
PRISM-games 3.0: Stochastic Game
Verification with Concurrency,

Equilibria and Time

Marta Kwiatkowska1, Gethin Norman2,
David Parker3(B), and Gabriel Santos1

1 Department of Computing Science,
University of Oxford, Oxford, UK
2 School of Computing Science,

University of Glasgow, Glasgow, UK
3 School of Computer Science,

University of Birmingham, Birmingham, UK
d.a.parker@cs.bham.ac.uk

Abstract. We present a major new release of the PRISM-games model
checker, featuring multiple significant advances in its support for veri-
fication and strategy synthesis of stochastic games. Firstly, concurrent
stochastic games bring more realistic modelling of agents interacting in a
concurrent fashion. Secondly, equilibria-based properties provide a means
to analyse games in which competing or collaborating players are driven
by distinct objectives. Thirdly, a real-time extension of (turn-based)
stochastic games facilitates verification and strategy synthesis for sys-
tems where timing is a crucial aspect. This paper describes the advances
made in the tool’s modelling language, property specification language
and model checking engines in order to implement this new functional-
ity. We also summarise the performance and scalability of the tool, and
describe a selection of case studies, ranging from security protocols to
robot coordination, which highlight the benefits of the new features.

1 Introduction

Quantitative verification and strategy synthesis are powerful techniques for the
modelling and analysis of computerised systems which require reasoning about
quantitative aspects such as probability, time or resource usage. They can be used
either to produce formal guarantees about a system’s behaviour, for example
relating to its safety, reliability or efficiency, or to synthesise controllers which
ensure that such guarantees will be met at runtime. Examples of applications
where these techniques have been used include power controllers, unmanned
aerial vehicles, autonomous driving and communication protocols.

As computing systems increasingly involve concurrently acting autonomous
agents, game-theoretic approaches are becoming widespread in computer sci-
ence as a faithful modelling abstraction. These techniques can be used to reason
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 475–487, 2020.
https://doi.org/10.1007/978-3-030-53291-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_25

476 M. Kwiatkowska et al.

about the competitive or collaborative behaviour of multiple rational agents or
entities with distinct goals or objectives. Applications include designing a defence
strategy against attackers in a cybersecurity context or building controllers for
autonomous robots operating in an unknown or potentially malicious environ-
ment. More broadly, game theory techniques such as mechanism design can be
used to design protocols that are robust in the context of selfish participants, for
example by incorporating incentive/reward schemes. They have been successfully
deployed in diverse contexts such as network routing [29], auction design [10],
public good provisioning [15] and ranking or recommender systems [30].

However, designing game-theoretic systems correctly is a challenge, in view
of the complexity of behaviours arising from the interactions between autonomy,
concurrency and quantitative rewards. This motivates the development of for-
mal verification techniques to check their correctness and synthesise correct-by-
construction strategies for them. Furthermore, many of these applications require
reasoning about stochasticity : protocols may employ randomisation, e.g., for reli-
able dissemination across a network, or to minimise the impact of information
leakage to an observer; autonomous robots operate in uncertain environments
and may use unreliable hardware components or noisy sensors; and data-driven
systems such as ranking or navigation systems rely on learnt probabilistic models
for their execution.

These challenges have inspired the development of PRISM-games [22], a
model checking tool for stochastic games. To date, it supports verification and
strategy synthesis for turn-based stochastic multi-player games (TSGs) using
a variety of objectives, expressed in the temporal logic rPATL (probabilistic
alternating-time temporal logic with rewards) [8]. This allows specification of
zero-sum objectives relating to one coalition of players trying to maximise a
probabilistic or reward-based objective, while the remaining players form a sec-
ond coalition trying to minimise the objective. It has also been extended to
include (zero-sum) multi-objective properties and additional reward measures
such as long-run average and ratio reward [22]. These methods have been suc-
cessfully applied to several case studies such as autonomous vehicles, user-centric
networks, temperature control and an aircraft electric power system [21,23,32].

In this paper, we present PRISM-games 3.0, which significantly extends its
predecessor’s functionality in several ways [18–20]. First, it supports the mod-
elling and analysis of concurrent stochastic multi-player games (CSGs). Previous
versions of the tool supported TSGs, in which it is assumed that each state of
the game is controlled by a specific player. CSGs allow players to make decisions
simultaneously, without knowledge of each other’s choices, providing a more real-
istic model of concurrent execution and decision making. For this, we extend the
PRISM-games modelling language, allowing the user to specify concurrency and
synchronisation among agents, as well as to associate rewards to either joint or
single actions.

In the first instance, PRISM-games now supports verification and strategy
synthesis for CSGs using zero-sum specifications in rPATL [19], which we extend
to accommodate instantaneous rewards. The second major addition to the tool is

PRISM-games 3.0 477

the possibility of reasoning about equilibria-based properties, which allow play-
ers to have distinct, not necessarily conflicting objectives. We extend rPATL
to express properties relating to (subgame perfect) social-welfare optimal Nash
equilibria (SWNE) [20]. This provides synthesis of strategies for all players (or
coalitions) from which there is no incentive for any of them to unilaterally devi-
ate in any state of the game, and where the combined probabilities or rewards
are maximised (or minimised).

Thirdly, PRISM-games now adds support for probabilistic timed multi-player
games (TPTGs) [18] (currently just the turn-based variant of the model). These
extend stochastic multi-player games with real-valued clocks, in the style of
(probabilistic) timed automata. This allows real-time aspects of a system to be
more accurately modelled. Using the digital clocks approach [18], timed models
are automatically translated to discrete-time models in order to be verified.

In this paper, we describe the key enhancements made to the tool, notably
to its modelling and property specification languages. We also summarise the
results, algorithms and implementation of the verification and strategy synthesis
techniques developed [18–20] to support the new functionality. We then describe
a selection of case studies which showcase the advantages of the new features,
and summarise the performance and scalability of the tool.

PRISM-games is open source and runs on all major operating systems. It is
available from the tool’s website [34]. Supporting material for the paper, includ-
ing a virtual machine that allows easy running of the tool and reproduction of
the results presented in Sect. 4, can be found at [33].

Related Tools. Other model checking tools have been developed to provide
support for games. For non-stochastic games, model checking tools such as
PRALINE [5], EAGLE [31] and EVE [16] support Nash equilibria [27], as does
MCMAS-SLK [6] via strategy logic. Uppaal Stratego [11] is a tool that uses
machine learning, model checking and simulation for the synthesis of strategies
for stochastic priced timed games. GAVS+ [9] is a general-purpose tool for algo-
rithmic game solving, supporting TSGs and (non-stochastic) concurrent games,
but not CSGs. GIST [7] allows the analysis of ω-regular properties on proba-
bilistic games, but again focuses on turn-based, not concurrent, games. General
purpose tools such as Gambit [26] can compute a variety of equilibria but not
for stochastic games.

2 Modelling and Property Specification Languages

2.1 Modelling Concurrent and Timed Games

The new features in PRISM-games 3.0 have required some significant enhance-
ments to the language used to specify models. For the addition of real-time
aspects (i.e., TPTGs), the changes are a straightforward combination of the
existing language features for specifying TSGs in PRISM-games (player spec-
ifications and mapping of model states to them) and for probabilistic timed
automata in PRISM (clock variables, module invariants, guards and clock resets).

478 M. Kwiatkowska et al.

We therefore focus in this paper on the specification of CSGs, where the language
changes are more fundamental.

PRISM-games has an existing language for specifying TSGs, which is an
extension of the native PRISM modelling language [22]. Components of the
system to be modelled are encapsulated as modules, whose states are defined
by a set of finite-range variables and whose behaviour is specified using action-
labelled guarded commands. In a state, one or more modules can execute a
command to make a transition: if the guard (a predicate over state variables) is
satisfied, the state can be modified (probabilistically) by applying the updates of
the command. Multiple modules can execute simultaneously if their commands
are labelled with the same action.

1 csg
2 // Player specification
3 player p1 mac1 endplayer
4 player p2 mac2 endplayer
5 // Max energy per user
6 const int emax;
7 // User 1
8 module mac1
9 s1 : [0..1] init 0; // Has user 1 sent?

10 e1 : [0.. emax] init emax; // Energy level of user 1
11 [w1] true -> (s1 ’=0); // Wait
12 [t1] e1 >0 -> (s1 ’=c ’?0:1) & (e1 ’=e1 -1); // Transmit
13 endmodule
14 // Define second user using module renaming
15 module mac2 = mac1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule

1 // Probability qi for transmission success when i users send
2 const double q1;
3 const double q2;
4 // Channel (computes joint transmission probabilities)
5 module channel
6 c : bool init false; // Did a collision occur during transmission?
7 [t1 ,w2] true -> q1:(c’=false) + (1-q1):(c’=true); // User 1 transmits
8 [w1 ,t2] true -> q1:(c’=false) + (1-q1):(c’=true); // User 2 transmits
9 [t1 ,t2] true -> q2:(c’=false) + (1-q2):(c’=true); // Both transmit

10 endmodule

1 // Reward structures
2 rewards "mess1" // Number of messages sent by user 1
3 s1=1 : 1;
4 endrewards
5 rewards "mess2" // Number of messages sent by user 2
6 s2=1 : 1;
7 endrewards
8 rewards "send2" // Number of times users 1 and 2 transmit simultaneously
9 [t1 ,t2] true : 1;

10 endrewards

Fig. 1. An example PRISM-games 3.0 CSG model of medium access control.

CSGs cannot naturally be modelled with this approach for several reasons:
(i) players need to be able to concurrently choose between multiple commands
with different action labels; (ii) the update performed by one player may be
different depending on the action chosen by another player; (iii) when multiple

PRISM-games 3.0 479

players execute, variables may need to be updated according to an arbitrary
probability distribution, rather than being limited to the product of separate
distributions specified locally by individual modules.

Figure 1 shows an example of the PRISM-games 3.0 modelling language,
which we use to illustrate some of its new features. It models a probabilistic
version of the medium access control problem, previously described in [5]. Two
users share a communication channel. At each time step, user maci (i = 1, 2)
can choose between transmitting a message (ti) or waiting (wi). Variable si
tracks whether a user successfully sent its message in the last time step and ei
represents its energy level: transmissions can only occur when energy is positive.
A third component is the channel channel, modelled by Boolean variable c
denoting whether a collision occurred on the last transmission attempt.

The first difference (with respect to modelling of TSGs) is the player specifi-
cation: players are associated with modules (rather than states). In the example,
module maci constitutes player i. Modules with no nondeterministic choice (like
channel) do not need to be tied to a player.

In each state of the CSG, each player chooses between enabled commands
of the corresponding modules; if no command is enabled, the player idles. The
players move simultaneously so transitions are labelled with lists of action labels
[a1, . . . , an]. So the guarded command notation is extended accordingly: note how
the channel’s behaviour depends on which actions the two users take (the same
principle applies when specifying reward structures; see send2). Furthermore,
variable updates within a command can now be dependent on the updated values
of other variables, provided there are no cyclic dependencies. See for example
(s1’=c’?0:1), which updates s1 depending on whether there was a channel
collision (reflected in c’, the updated value of c). We use this mechanism to
model interference on the channel: module channel specifies a joint probability
distribution which is used to update variables s1 and s2 simultaneously.

2.2 Property Specification

PRISM-games 3.0 also extends the language used to specify properties for verifi-
cation and strategy synthesis. The previous version already supported zero-sum
queries for TSGs using the logic rPATL, which combines the game logic ATL
with reward-based extensions of the probabilistic logic PCTL. Again, for the new
real-time models, it is relatively easy to combine the existing rPATL notation
with real-valued time bounds. So, we focus here on the case of CSGs, and in
particular equilibria-based properties.

We compute values or synthesise strategies which are social-welfare optimal
Nash equilibria (SWNE), i.e., which maximise (or minimise) the sum of the values
associated to the objectives for each player, but from which there is no incentive
for any of them to unilaterally deviate in any state of the game. We express such
properties by adding to rPATL the + operator, which is then used to denote the
sum of the values associated to both bounded and unbounded objectives.

When using the rewards operator in equilibria-based properties, we can rea-
son about cumulative (C�k), instantaneous (I=k) and expected reachability (F)

480 M. Kwiatkowska et al.

objectives. For properties with the probability operator, we support bounded and
unbounded reachability using the temporal operators next (X), eventually (F)
and until (U). In order to express zero-sum properties for CSGs, we have imple-
mented all the previous temporal operators for probabilistic queries and a subset
of the rPATL operators reported in [8] for reward-based queries, adding to that
the instantaneous reward operator.

Finally, following the style of rPATL we separate players into coalitions with
the syntax 〈〈coalition〉〉, in order to specify the player or association of players for
which we seek to maximise or minimise the values for a given zero-sum property.
For equilibria-based properties, given that we maximise/minimise the sum, we
use the same operator to separate players in different coalitions using a colon,
while players in the same coalition are separated by a comma.

The following are examples of both zero-sum and equilibria-based properties
for the medium access CSG model described in Fig. 1.

– 〈〈p1〉〉Pmax=?[s2=0 U s1=1] – what is the maximum probability user 1 can
ensure of being the first to transmit, regardless of the behaviour of user 2?

– 〈〈p2〉〉Rmess2�2.0 [F e2=0] – can user 2 ensure the expected number of messages it
sends before running out of energy is at least 2, whatever user does?

– 〈〈p1:p2〉〉max�2(P[F s1=1] + P[F s2=1]) – if each user’s objective is to send
their packet with the maximum probability, is it possible for them to collab-
orate and both transmit their packets with probability 1?

– 〈〈p1:p2〉〉max=?(P[s2=0 U s1=1] + P[s1=0 U s2=1]) – what is the sum of
SWNE values if each user tries to maximise the probability of being the first
to successfully transmit?

– 〈〈p1:p2〉〉max=?(Rmess1[F e1=0] + Rmess2[C�k]) – what is the sum of SWNE
values if user 1 tries to maximise the expected number of packets before
running out of energy and user 2 maximises the expected number of packets
in the first k steps?

3 Verification and Strategy Synthesis Algorithms

3.1 Zero-Sum Properties for CSGs

When verifying zero-sum properties of CSGs, PRISM-games makes use of the
model checking algorithms described in [19], which were based on the methods
formulated in [2,3]. We rely on value iteration and classical convergence criteria
to approximate/compute the values for all states of the game under study, and
on solving a linear program to compute a minimax strategy at each state. This
corresponds to solving a matrix game, which represents a one-shot zero-sum
game for the actions of each player in a state. For unbounded properties, the
solutions of the matrix games are used to synthesise an optimal (memoryless and
randomised) strategy for each player. Prior to this numerical solution phase, we
find and remove the states for which the optimal expected reward values are
infinite by using the qualitative algorithms developed in [1].

PRISM-games 3.0 481

Our current implementation uses the LPsolve [24] library to solve the matrix
games at each state. CSGs are built and stored in a explicit-state fashion using an
extension of PRISM’s Java-implemented explicit (sparse-matrix based) engine.

3.2 Equilibria-Based Properties for CSGs

For equilibria-based properties of CSGs, PRISM-games implements the methods
described in [20]. We rely on value iteration and backwards induction to approx-
imate/compute values and synthesise strategies that are SWNE. For unbounded
properties, we can only compute values that are ε-Nash equilibria, since Nash
equilibria are not guaranteed to exist. At each state, we solve a bimatrix game,
which is a representation of a one-shot nonzero-sum game and is a linear com-
plementarity problem. We solve these games via labelled polytopes, finding all
equilibria values through an SMT-based implementation, for which we use third-
party SMT solvers Z3 [12] and Yices [13]. We make use of a precomputation step
of finding and removing dominated strategies in order to minimise the number
of calls to the solver.

Unlike zero-sum properties, the synthesised strategies for bounded and
unbounded equilibria-based properties require (finite) memory. This is needed
due to the fact that a player’s choices may change once their objectives have been
satisfied. We synthesise strategies by combining the strategy vectors computed
for each bimatrix game and the strategy generated by computing optimal values
for the MDP resulting from playing the game after either goal has been met. As
we use value iteration to approximate values for infinite-horizon properties, we
can only synthesise ε-Nash strategy profiles.

3.3 Turn-Based Probabilistic Timed Games

Verification and strategy synthesis of TPTGs relies on the algorithms from [18],
which use the digital clocks approach that has been a developed for a variety
of real-time models. A translation, at the level of the PRISM-games modelling
languages, automatically converts the problem of analysing a TPTG into one of
solving a (discrete-time) TSG, for which PRISM-games’s existing engines can
be used. Time-bounded properties are handled by automatically integrating a
timing clock into the model prior to translation. As in the rest of PRISM-games,
TSGs are also built and solved using the Java-based explicit engine.

4 Case Studies and Experimental Results

The features added in PRISM-games 3.0 have been used for over 10 new case
studies across a wide range of application domains, including computer security
(intrusion detection, radio jamming, non-repudiation), communication protocols
(medium access control, Aloha), incentive schemes for cooperative networking,
multi-robot navigation problems and processor task scheduling. Details can be
found in [18–20] and on the case studies section of the PRISM-games website [35].

482 M. Kwiatkowska et al.

Supporting material is at [33]. In this section, we showcase four selected case
studies that demonstrate the benefits of the tool’s new functionality. We also
include a discussion of the scalability and performance of the tool.

Future Markets Investor. This example models two investors playing against
the stock market. Investors choose when to invest or to cash in, and the stock
market can decide to bar investments at certain points; fluctuations in share
values are modelled stochastically. PRISM-games can, for example, synthesise
optimal strategies for the two investors to maximise their expected joint profit
over time, acting against the stock market which aims to minimise it.

1 2 3 4 5 6 7 8 9
7.5

8

8.5

9

9.5

10

10.5

Number of months

M
a
x

c
o
m

b
in

e
d

p
ro

fi
t

CSG

TSG

(a) Future markets investor: avoiding
unrealistic strategy choices using CSGs

9 10 11 12 13 14
0.2

0.4

0.6

0.8

1

k

A
v
e
ra

g
e

su
c
c
e
ss

p
ro

b
a
b
il
it
y

Equilibria

Zero-sum

(b) Robot coordination: using equilib-
ria for mutually beneficial navigation plans

0 4 8 12 16 20
0

0.02

0.04

0.06

0.08

0.1

T

M
a
x
.
p
ro

b
a
b
il
it
y

o
f
a
tt

a
ck TPTG

PTA

(c) Non-repudiation: Attack & defence
strategies in a timed, randomised protocol

1.6 1.65 1.7 1.75 1.8

1

3

5

7

9

10.5

f

E
x
p
e
c
te

d
in

d
iv

id
u
a
l
p
ro

fi
t

Player 1

Player 2

(d) Public good game: Tuning incentive
parameter f by synthesising equilibria

Fig. 2. Results illustrating the benefits of the new verification and strategy synthe-
sis techniques implemented in PRISM-games 3.0; see Sect. 4 for details. (Color figure
online)

Figure 2(a) shows the results obtained for this property using both a turn-
based stochastic game (TSG) and a concurrent stochastic game (CSG). The
former leads to unrealistic modelling as the market can see the choices made
by the investors and gain an unfair advantage: the values in the blue plot in
Fig. 2(a) are artificially low. In the CSG model, using PRISM 3.0, decisions are
taken simultaneously, yielding the correct strategies and values (red plot).

PRISM-games 3.0 483

Robot Coordination. Our next example models two robots navigating in
opposite directions across a 10-by-10 grid as a CSG. Obstacles which hinder
the robots as they move from location to location are modelled stochastically;
and if the robots collide, both of them fail in their attempt to reach their goal.
We use PRISM-games to find navigation strategies for the two robots, where
each robot does not know the choice being made by the other at each step.

The objective for each robot is to navigate successfully, so we maximise the
average probability (across the two robots) of success. Figure 2(b) shows the best
value that can be achieved within a fixed period of k moves across the grid. One
robot aiming single-handedly to achieve this goal performs reasonably well (blue
plot), but we can achieve better collective performance by using PRISM-games
to synthesise a (social welfare Nash) equilibrium strategy (red plot).

Non-repudiation. Next we consider a non-repudiation protocol [25], which per-
mits an originator O to transfer information to a recipient R while guaranteeing
non-repudiation, i.e., that neither O nor R can deny that they participated in
the transfer. Here, both probability (the protocol is randomised) and time (the
protocol relies on acknowledgement time-outs) are essential ingredients for check-
ing correctness. Furthermore, we model the two participants of the protocol as
opposing players, resulting in a TPTG model.

To verify the protocol, we check the worst-case probability that a malicious
recipient R can obtain the information being transferred within time T . This can
be done with a PTA model (as in [28]) but, with a timed game model, we can also
analyse counter-strategies of the honest participant. The results (see Fig. 2(c))
show that, while it is not possible to prevent the information being received, it
is possible to delay it (the red plot shows lower probabilities for higher times).
Note that the bound T is an actual time bound, unlike the examples above,
where step-bounded properties measure the number of steps or rounds.

Public Good Game. Lastly, we show a new case study modelling a public
good game, a well studied model of social choice in economics where participants
repeatedly decide how much of an endowment to keep for themselves or to share
it with the other players. The total shared by the players is boosted by a factor
f in order to incentivise sharing and then divided equally between the players.

Figure 2(d) shows results from a 2-player game, modelled as a CSG. Player
choices are necessarily concurrent, to avoid cheating. We also need to use equi-
libria since the players have distinct individual goals (maximising personal
expected profit). Figure 2(d) shows the values for each player in a synthesised
optimal (social welfare Nash) equilibrium for varying f . Changes in f affect
both the resulting profit and potential inequalities between players in equilib-
ria, indicating the subtleties involved when tuning parameters in an incentive
mechanism and the usefulness of analysing this with PRISM-games.

Scalability and Performance. Finally, we show some experimental results for
a representative selection of larger examples, to give an indication of the scal-
ability and performance of PRISM-games 3.0. Table 1 shows a range of models
(the first 4 are CSGs; the last is a TPTG), the statistics for each one (number of

484 M. Kwiatkowska et al.

Table 1. Model statistics for some of the case studies.

Case study Players States

transitions

Constr.

time(s)

Property Verif.

time(s)

Robot
coordination

2 159,202

10,765,010

30.94 〈〈p1〉〉Pmax=?[¬c U�kg1] 114.5

2 159,202

10,765,010

39.00 〈〈p1:p2〉〉max=?(P[¬c U�kg1]+P[¬c U�k g2]) 1,080

Future markets
investors

3 1,398,441

7,374,616

51.2 〈〈i1〉〉Rmax=?[F
c cashed1] 1,030

3 478,761

2,265,560

13.47 〈〈i1:i2〉〉max=?(R[F c1]+R[F c2]) 13,110

User-centric
networks

7 2,993,308

11,392,196

198.6 〈〈user〉〉Rmax=?[F
c services=K] 1,061

Aloha 3 556,168

2,401,113

15.7 〈〈p2, p3〉〉Rmin=?[F sent2,3] 317.8

3 3,334,681

17,834,254

146.1 〈〈p1:p2,p3〉〉min=?(R[F s1]+R[F s2,3]) 3,129

Task graph
scheduling

2 659,948

1,798,198

11.16 〈〈sched〉〉Rmax=?[F done] 89.7

players, states, transitions) and the time taken to build and verify the model for
some example properties on a 2.10 GHz Intel Xeon with 8 GB of JVM memory.

Verification of CSGs is more computationally expensive than for TSGs sup-
ported in earlier versions of the tool, but PRISM-games 3.0 is able to build and
analyse CSGs with more than 3 million states on relatively modest hardware.
The majority of the time is spent solving (bi)matrix games, which is done repeat-
edly for all states of the model. Hence, the number of choices per state, which
dictates the size of these games, has a greater impact on performance than for
TSGs. Unsurprisingly, equilibria properties are slower than zero-sum ones. For
both types of property, the number of players in the game does not have a major
impact since they are grouped into coalitions yielding a 2-player game to solve.
For TPTGs, the digital clocks translation is fast since it is done syntactically,
and then a TSG is solved whose size depends on several factors, primarily the
number of locations and the magnitude of any time bound in the property.

5 Conclusions

We have presented PRISM-games 3.0, which adds three major new features:
(i) concurrent stochastic games; (ii) synthesis of equilibria; and (iii) timed prob-
abilistic games. The usefulness of these has been illustrated on several newly
created or extended applications.

CSGs are considerably more expensive to solve than their turn-based coun-
terparts and a key challenge is efficiently solving the matrix game at each state,
which is itself a non-trivial optimisation problem. For equilibria, the main dif-
ficulty is finding an optimal equilibrium, which currently relies on iteratively
restricting the solution search space. Both problems are sensitive to the limita-
tions and issues of floating-point arithmetic, particularly equilibria computation,
and might benefit from arbitrary precision representations. Recent research has

PRISM-games 3.0 485

also pointed out the shortcomings of only using a lower bound approximation as
a stopping criterion for value iteration, as it can lead to inaccuracies [4,14,17].
The impact of similar issues on model checking for games is still to be studied.

A range of further challenges exist for future work. These include provid-
ing support for multi-coalitional properties and implementing other techniques
for equilibria computation. For timed games, we plan to investigate concurrent
variants, and also zone-based solution techniques. More broadly speaking, partial
information variants of games would be a useful addition.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 834115) and the EPSRC Programme Grant on Mobile
Autonomy (EP/M019918/1).

References

1. de Alfaro, L., Henzinger, T.: Concurrent omega-regular games. In: LICS 2000,
pp. 141–154 (2000)

2. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. Theor.
Comput. Sci. 386(3), 188–217 (2007)

3. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J.
Comput. Syst. Sci. 68(2), 374–397 (2004)

4. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

5. Brenguier, R.: PRALINE: a tool for computing nash equilibria in concurrent games.
In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 890–895.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 63

6. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 34

7. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: a solver
for probabilistic games. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 665–669. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 57. pub.ist.ac.at/gist/

8. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Form. Methods Syst. Des. 43(1), 61–92
(2013)

9. Cheng, C.-H., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: an open platform
for the research of algorithmic game solving. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 258–261. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19835-9 22. sourceforge.net/projects/gavsplus/

10. Cramton, P., Shoham, Y., Steinberg, R.: An overview of combinatorial auctions.
SIGecom Exch. 7, 3–14 (2007)

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-642-39799-8_63
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-642-14295-6_57
https://doi.org/10.1007/978-3-642-14295-6_57
http://pub.ist.ac.at/gist/
https://doi.org/10.1007/978-3-642-19835-9_22
https://doi.org/10.1007/978-3-642-19835-9_22
http://sourceforge.net/projects/gavsplus/

486 M. Kwiatkowska et al.

11. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16. people.cs.aau.dk/marius/stratego/

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24. github.com/Z3Prover/z3

13. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49. yices.csl.sri.com

14. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

15. Hauser, O., Hilbe, C., Chatterjee, K., Nowak, M.: Social dilemmas among unequals.
Nature 572, 524–527 (2019)

16. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: EVE: a tool for temporal
equilibrium analysis. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol.
11138, pp. 551–557. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01090-4 35. github.com/eve-mas/eve-parity

17. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for sim-
ple stochastic games: stopping criterion and learning algorithm. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 36

18. Kwiatkowska, M., Norman, G., Parker, D.: Verification and control of turn-based
probabilistic real-time games. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C.,
Valencia, F. (eds.) The Art of Modelling Computational Systems: A Journey from
Logic and Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 379–396.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-9 22

19. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automated verification
of concurrent stochastic games. In: McIver, A., Horvath, A. (eds.) QEST 2018.
LNCS, vol. 11024, pp. 223–239. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99154-2 14

20. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based probabilis-
tic model checking for concurrent stochastic games. In: ter Beek, M.H., McIver,
A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 298–315. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 19

21. Kwiatkowska, M., Parker, D., Simaitis, A.: Strategic analysis of trust models for
user-centric networks. In: Proceedings of the SR’13, EPTCS, vol. 112, pp. 53–60.
Open Publishing Association (2013)

22. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games 2.0: a tool for multi-
objective strategy synthesis for stochastic games. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 560–566. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9 35

23. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Softw.
Tools Technol. Transf. 20(2), 195–210 (2018)

24. LPSolve (version 5.5). lpsolve.sourceforge.net/5.5/
25. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted

third party. In: Proceedings of the 2nd Workshop on Security in Communication
Networks (1999)

26. McKelvey, R., McLennan, A., Turocy, T.: Gambit: Software tools for game theory,
version 16.0.1 (2016). gambit-project.org

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
http://people.cs.aau.dk/marius/stratego/
https://doi.org/10.1007/978-3-540-78800-3_24
http://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
http://yices.csl.sri.com
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1007/978-3-030-01090-4_35
http://github.com/eve-mas/eve-parity
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-030-31175-9_22
https://doi.org/10.1007/978-3-319-99154-2_14
https://doi.org/10.1007/978-3-319-99154-2_14
https://doi.org/10.1007/978-3-030-30942-8_19
https://doi.org/10.1007/978-3-662-49674-9_35
http://lpsolve.sourceforge.net/5.5/
http://gambit-project.org

PRISM-games 3.0 487

27. Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci 36, 48–49
(1950)

28. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Form. Methods Syst. Des. 43(2), 164–190 (2013). https://doi.org/10.
1007/s10703-012-0177-x

29. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49, 236–259
(2002)

30. Tennenholtz, M., Kurland, O.: Rethinking search engines and recommendation
systems: a game theoretic perspective. Commun. ACM 62, 66–75 (2019)

31. Toumi, A., Gutierrez, J., Wooldridge, M.: A tool for the automated verification
of nash equilibria in concurrent games. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 583–594. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 34

32. Wiltsche, C.: Assume-guarantee strategy synthesis for stochastic games. Ph.D.
thesis, University of Oxford (2015)

33. Supporting materials and artifact. prismmodelchecker.org/files/cav20pg3/
34. PRISM-games website. prismmodelchecker.org/games/
35. PRISM-games case studies. prismmodelchecker.org/games/casestudies.php

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/978-3-319-25150-9_34
https://doi.org/10.1007/978-3-319-25150-9_34
http://prismmodelchecker.org/files/cav20pg3/
http://prismmodelchecker.org/games/
http://prismmodelchecker.org/games/casestudies.php
http://creativecommons.org/licenses/by/4.0/

	PRISM-games 3.0: Stochastic Game Verification with Concurrency, Equilibria and Time
	1 Introduction
	2 Modelling and Property Specification Languages
	2.1 Modelling Concurrent and Timed Games
	2.2 Property Specification

	3 Verification and Strategy Synthesis Algorithms
	3.1 Zero-Sum Properties for CSGs
	3.2 Equilibria-Based Properties for CSGs
	3.3 Turn-Based Probabilistic Timed Games

	4 Case Studies and Experimental Results
	5 Conclusions
	References

