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A rapid curing method for the preparation of colloidal photonic crystal films is

presented. Firstly, a colloidal crystal array template was prepared by self-

assembly of nanospheres, and then a dilute polymer solution was poured

into the gap of the template. Then the composite photonic film was

obtained as the polymer solution was cured. Such films have good

properties in mechanical strength, anti pH interference, rapid solvent

response and are easy to preserve. The films show good linear response to

ethanol aqueous solutions of different concentrations, and the response

equilibrium takes less than 20 s. The films also show long-term stability and

reusability, and further functionalization can make the films multi-sensitive.
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Introduction

The preparation of high-efficiency, low-cost chemical sensors is facing increasing

demand in many different fields (Khanyile, 2022). In particular, the determining of

ethanol concentration is crucial for industrial production fields including food, cosmetics

and pharmaceuticals. Strict regulations on alcoholic beverages, and accurate ethanol

measurement is essential. Despite the well-developed detection methods such as high-

performance liquid chromatography, gas chromatography, near-infrared spectroscopy,

and quantitative nuclear magnetic resonance, which have high sensitivity, but are

expensive for small companies and can not realize on-site and real-time detection

(Castellari et al., 2001). Moreover, the accuracy of alcohol measurement largely

depends on the professional skills of operators. Hence, there is an urgent need for

cheap chemical sensors that are easy to operate and distinguish, reliable and long-term

stable.

Stimuli-responsive polymers have interesting characteristics such as shape memory,

rehydratablity and volume phase transition, as the external environment changes slightly,

the polymers have noticeable and reversible changes (Wang et al., 2021). Precisely, the

combination of stimulus response hydrogels and photonic crystals (PC) can convert
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volume changes of polymers under external stimulation into

color changes of PCs (Huang et al., 2014; Chen et al., 2018a), thus

creating colorimetric sensors (Wang et al., 2022a; He et al., 2022).

These colorimetric sensors have attracted more and more

attention due to their simple detection and intuitive readout.

PCs are uniform arrays of light scatterers that diffract

electromagnetic wave with certain frequencies according to

Bragg’s law (Liu et al., 2017), which can be produced by “top-

down” and “bottom-up” strategies. Self-assembly of nanospheres

is a convenient method to construct colloidal photonic crystal

(CPC) that can effectively diffracts visible light. For instance, a

vapor sensor constructed by PC and copolymer can adsorb

alcohol vapor by relying on favorable solubility parameters,

which increases the effective refractive index of the PC

system. Therefore, as the PC sensor is exposed to volatile

alcohol, a significant color change occurs, and the

concentration of the alcohol vapor can be determined by the

red-shift of the diffraction peak (Fu et al., 2022).

Poly (vinyl alcohol) (PVA) is a non-toxic, biodegradable

polymer with good mechanical properties, which has certain

resistance to organic solvents and film-forming ability (Chen

et al., 2019). PVA-based materials have been used in biomedical

fields, such as drug delivery, wound healing, ultrafiltration and

tissue engineering scaffolds (De Lima et al., 2020; Wang et al.,

2021). PVA/PC composite materials have been developed based

on PVA hydrogels prepared by utilizing the gelation behavior of

PVA aqueous solution under freezing conditions. The PVA/PC

materials can be prepared in large quantities and are also suitable

for chemical modification (Chen et al., 2010). On this basis, a

series of PVA/PC sensors were developed for different sensing

motifs and mechanisms including glucose sensing lens (Chen

et al., 2017; Ruan et al., 2017; Tang and Chen, 2020) and films

(Chen et al., 2018b), drug delivering lens (Chu et al., 2022) and

metal ion sensing (Wang et al., 2022b).

In the current study, we facilely prepared an easy-to-use

PVA/PC material based on the characteristics of PVA bulk film.

Specifically, a CPC template was prepared by self-assembly of

monodisperse nanospheres, and the template was then infiltrated

with the preferred PVA solution. The composite films were

formed by curing the system via simple thermal treatment.

Compared with traditional hydrogel-based PC materials, the

current test-paper-like films have good mechanical properties

(Liu et al., 2017). Such films can be used as a colorimetric sensor

to detect the ethanol concentration quickly. Further modification

can make such films meet different sensing requirements.

Materials and methods

Materials

Styrene (St, 99%) and hydrogen peroxide solution (H2O2,

30%) were purchased from Shanghai Adamas Reagent Ltd.

Methacrylic acid (MAA, 98%), ammonium persulfate (APS,

98.5%), sodium hydroxide (NaOH, 96%), PVA (1750 ± 50,

alcoholysis degree 99%), ethanol (99.7%) were purchased from

Sinopharm Chemical Reagent Co., Ltd. Milli-Q water

(18.2 MΩ cm) was used throughout the experiment.

Synthesis of monodisperse nanospheres

Five millilitre of MAA and 200 ml of water were added

into a flask, the liquid was stirred and heated to boiling (Chen

et al., 2015), then 80 ml of St (washed with 5% NaOH aqueous

solution to remove impurities before use) monomer was

added, and the mixture was heated to boiling again. Then,

5 ml water with 0.48 g APS was added to the mixture to initiate

the reaction. The system was kept boiling for 30–60 min and

the polymerization was finished by ice water baths. The

resulting latex was centrifuged and transferred into a

dialysis bag for dialysis against ultrapure water to remove

small molecules.

Self-assembly of colloidal photonic crystal
template

One millilitre of dialyzed monodisperse PS nanospheres

suspension was diluted into 100 ml with water, and then the

glass slides (soaked in H2O2 before use) were vertically placed

in the diluted PS suspension. The suspension was dried in an

oven at 60°C for 48 h, the PS nanospheres were self-assembled

onto the glass slides with the evaporation of water due to the

capillary force, and the resulted CPC showed bright structural

colors.

Preparation of Poly vinyl alcohol/colloidal
photonic crystal films

PVA powder was placed in water and kept stirring at 100°C

for 2 h to form a ~5% homogeneous transparent solution. The

freshly prepared PVA solution was cooled to temperature, and

meanwhile the air bubbles were eliminated. The PVA solution

was then poured onto the slightly tilted CPC-covered glass

slide, and the PVA solution flowed slowly down the glass slide

while penetrating into the gap between the nanospheres of the

CPC. The slide containing PVA infiltrated CPC was put into

an oven to cure into a composite film at 60°C. After 2 h, the

cured PVA/CPC film could be easily peeled off from the glass

slide without damage, and the film was cut into the required

size (2 cm × 1 cm) and stored without further treatment. The

construction of the whole PVA/CPC film is shown in Figure 1.

The detailed preparation results were shown in supporting

information.
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FIGURE 1
Construction illustration of PVA/CPC film sensor.

FIGURE 2
(A) The shift of diffraction wavelength of PVA/CPC film during stretching, inserts are the optical photographs during deformation (B) The
relationship between elongation and diffraction peak shift of PVA/CPC film (C) Schematic diagram that explains the structural color change of PVA/
CPC film during stretching.
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Characterizations

Particle sizes and size distribution of PS nanospheres were

analyzed by Zetasizer (Malvern, 3000HS). Themorphology of the

CPC template was characterized by a scanning electron

microscope (SEM, Hitachi, S-4800). The optical photos of the

samples were taken by a digital camera (Canon, EOS 6D) with a

macro lens (Tamron, 272 E). The diffraction spectrum of the

sample was captured by a fiber-optical spectrometer (Ocean

Optics, USB 4000-XR1-ES) with a light source (Ocean Optics,

DH-2000-BAL). The diffraction spectrum was collected with

wavelength ranges between 400 and 900 nm.

In order to determine the ethanol sensitivity of PVA/CPC

film, the film was immersed in ethanol aqueous solutions of

different concentrations, and whose diffraction spectrum was

measured as the swelling equilibrium of the film was reached.

The equilibrium swelling degree (S) can be calculated as:

S � w1 − w0

w0
× 100% (1)

where w0 is the weight of the dried PVA/CPC film, and w1 is the

weight of the swollen PVA/CPC film. The film was immersed in

20 ml of ethanol aqueous solution with different concentrations

for 30 min to reach swelling equilibrium, and the excess water

was wiped from the surface of the PVA/CPC film with tissue

paper.

To investigate the mechanical properties of PVA/CPC film,

the elongation was tested by fixing the fully swollen PVA/CPC

film on the ruler with a dovetail clamp, and the film was slowly

and uniformly stretched till the film broke. During the stretching

process, the diffraction wavelength of the PVA/CPC film was

recorded and the elongation (E) can be calculated as:

E � l1 − l0
l0

× 100% (2)

where l0 is the initial length of PVA/CPC film while l1 is the

length of elongated PVA/CPC film.

For biocompatibility investigation, cell culture was

conducted (Tang and Chen, 2020). Inverted fluorescence

microscopy (IFM) observation was employed to evaluate the

viability and morphology after adding Calcein acetoxymethyl

(AM) and propidium iodide (PI) for the staining of living cells

and dead cells in 24 and 48 h, respectively.

Results and discussions

The critical design basis of this study is the characteristics of

different PVA materials. According to the alcoholysis degree,

PVA is usually divided into high hydrolyzed (>98%) and low

hydrolyzed (<88%); on the other hand, according to the

polymerization degree, usually from 300 to 6,000, the

molecular weight difference in PVA molecule is rather huge.

PVA with low alcoholysis degree can be dissolved at room

temperature with low viscosity, which cannot form hydrogel

via physical method due to the low hydroxyl content. PVA with

high alcoholysis degree and medium molecular weight cannot be

dissolved in water at room temperature, but only swells. Highly

hydrolyzed PVA must be dissolved in water at high temperature

and the related hydrogels can be formed through the freezing

method, relying on enough hydrogen bonds. Hence, in the

current study, a highly hydrolyzed, medium molecular weight

PVA was chosen to fabricate bulk films combined with CPC. The

as-prepared PVA/CPC films are insoluble but swellable in water

at room temperature, which have higher mechanical strength and

is easier to preserve than PVA hydrogel-based photonic crystal

materials, and also have swelling sensing properties and

funtionalization potentials.

As the natural light is propagated along the CPC lattice,

the refractive index remains constant, and the observed

diffracted wavelength is then related to the lattice

parameter of the cubic unit cell, in the case of CPC, that is

the nearest-neighbor distance of PS nanospheres. As can be

seen in Figure 2, the linear blue-shift caused by the elongation

could be attributed to the deformation that shortened the

lattice distance along the X-direction, thus the observed

wavelength from the Z-direction shifted accordingly. Such

deformation is different from the three-dimensional swell/

shrink of the hydrogels in liquids. Moreover, we found that as

the elongation of the PVA/CPC film reached about 125%, the

film became transparent and structural color of the film can

barely be observed. It is speculated that the reason for this

situation is that the increase of tensile strength caused

nonlinear elongation of the film, which increased the

disorder of the CPC array. The elongation at break of

PVA/CPC film measured in the tensile process is ~150%,

which also proves that such film has strong mechanical

strength (Azadi et al., 2020; Fang et al., 2020).

The ethanol sensing properties of PVA/CPC films were

investigated. Samples prepared from PS nanospheres of 186

(±14, PDI = 0.21), 209 (±12, PDI = 0.23) and 252 (±18,

PDI = 0.25) nm are noted PVA/CPC-186, PVA/CPC-209 and

PVA/CPC-252, respectively, which were first fully swollen in

water and then immersed in ethanol aqueous solution with

different concentrations to reach swelling equilibrium.

Figure 3 shows the diffraction wavelengths’ shifting of PVA/

CPC films with the changing of the ethanol concentration. All the

samples revealed noticeable continuous color change from pure

water to pure ethanol. Specifically, PVA/CPC-186 showed bright

cyan in pure water and turned blue in ethanol (Figure 3A), PVA/

CPC-209 showed bright red in pure water and turned bright

green in ethanol (Figure 3B), and PVA/CPC-252 showed

purplish-red in pure water and turned reddish pink in ethanol

(Figure 3C). Such blue-shift can be attributed to the shrinkage of

the film, and the mechanism involving the change refractive

index and the free energy of mixing.
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The refractive index of ethanol is 1.362, which is slightly higher

than that of water (1.333). Therefore, with the increase of ethanol

concentration, the average refractive index of the solution increased

accordingly. On the other hand, the equilibrium swelling degree of

the PVA polymer film changed due to the change of free energy of

mixing. According to Flory-Rehner theory (Flory andRehner, 1943),

during the swelling/shrink process, the osmotic pressure π of the

polymer is the sum of three contributions:

π � πmix + πel + πion (3)

where πmix is the force of polymer-solvent free energy of mixing,

πel is the force caused by the deformation of polymer molecular

chains to a more elongated state, and πion is the force from the

nonuniform distribution of mobile counter-ions between the

polymer and the solution media. For the non-ionic, free

swelling condition, πion can be ignored, and πmix is taken as

the pressure difference inside and outside the polymer film,

which causes the swelling or shrinking of the film. As ethanol

is a poor solvent for PVA, the equilibrium swelling degree of the

film decreased with the increase of ethanol concentration, and

the solvent transferred from the polymer film to the outside

solution. The total change combined with the change free energy

of mixing and the refractive index, as the decrease of equilibrium

swelling degree is much greater than the increase of average

refractive index, the increase of ethanol resulted in the blue-shift

in diffraction wavelength of PVA/CPC film. Figure 3D plotted

the diffraction shift of the composite films, for PVA/CPC-186,

PVA/CPC-209, and PVA/CPC-252, the total shift was 52.5, 88.3,

and 67.5 nm, respectively, which showed a good linear

relationship with ethanol concentration. Thus the PVA/CPC

films can be used as sensors for measuring ethanol content in

aqueous solution with different color-shifting ranges as required.

In addition, the accuracy, response time and sensitivity of PVA/

CPC film to ethanol, which are essential parameters, were also

tested. Firstly, the diffraction peak shifts at the concentration of

0–100% ethanol aqueous solution were tested repeatedly. It can be

seen in Figure 4A that the PVA/CPC film had a stepped response to

different ethanol concentrations, with good repeatability and tiny

error. Then, the PVA/CPC film was immersed in a 20% ethanol

aqueous solution and the diffraction spectrum of PVA/CPC film

was captured every 10 s, and the average value was obtained by

repeated measurement three times. Figure 4B shows the dynamic

response curve of PVA/CPC film in 20% ethanol aqueous solution.

It can be seen that the diffraction wavelength of PVA/CPC film

FIGURE 3
(A–C) The diffraction spectra of PVA/CPC-186, PVA/CPC-29 and PVA/CPC-252 films in different concentrations of ethanol aqueous solution,
respectively; (D) Linear fitting between diffraction wavelength and ethanol concentration of PVA/CPC-186, PVA/CPC-209 and PVA/CPC-252 films,
the color of each plot indicates the actual structural color changing during sensing process.
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rapidly blue-shifted with the extension of time. The diffraction

wavelength red-shifted ~49 nm within 20 s and remained

unchanged after which. Therefore, the response time of PVA/

CPC film can be considered no more than 20 s, which proves

that the sensor film has a rapid response to ethanol, and such quick

response might be attributed to the non-hydrogel state of the PVA

polymer that easier to swell/deswell than hydrogels. Further, we

investigated the PVA/CPC film for the detection at lower ethanol

concentrations (4, 8, 12, 14, 16, and 20%) to verify the sensitivity, and

the PVA/CPC film was immersed in the different solution to be

tested for 20 s, and the diffraction wavelength was recorded.

As shown in Figure 4C, the diffraction wavelength of PVA/

CPC film maintained a good linear relationship at lower

ethanol concentrations with rapid response property, which

can be used for more accurate detection of low concentration

ethanol. Such quick response to low concentration ethanol

may also be related to the properties of PVA bulk film.

Moreover, the anti-interference property of the PVA/CPC

film was also investigated in different pH media from 3 to 13.

Figure 4D showed that the diffraction wavelength of PVA/

CPC film affected by pH showed no more than 5 nm shift, the

performance proved the stability of PVA/CPC film in various

solutions.

Then, the reusability of sensors is investigated to evaluate the

performance of the PVA/CPC sensor. The sensor film was

alternately immersed in pure water and ethanol aqueous

FIGURE 4
(A) Equilibrium swelling degree of PVA/CPC film in different concentrations of ethanol aqueous solution; (B) The relationship between
diffraction wavelength shift and response time of PVA/CPC film in 20% ethanol aqueous solution; (C) The response of PVA/CPC film to low
concentration ethanol aqueous solution within 20 s; (D) pH dependence of PVA/CPC film.

FIGURE 5
Repeatability test of PVA/CPC film response to different
ethanol aqueous solutions.
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solutions with different concentrations (0, 20, 50, 80 and 100%)

to detect whether the sensor could be reused. Figure 5 shows the

diffraction peak position of PVA/CPC film in different sensing

cycles. It is obvious that during six sensing cycles, the film showed

identical diffraction wavelength to certain ethanol solution,

showing good repeatability and reusability.

Although the PVA/CPC film sensor was constructed with

biocompatible PVA material, the biocompatibility was also

examined by cell proliferation activity and fluorescence

micrographs observation. As presented in Figure 6, both 24-h

and 48-h IFM results showed similar cell density, and almost no

increased dead cells were found with negative PI. This indicates

the PVA/CPC films have good biocompatibility with biomedical

potential in the future.

Conclusion

A simple preparation method of non-hydrogel polymer-

based photonic crystal film was presented. The film was

prepared by combining biocompatible PVA and structural

color reflecting colloidal photonic crystal structure. The

difference in swelling properties of PVA in water and ethanol

leads to the difference in equilibrium swelling degree. Thus the

film can be utilized as an ethanol sensor, and the color change of

which can directly be distinguished by the naked eye. The sensor

showed a good linear relationship with diffraction wavelength

and ethanol concentrations with rapid response within 20 s. It

also proved with good accuracy (~0.9 nm shift in diffraction

wavelength for 1% alcohol concentration), repeatability (for at

least six cycles), and stability (anti-interference in various pH).
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