 (9)	0.0450 (5)
O5	-0.0801 (2)	0.60162 (17)	0.15228 (13)	0.0645 (7)
O6	0.0907 (2)	0.55340 (17)	0.10693 (13)	0.0635 (7)
07	0.2843 (2)	0.68893 (18)	0.20258 (12)	0.0672 (7)
08	0.23002 (19)	0.81048 (15)	0.14967 (12)	0.0568 (7)
N1	0.0704 (3)	1.2133 (2)	0.11551 (13)	0.0563 (8)
N2	0.0858 (2)	1.03075 (19)	0.13143 (14)	0.0522 (7)
N3	-0.1654 (2)	0.98556 (18)	0.16878 (13)	0.0428 (7)
N4	-0.2032 (3)	0.8083 (2)	0.06782 (14)	0.0507 (7)
C1	-0.2053 (3)	1.1070 (2)	0.08517 (16)	0.0484 (9)
C2	-0.3219 (3)	1.1091 (3)	0.06145 (19)	0.0643 (11)
H2	-0.3667	1.0593	0.0587	0.077*
C3	-0.3687 (4)	1.1872 (3)	0.0422 (2)	0.0722 (12)
Н3	-0.4460	1.1893	0.0261	0.087*
C4	-0.3057 (4)	1.2611 (3)	0.0460 (2)	0.0744 (12)
H4	-0.3407	1.3127	0.0337	0.089*
C5	-0.1888 (4)	1.2597 (3)	0.06840 (18)	0.0631 (10)
Н5	-0.1443	1.3096	0.0705	0.076*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	-0.1408 (3)	1.1816 (2)	0.08745 (15)	0.0485 (9)
C7	-0.0190 (3)	1.1607 (2)	0.10770 (15)	0.0450 (8)
C8	0.1751 (3)	1.1725 (3)	0.13211 (17)	0.0559 (10)
C9	0.2774 (4)	1.2228 (3)	0.1405 (2)	0.0753 (13)
H9	0.2739	1.2818	0.1346	0.090*
C10	0.3812 (4)	1.1847 (4)	0.1572 (2)	0.0878 (15)
H10	0.4482	1.2182	0.1637	0.105*
C11	0.3893 (4)	1.0961 (4)	0.1649 (3)	0.0977 (16)
H11	0.4614	1.0712	0.1760	0.117*
C12	0.2919 (3)	1.0457 (3)	0.1562 (2)	0.0832 (13)
H12	0.2977	0.9867	0.1610	0.100*
C13	0.1827 (3)	1.0838 (3)	0.13974 (18)	0.0556 (10)
C14	-0.0112 (3)	1.0707 (2)	0.11541 (15)	0.0438 (8)
C15	-0.1313 (3)	1.0280 (2)	0.10405 (15)	0.0428 (8)
C16	-0.2921 (3)	0.9806 (3)	0.18833 (17)	0.0554 (10)
H16A	-0.3413	0.9653	0.1493	0.067*
H16B	-0.3198	1.0341	0.2078	0.067*
C17	-0.2893 (3)	0.9102 (3)	0.24158 (18)	0.0608 (10)
H17A	-0.3663	0.8834	0.2457	0.073*
H17B	-0.2664	0.9327	0.2862	0.073*
C18	-0.1979 (3)	0.8461 (3)	0.21548 (16)	0.0575 (10)
H18A	-0.2359	0.7992	0.1914	0.069*
H18B	-0.1520	0.8230	0.2534	0.069*
C19	-0.1189 (3)	0.8974 (2)	0.16643 (14)	0.0410 (8)
H19	-0.0391	0.8983	0.1859	0.049*
C20	-0.1080 (3)	0.8724 (2)	0.08846 (15)	0.0402 (8)
C21	0.0170 (3)	0.8386 (2)	0.07265 (14)	0.0385 (7)
H21	0.0735	0.8803	0.0911	0.046*
C22	0.0241 (3)	0.9087 (2)	-0.03512 (15)	0.0440 (8)
C23	0.0911 (3)	0.9177 (3)	-0.09451 (17)	0.0596 (10)
H23	0.1434	0.8749	-0.1078	0.071*
C24	0.0793 (4)	0.9897 (3)	-0.13301 (18)	0.0666 (11)
H24	0.1243	0.9965	-0.1727	0.080*
C25	0.0006 (4)	1.0533 (3)	-0.11346 (18)	0.0685 (11)
H25	-0.0068	1.1026	-0.1399	0.082*
C26	-0.0667 (3)	1.0433 (2)	-0.05465 (16)	0.0565 (10)
H26	-0.1201	1.0857	-0.0421	0.068*
C27	-0.0553 (3)	0.9703 (2)	-0.01397 (14)	0.0426 (8)
C28	-0.1323 (3)	0.9566 (2)	0.04885 (15)	0.0426 (8)
H28	-0.2138	0.9528	0.0320	0.051*
C29	0.0536 (3)	0.7508 (2)	0.09899 (15)	0.0410 (8)
H29	0.0258	0.7070	0.0667	0.049*
C30	0.0092 (3)	0.6504 (2)	0.18407 (17)	0.0519 (9)
H30	-0.0012	0.6468	0.2341	0.062*
C31	-0.0300 (3)	0.5300 (3)	0.1170 (2)	0.0649 (11)
C32	0.1236 (3)	0.6036 (2)	0.16469 (18)	0.0553 (9)
H32	0.1489	0.5665	0.2026	0.066*
C33	0.2250 (3)	0.6609 (2)	0.14226 (18)	0.0516 (9)
H33	0.2796	0.6288	0.1129	0.062*

C34	0.3182 (3)	0.7751 (3)	0.19214 (18)	0.0590 (10)	
C35	0.1876 (3)	0.7440 (2)	0.10601 (16)	0.0445 (8)	
H35	0.2251	0.7479	0.0606	0.053*	
C36	-0.0875 (4)	0.5211 (3)	0.0485 (2)	0.0846 (13)	
H36A	-0.1688	0.5053	0.0545	0.127*	
H36B	-0.0476	0.4776	0.0224	0.127*	
H36C	-0.0831	0.5745	0.0243	0.127*	
C37	-0.0398 (4)	0.4515 (3)	0.1621 (2)	0.0955 (15)	
H37A	-0.1215	0.4370	0.1681	0.143*	
H37B	-0.0048	0.4631	0.2061	0.143*	
H37C	0.0008	0.4047	0.1406	0.143*	
C38	0.4382 (3)	0.7814 (3)	0.1578 (2)	0.0901 (15)	
H38A	0.4587	0.8405	0.1517	0.135*	
H38B	0.4354	0.7536	0.1137	0.135*	
H38C	0.4965	0.7541	0.1862	0.135*	
C39	0.3150 (4)	0.8192 (3)	0.2610 (2)	0.0891 (15)	
H39A	0.3377	0.8780	0.2555	0.134*	
H39B	0.3689	0.7914	0.2920	0.134*	
H39C	0.2364	0.8164	0.2795	0.134*	

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>L</i> / ²³
01	0.0671 (15)	0.0485 (16)	0.0417(12)	0.0044 (13)	0.0116 (12)	0.0053 (11)
0^{2}	0.0695(17)	0.0409(18)	0.0417(12) 0.093(2)	-0.0040(14)	-0.0303(15)	-0.0075(11)
03	0.0099(17) 0.0404(15)	0.086(2)	0.099(2) 0.120(2)	-0.0129(15)	0.0505(15)	-0.0265(18)
04	0.0532(13)	0.0413(14)	0.0403(11)	0.0031(11)	0.0078(11)	0.0071 (10)
05	0.0573(15)	0.0536 (18)	0.0828(17)	-0.0092(14)	0.0014 (14)	-0.0015(14)
06	0.0593 (16)	0.0528 (17)	0.0785(17)	-0.0045(13)	-0.0014(14)	-0.0130(13)
07	0.0681(17)	0.061(2)	0.0721(17)	-0.0002(15)	-0.0298(14)	0.0014 (14)
08	0.0506 (14)	0.0506(16)	0.0693(15)	-0.0014(12)	-0.0141(12)	-0.0111(13)
N1	0.061 (2)	0.053 (2)	0.0542 (18)	-0.0164(17)	0.0069 (15)	-0.0056(15)
N2	0.0402 (16)	0.054 (2)	0.0624 (18)	-0.0037(16)	-0.0054(14)	-0.0007(15)
N3	0.0354 (15)	0.0474 (19)	0.0456 (15)	-0.0028(13)	0.0002 (12)	-0.0001(14)
N4	0.053 (2)	0.053 (2)	0.0467 (16)	-0.0075(17)	-0.0057(15)	0.0020 (15)
C1	0.047 (2)	0.053 (2)	0.0453 (19)	0.0040 (19)	-0.0004 (17)	0.0011 (18)
C2	0.053 (2)	0.067 (3)	0.073 (2)	0.006 (2)	-0.012 (2)	0.005 (2)
C3	0.064 (2)	0.082 (4)	0.071 (3)	0.020 (3)	-0.010 (2)	0.004 (3)
C4	0.085 (3)	0.068 (3)	0.071 (3)	0.031 (3)	-0.005 (2)	0.001 (2)
C5	0.077 (3)	0.046 (2)	0.066 (2)	0.010 (2)	0.000 (2)	0.0013 (19)
C6	0.058 (2)	0.045 (2)	0.0419 (19)	0.0076 (19)	0.0032 (16)	-0.0001 (17)
C7	0.053 (2)	0.042 (2)	0.0400 (17)	-0.0013 (19)	0.0053 (16)	-0.0043 (16)
C8	0.050 (2)	0.067 (3)	0.051 (2)	-0.014 (2)	0.0076 (18)	-0.010 (2)
C9	0.064 (3)	0.083 (3)	0.079 (3)	-0.029(3)	0.015 (2)	-0.017 (2)
C10	0.053 (3)	0.112 (5)	0.099 (3)	-0.026 (3)	0.004 (2)	-0.019 (3)
C11	0.041 (3)	0.125 (5)	0.126 (4)	-0.005(3)	-0.010 (3)	-0.006 (4)
C12	0.043 (2)	0.088 (3)	0.119 (4)	-0.001(2)	-0.011 (2)	-0.001 (3)
C13	0.045 (2)	0.063 (3)	0.058 (2)	-0.009(2)	-0.0004 (18)	-0.0048 (19)
C14	0.045 (2)	0.046 (2)	0.0395 (18)	-0.0041 (17)	0.0020 (16)	-0.0048 (16)
C15	0.0364 (17)	0.045 (2)	0.0472 (19)	-0.0039 (16)	-0.0029 (15)	0.0032 (17)

C16	0.0368 (19)	0.070 (3)	0.060 (2)	-0.0058 (19)	0.0071 (17)	-0.007 (2)
C17	0.051 (2)	0.074 (3)	0.056 (2)	-0.008 (2)	0.0116 (19)	-0.002 (2)
C18	0.065 (2)	0.063 (3)	0.0441 (19)	-0.006 (2)	0.0124 (18)	-0.0006 (18)
C19	0.0402 (18)	0.045 (2)	0.0373 (16)	-0.0035 (16)	0.0006 (15)	-0.0018 (15)
C20	0.0385 (18)	0.041 (2)	0.0415 (17)	-0.0098 (15)	0.0005 (15)	-0.0001 (15)
C21	0.0418 (18)	0.039 (2)	0.0352 (16)	-0.0026 (16)	0.0034 (14)	0.0011 (15)
C22	0.051 (2)	0.044 (2)	0.0359 (17)	-0.0040 (18)	-0.0014 (17)	0.0072 (16)
C23	0.061 (2)	0.066 (3)	0.052 (2)	0.001 (2)	0.0160 (19)	0.006 (2)
C24	0.077 (3)	0.073 (3)	0.050(2)	-0.006 (2)	0.013 (2)	0.018 (2)
C25	0.084 (3)	0.069 (3)	0.052 (2)	-0.007 (2)	-0.002 (2)	0.023 (2)
C26	0.062 (2)	0.058 (3)	0.050(2)	0.002 (2)	-0.0056 (19)	0.0097 (19)
C27	0.0442 (18)	0.048 (2)	0.0358 (17)	-0.0064 (18)	-0.0048 (15)	0.0047 (16)
C28	0.0380 (17)	0.045 (2)	0.0453 (18)	-0.0051 (16)	-0.0056 (15)	0.0019 (16)
C29	0.0442 (19)	0.041 (2)	0.0376 (17)	0.0016 (16)	0.0054 (15)	-0.0015 (15)
C30	0.058 (2)	0.053 (2)	0.0449 (18)	-0.005 (2)	-0.0010 (18)	0.0054 (17)
C31	0.059 (2)	0.048 (3)	0.088 (3)	-0.004 (2)	-0.006 (2)	0.000 (2)
C32	0.060 (2)	0.047 (2)	0.059 (2)	0.0036 (19)	-0.0098 (19)	0.002 (2)
C33	0.0454 (19)	0.050 (2)	0.059 (2)	0.0082 (18)	-0.0054 (18)	-0.0081 (19)
C34	0.051 (2)	0.063 (3)	0.064 (2)	0.009 (2)	-0.0115 (19)	-0.010 (2)
C35	0.0448 (19)	0.047 (2)	0.0415 (17)	-0.0003 (17)	0.0038 (15)	-0.0055 (17)
C36	0.077 (3)	0.085 (3)	0.092 (3)	-0.010 (3)	-0.017 (3)	-0.013 (3)
C37	0.102 (4)	0.059 (3)	0.126 (4)	-0.014 (3)	-0.013 (3)	0.011 (3)
C38	0.051 (3)	0.101 (4)	0.119 (4)	-0.001 (2)	-0.002 (3)	-0.020 (3)
C39	0.098 (3)	0.094 (4)	0.076 (3)	0.012 (3)	-0.028 (3)	-0.025 (3)

Geometric parameters (Å, °)

O1—C22	1.376 (4)	C17—C18	1.527 (5)
O1—C21	1.432 (3)	C17—H17A	0.9700
O2—N4	1.205 (4)	C17—H17B	0.9700
O3—N4	1.225 (4)	C18—C19	1.533 (4)
O4—C30	1.391 (4)	C18—H18A	0.9700
O4—C29	1.419 (3)	C18—H18B	0.9700
O5—C30	1.408 (4)	C19—C20	1.569 (4)
O5—C31	1.429 (5)	C19—H19	0.9800
O6—C32	1.419 (4)	C20—C21	1.541 (4)
O6—C31	1.427 (4)	C20—C28	1.549 (4)
O7—C34	1.414 (5)	C21—C29	1.522 (4)
O7—C33	1.419 (4)	C21—H21	0.9800
O8—C34	1.408 (4)	C22—C27	1.379 (4)
O8—C35	1.424 (4)	C22—C23	1.387 (4)
N1—C7	1.313 (4)	C23—C24	1.358 (5)
N1—C8	1.383 (5)	С23—Н23	0.9300
N2	1.301 (4)	C24—C25	1.386 (6)
N2-C13	1.384 (4)	C24—H24	0.9300
N3—C15	1.473 (4)	C25—C26	1.381 (5)
N3—C19	1.475 (4)	C25—H25	0.9300
N3—C16	1.486 (4)	C26—C27	1.394 (5)
N4—C20	1.524 (4)	C26—H26	0.9300
C1—C6	1.376 (5)	C27—C28	1.514 (4)

~ ~			
C1—C2	1.397 (5)	C28—H28	0.9800
C1—C15	1.537 (5)	C29—C35	1.526 (4)
C2—C3	1.382 (5)	С29—Н29	0.9800
C2—H2	0.9300	C30—C32	1.534 (5)
C3—C4	1.359 (6)	C30—H30	0.9800
С3—Н3	0.9300	C31—C36	1.488 (5)
C4—C5	1.392 (6)	C31—C37	1.510 (5)
C4—H4	0.9300	C32—C33	1.519 (5)
C5—C6	1.386 (5)	С32—Н32	0.9800
С5—Н5	0.9300	C33—C35	1.537 (5)
C6—C7	1.470 (5)	С33—Н33	0.9800
C7—C14	1.416 (5)	C34—C39	1.506 (5)
C8—C13	1.398 (5)	C34—C38	1.516 (5)
C8—C9	1.409 (5)	С35—Н35	0.9800
C9—C10	1.356 (6)	С36—Н36А	0.9600
С9—Н9	0.9300	С36—Н36В	0.9600
C10—C11	1.396 (7)	С36—Н36С	0.9600
C10—H10	0.9300	C37—H37A	0.9600
C_{11} C_{12}	1 364 (6)	C37—H37B	0.9600
C11—H11	0.9300	C37 - H37C	0.9600
C12-C13	1 408 (5)	C38—H38A	0.9600
C12 H12	0.9300	C38 H38B	0.9600
C12— $III2$	1.530(4)	C38 H38C	0.9000
$C_{14} = C_{15}$	1.550(4)		0.9000
$C_{13} = C_{28}$	1.347(4) 1.511(5)	C20 H20P	0.9000
C16 = U16A	1.311(3)	C39—H39B	0.9000
	0.9700	С39—Н39С	0.9600
CI0—HI0B	0.9700		
C22 Q1 C21	114.7(2)	C20 C21 C20	110.5(2)
$C_{22} = 01 = C_{21}$	114.7(2)	$C_{29} = C_{21} = C_{20}$	119.3 (2)
$C_{30} = 04 = C_{29}$	112.5(2)	OI = C2I = H2I	107.4
$C_{30} = 05 = C_{31}$	110.5 (3)	C29—C21—H21	107.4
$C_{32} = 06 = C_{31}$	106.5 (3)	C20—C21—H21	107.4
$C_{34} = 07 = C_{33}$	107.7 (3)	01-C22-C27	121.5 (3)
C34—O8—C35	107.5 (3)	01	116.2 (3)
C7—N1—C8	113.4 (3)	C27—C22—C23	122.2 (3)
C14—N2—C13	114.1 (3)	C24—C23—C22	119.2 (4)
C15—N3—C19	107.5 (2)	С24—С23—Н23	120.4
C15—N3—C16	119.6 (2)	С22—С23—Н23	120.4
C19—N3—C16	107.6 (3)	C23—C24—C25	120.4 (3)
O2—N4—O3	123.4 (3)	C23—C24—H24	119.8
O2—N4—C20	119.7 (3)	C25—C24—H24	119.8
O3—N4—C20	116.9 (3)	C26—C25—C24	120.0 (4)
C6—C1—C2	119.4 (3)	C26—C25—H25	120.0
C6—C1—C15	112.6 (3)	С24—С25—Н25	120.0
C2—C1—C15	127.7 (3)	C25—C26—C27	120.7 (4)
C3—C2—C1	118.1 (4)	C25—C26—H26	119.7
C3—C2—H2	120.9	C27—C26—H26	119.7
C1—C2—H2	120.9	C22—C27—C26	117.6 (3)
C4—C3—C2	122.3 (4)	C22—C27—C28	121.0 (3)

С4—С3—Н3	118.8	C26—C27—C28	121.3 (3)
С2—С3—Н3	118.8	C27—C28—C15	116.9 (3)
C3—C4—C5	120.1 (4)	C27—C28—C20	114.7 (3)
C3—C4—H4	120.0	C15—C28—C20	105.5 (2)
C5—C4—H4	120.0	C27—C28—H28	106.3
C6—C5—C4	118.0 (4)	C15—C28—H28	106.3
С6—С5—Н5	121.0	C20—C28—H28	106.3
C4—C5—H5	121.0	O4—C29—C21	109.8 (2)
C1—C6—C5	122.0 (3)	O4—C29—C35	108.4 (2)
C1—C6—C7	108.5 (3)	C21—C29—C35	111.3 (3)
C5—C6—C7	129.4 (4)	O4—C29—H29	109.1
N1—C7—C14	124.2 (3)	С21—С29—Н29	109.1
N1—C7—C6	127.8 (3)	С35—С29—Н29	109.1
C14—C7—C6	107.9 (3)	04-C30-O5	111.1 (3)
N1-C8-C13	122.3 (3)	04-C30-C32	116.0 (3)
N1—C8—C9	118.3 (4)	05-C30-C32	103.9 (3)
C13 - C8 - C9	119.4 (4)	$04 - C_{30} - H_{30}$	108.5
C10-C9-C8	119.6 (5)	05-C30-H30	108.5
C10-C9-H9	120.2	C_{32} C_{30} H_{30}	108.5
C8-C9-H9	120.2	06-031-05	100.3 104.2(3)
C9-C10-C11	120.2 121 3 (4)	06-C31-C36	104.2(3) 108.6(3)
C9-C10-H10	119.4	05-031-036	100.0(3) 109.2(3)
C_{11} C_{10} H_{10}	119.4	06-C31-C37	109.2(3)
C_{12} C_{11} C_{10}	119.4	05 C31 C37	110.9(3)
$C_{12} = C_{11} = C_{10}$	110.8	$C_{36} = C_{31} = C_{37}$	109.2(3)
$C_{12} = C_{11} = H_{11}$	119.0	$06 C^{32} C^{33}$	114.2(4)
$C_{11} = C_{12} = C_{13}$	119.6	$06 C_{32} C_{30}$	107.5(3)
$C_{11} = C_{12} = C_{13}$	119.5 (5)	C_{22}^{22} C_{22}^{22} C_{20}^{20}	103.0(3)
C13 - C12 - H12	120.2	$C_{33} - C_{32} - C_{30}$	115.5 (5)
$N_2 C_{12} C_{12} C_{8}$	120.2 122.2(2)	C_{22} C_{22} H_{22}	110.1
$N_2 = C_{13} = C_{6}$	122.2(3)	$C_{33} = C_{32} = H_{32}$	110.1
$N_2 = C_{13} = C_{12}$	117.9 (4)	$C_{30} - C_{32} - C_{32}$	110.1
$C_{0} = C_{10} = C_{12}$	119.0(4)	07 - 032 - 035	107.0(3) 104.2(2)
$N_2 = C_1 4 = C_1 7$	123.7(3)	0/-0.000	104.3(3)
$N_2 = C_1 4 = C_{15}$	125.0 (5)	$C_{32} = C_{33} = C_{33}$	115.0 (5)
C/C14C15	111.3 (3)	$0/-C_{33}$ -H33	109.9
N_{3} $-C_{15}$ $-C_{14}$	107.8 (2)	С32—С33—Н33	109.9
	115.0 (3)	С35—С33—Н33	109.9
	99.6 (3)	08-034-07	105.4 (3)
N3—C15—C28	105.4 (3)	08-C34-C39	108.9 (3)
C14—C15—C28	114.9 (3)	07-C34-C39	107.6 (3)
C1C15C28	114.2 (2)	08-C34-C38	110.6 (3)
N3—C16—C17	101.1 (3)	07—C34—C38	111.6 (3)
N3—C16—H16A	111.5	C39—C34—C38	112.5 (4)
C17—C16—H16A	111.5	O8—C35—C29	109.7 (3)
N3—C16—H16B	111.5	O8—C35—C33	104.5 (2)
C17—C16—H16B	111.5	C29—C35—C33	111.9 (3)
H16A—C16—H16B	109.4	O8—C35—H35	110.2
C16—C17—C18	105.4 (3)	С29—С35—Н35	110.2
С16—С17—Н17А	110.7	С33—С35—Н35	110.2

C18—C17—H17A	110.7	C31—C36—H36A	109.5
C16—C17—H17B	110.7	C31—C36—H36B	109.5
C18—C17—H17B	110.7	H36A—C36—H36B	109.5
H17A—C17—H17B	108.8	C31—C36—H36C	109.5
C17—C18—C19	104.9 (3)	H36A—C36—H36C	109.5
C17—C18—H18A	110.8	H36B—C36—H36C	109.5
C19—C18—H18A	110.8	C31—C37—H37A	109.5
C17—C18—H18B	110.8	C31—C37—H37B	109.5
C19—C18—H18B	110.8	H37A—C37—H37B	109.5
H18A—C18—H18B	108.8	C31—C37—H37C	109.5
N3—C19—C18	105.2 (3)	H37A—C37—H37C	109.5
N3—C19—C20	106.9 (2)	H37B—C37—H37C	109.5
C18—C19—C20	121.0 (3)	C34—C38—H38A	109.5
N3—C19—H19	107.7	C34—C38—H38B	109.5
C18—C19—H19	107.7	H38A—C38—H38B	109.5
С20—С19—Н19	107.7	C34—C38—H38C	109.5
N4—C20—C21	111.8 (3)	H38A—C38—H38C	109.5
N4—C20—C28	107.6 (2)	H38B—C38—H38C	109.5
C21—C20—C28	110.8 (2)	C34—C39—H39A	109.5
N4—C20—C19	111.2 (2)	C34—C39—H39B	109.5
C21—C20—C19	110.5 (2)	H39A—C39—H39B	109.5
C28—C20—C19	104.7 (2)	C34—C39—H39C	109.5
O1—C21—C29	103.4 (2)	H39A—C39—H39C	109.5
O1—C21—C20	111.3 (2)	H39B—C39—H39C	109.5
C6—C1—C2—C3	-1.2(5)	N4—C20—C21—O1	68.0 (3)
C15—C1—C2—C3	-174.9(3)	C28—C20—C21—O1	-52.0(3)
C1—C2—C3—C4	-0.4 (6)	C19—C20—C21—O1	-167.5(2)
C2—C3—C4—C5	1.6 (6)	N4—C20—C21—C29	-52.3 (3)
C3—C4—C5—C6	-1.1 (6)	C28—C20—C21—C29	-172.3(3)
C2—C1—C6—C5	1.6 (5)	C19—C20—C21—C29	72.1 (3)
C15—C1—C6—C5	176.2 (3)	C21—O1—C22—C27	-31.8(4)
C2-C1-C6-C7	-174.6 (3)	C21—O1—C22—C23	151.3 (3)
C15—C1—C6—C7	0.0 (4)	O1—C22—C23—C24	177.6 (3)
C4—C5—C6—C1	-0.4(5)	C27—C22—C23—C24	0.7 (5)
C4—C5—C6—C7	174.9 (3)	C22—C23—C24—C25	-0.5(6)
C8—N1—C7—C14	0.1 (4)	C23—C24—C25—C26	-0.2(6)
C8—N1—C7—C6	-177.3(3)	C24—C25—C26—C27	0.9 (6)
C1 - C6 - C7 - N1	179.6 (3)	01-C22-C27-C26	-176.8(3)
$C_{5}-C_{6}-C_{7}-N_{1}$	3.8 (6)	C23—C22—C27—C26	0.0 (5)
C1—C6—C7—C14	1.8 (4)	01-C22-C27-C28	-0.3(5)
C5-C6-C7-C14	-174.0(3)	C23—C22—C27—C28	176.5 (3)
C7-N1-C8-C13	-0.2(5)	C_{25} C_{26} C_{27} C_{22}	-0.7(5)
C7—N1—C8—C9	178.9 (3)	C25—C26—C27—C28	-177.2(3)
N1—C8—C9—C10	179.5 (4)	C22-C27-C28-C15	128.1 (3)
C13—C8—C9—C10	-1.4 (6)	C_{26} C_{27} C_{28} C_{15}	-55.5(4)
C8-C9-C10-C11	1.4 (7)	C22 - C27 - C28 - C20	3.8 (4)
C9-C10-C11-C12	-0.5 (8)	C26—C27—C28—C20	-179.8(3)
C10-C11-C12-C13	-0.4 (8)	N3—C15—C28—C27	-155.5(3)
	· (-)	· · · · · · · · · · · · · · · · · · ·	

C14—N2—C13—C8	0.6 (5)	C14—C15—C28—C27	-36.9(4)
C14—N2—C13—C12	-179.1 (3)	C1—C15—C28—C27	77.4 (3)
N1—C8—C13—N2	-0.2 (5)	N3—C15—C28—C20	-26.6(3)
C9—C8—C13—N2	-179.2 (3)	C14—C15—C28—C20	91.9 (3)
N1—C8—C13—C12	179.5 (3)	C1—C15—C28—C20	-153.8 (3)
C9—C8—C13—C12	0.5 (5)	N4—C20—C28—C27	-100.7(3)
C11—C12—C13—N2	-179.8 (4)	C21—C20—C28—C27	21.8 (3)
C11—C12—C13—C8	0.4 (6)	C19—C20—C28—C27	140.9 (3)
C13—N2—C14—C7	-0.7(5)	N4—C20—C28—C15	129.2 (3)
C13—N2—C14—C15	-179.3 (3)	C21—C20—C28—C15	-108.3(3)
N1—C7—C14—N2	0.3 (5)	C19—C20—C28—C15	10.8 (3)
C6—C7—C14—N2	178.2 (3)	C30—O4—C29—C21	165.9 (3)
N1—C7—C14—C15	179.1 (3)	C30—O4—C29—C35	-72.3(3)
C6—C7—C14—C15	-3.0 (4)	O1—C21—C29—O4	-160.0(2)
C19—N3—C15—C14	-90.3 (3)	C20—C21—C29—O4	-35.7 (4)
C16—N3—C15—C14	146.7 (3)	O1—C21—C29—C35	80.0 (3)
C19—N3—C15—C1	159.6 (3)	C20—C21—C29—C35	-155.7 (3)
C16—N3—C15—C1	36.6 (4)	C29—O4—C30—O5	-80.2(3)
C19—N3—C15—C28	32.9 (3)	C29—O4—C30—C32	38.1 (4)
C16—N3—C15—C28	-90.1 (3)	C31—O5—C30—O4	126.4 (3)
N2-C14-C15-N3	61.3 (4)	C31—O5—C30—C32	0.9 (4)
C7-C14-C15-N3	-117.5 (3)	C32—O6—C31—O5	33.2 (4)
N2—C14—C15—C1	-178.4 (3)	C32—O6—C31—C36	149.5 (3)
C7—C14—C15—C1	2.8 (3)	C32—O6—C31—C37	-84.2(4)
N2-C14-C15-C28	-55.9 (4)	C30—O5—C31—O6	-20.6(4)
C7—C14—C15—C28	125.4 (3)	C30—O5—C31—C36	-136.5 (3)
C6-C1-C15-N3	113.3 (3)	C30—O5—C31—C37	98.0 (4)
C2-C1-C15-N3	-72.6 (4)	C31—O6—C32—C33	-154.8(3)
C6-C1-C15-C14	-1.7 (3)	C31—O6—C32—C30	-32.4(3)
C2-C1-C15-C14	172.4 (3)	O4—C30—C32—O6	-103.1(3)
C6-C1-C15-C28	-124.7 (3)	O5—C30—C32—O6	19.1 (3)
C2—C1—C15—C28	49.4 (4)	O4—C30—C32—C33	13.9 (4)
C15—N3—C16—C17	162.1 (3)	O5—C30—C32—C33	136.1 (3)
C19—N3—C16—C17	39.1 (3)	C34—O7—C33—C32	-142.0(3)
N3—C16—C17—C18	-37.0 (3)	C34—O7—C33—C35	-19.4(3)
C16—C17—C18—C19	22.1 (4)	O6—C32—C33—O7	-160.4(3)
C15—N3—C19—C18	-155.9 (2)	C30—C32—C33—O7	84.7 (4)
C16—N3—C19—C18	-25.8 (3)	O6—C32—C33—C35	83.9 (4)
C15—N3—C19—C20	-26.1(3)	C30—C32—C33—C35	-31.0(4)
C16—N3—C19—C20	104.1 (3)	C35—O8—C34—O7	-31.9(3)
C17—C18—C19—N3	1.7 (3)	C35—O8—C34—C39	-147.1 (3)
C17—C18—C19—C20	-119.3 (3)	C35—O8—C34—C38	88.8 (4)
O2—N4—C20—C21	6.9 (4)	C33—O7—C34—O8	32.1 (3)
O3—N4—C20—C21	-173.4 (3)	C33—O7—C34—C39	148.2 (3)
O2—N4—C20—C28	128.7 (3)	C33—O7—C34—C38	-88.0 (3)
O3—N4—C20—C28	-51.6 (4)	C34—O8—C35—C29	139.5 (3)
O2—N4—C20—C19	-117.2 (3)	C34—O8—C35—C33	19.3 (3)
O3—N4—C20—C19	62.5 (4)	O4—C29—C35—O8	-64.6 (3)
N3—C19—C20—N4	-107.3 (3)	C21—C29—C35—O8	56.2 (3)

supplementary materials

C18-C19-C20-N4	12.9 (4)	O4—C29—C35—C33	50.9 (4)
N3-C19-C20-C21	128.0 (3)	C21—C29—C35—C33	171.7 (2)
C18-C19-C20-C21	-111.9 (3)	O7—C33—C35—O8	0.1 (3)
N3-C19-C20-C28	8.6 (3)	C32—C33—C35—O8	117.7 (3)
C18—C19—C20—C28	128.8 (3)	O7—C33—C35—C29	-118.6 (3)
C22—O1—C21—C29	-172.3 (2)	C32—C33—C35—C29	-1.0 (4)
C22—O1—C21—C20	58.3 (3)		

Hydrogen-bond geometry (Å, °)

Cg8 is the centroid of the N1/C7/C14/N2/C13/C8 ring.

D—H···A	D—H	H···A	D····A	D—H···A
C35—H35…O2 ⁱ	0.98	2.41	3.390 (4)	177
C16—H16A····O3	0.97	2.59	3.237 (5)	124
C21—H21···N2	0.98	2.48	3.305 (4)	141
C30—H30…Cg8 ⁱⁱ	0.98	2.93	3.895 (4)	168

Symmetry codes: (i) x+1/2, -y+3/2, -z; (ii) -x, y-1/2, -z+1/2.