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Despite extensive research during the past few years, the mechanism of lysis 
by cytolytic T lymphocytes (CTL) 1 is poorly understood (1). Even less well 
elucidated is the nature of  the antigen-specific T cell receptor (2, 3). Although 
both of these activities must be present for a CTL to specifically recognize and 
lyse a target cell, the cellular requirements for their expression remain obscure. 
Recently, preliminary studies from this laboratory (4) have shown that "cybrids" 
obtained by fusion of enucleated cloned CTL with noncytolytic EL4 cells could 
display specific cytolytic activity. Although this activity was low and somewhat 
variable, it seemed to indicate that participation of  the CTL nucleus was not 
necessary. 

An alternative approach to investigate the putative role of membrane compo- 
nents in cytolytic activity would be to transfer CTL-derived material to noncy- 
tolytic recipient cells via synthetic liposomes. In this context, work from Jako- 
bovits et al. (5) demonstrated that T or B lymphoid cells acquired the ability to 
respond to normally nonstimulatory mitogens upon fusion with liposomes con- 
taining B or T lymphocyte membrane components. In other words, B cells fused 
with T cell membrane components could now respond to concanavalin A (Con 
A); likewise, T cells fused with B cell membrane components could be stimulated 
by iipopolysaccharide (LPS). These results indicated that the inability of a 
particular lymphocyte population to respond to a specific mitogen was due to 
the lack of  suitable membrane receptors, but not to an inherent cellular (nuclear) 
defect. 

In the present study, we investigated the requirements for the expression of  
antigen specificity and cytolytic activity by constructing liposomes composed of 
detergent-solubilized CTL clones (separated from nuclear constituents), exoge- 
nous lipids, and Sendal virus envelope proteins, and fusing these liposomes with 
various noncytolytic cell lines. The resultant fusion products were observed to 

Abbreviations used in this paper: Con A, concanavalin A; CTL, cytolytic T lymphocyte; DPPC, 
dipalmitoylphosphatidylcholine; DMEM, Dulbecco's modified Eagle's medium; E/T, effector/target 
ratio; F, Sendal virus fusion protein; FBS, fetal bovine serum; FITC, fluorescein isothiocyanate; HN, 
Sendal virus hemagglutin/neuraminidase protein; IL-2, interleukin 2; LPS, lipopolysaccharide; mAb, 
monoclonal antibody; MoLV, Moloney leukemia virus; NP-40, Nonidet P-40; PBS, phosphate- 
buffered saline. 
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be highly cytolytic and appeared  to exhibit  the same specificity as the original 
C T L  clone. T h e  process of  liposomal transfer  was found to be very efficient and 
could be applied to cellular recipients o ther  than those o f  T cell origin. These  
experiments  demonst ra ted  operationally that both  the antigen-specific T cell 
recep tor  and the C T L  lytic machinery could be solubilized and t ransferred to 
recipients that did not  display these properties.  

Mate r i a l s  a n d  M e t h o d s  
Reagents. Dipalmitoylphosphatidylcholine (DPPC) (98% pure) was obtained from 

Sigma Chemical Co., St. Louis, MO and stored as a stock solution in chloroform (Merck 
Sharp & Dohme AG, Zurich, Switzerland) and 100 mg/ml under nitrogen. Cholesterol 
(99% pure; Calbiochem-Behring Corp., La Jolla, CA) was stored at 50 mg/ml in chloro- 
form under nitrogen. Both reagents were used without further purification. Con A and 
EGTA were from Pharmacia Fine Chemicals, Uppsala, Sweden and Sigma Chemical Co., 
respectively. Radiolabeled chromium (51Cr) was obtained from IRE, Fleurus, Belgium as 
sodium chromate with a specific activity of 1 mCi/ml. 

Mice. Adult DBA/2 (H-2d), C57BL/6 (H-2b), and BALB/c (H-2 d) mice were obtained 
from the mouse colony at the Swiss Institute for Experimental Cancer Research, Epalinges, 
Switzerland. The original breeding pairs were obtained from The Jackson Laboratory, 
Bar Harbor, ME. 

Interleukin 2 (IL-2) Source. Supernatants collected from a subline of EL4 thymoma cells 
(kindly provided by J. Farrar, Bethesda, MD) that were stimulated (108 cells/ml) for 40 h 
in the presence of 10 ng/ml phorbol-12-myristate-13-acetate (6) were used as a standard 
source of IL-2. 

Virus Stocks. Sendai virus (original stocks were generously donated by Dr. L. Roux, 
Geneva, Switzerland) was grown in LLC-MK2 cells or in 10-d-old embryonated chicken 
eggs as described by Scheid and Choppin (7) and Roux and Holland (8). 

Cell Lines. The following tumor cell lines were used: P815 (H-2 a, DBA/2 mastocy- 
toma), EL4 (H-2 b, thymoma), BW5147 (H-2 k, thymoma of AKR origin), M12.4.1 (H-2 d, 
B cell lymphoma of BALB/c origin), LSTRA (H-2 d, a Moloney leukemia virus (MoLV)- 
transformed line of BALB/c origin), and MBL-2 (H-2 b, a MoLV-transformed line of 
C57BL/6 origin). All cell lines were maintained in vitro except for LSTRA and MBL-2, 
which were passaged (weekly) in vivo in their respective strains of origin. 

CTL Clones. CTL clones used in these experiments were derived by micromanipulation 
as described in detail elsewhere (9, 10). Briefly, populations enriched in antigen-specific 
cells were obtained by immunization in vivo and/or in vitro with allogeneic or MoLV- 
transformed tumor cells. These populations were cloned in the presence of irradiated, 
antigenically relevant cells together with a source of IL-2. For routine maintenance, the 
clones were passaged once weekly by plating 5 × 105-1 × 10 6 cloned cells together with 
irradiated feeder cells and/or antigen in 40 ml of Dulbecco's modified Eagle's medium 
(DMEM) supplemented with 5% heat-inactivated fetal bovine serum (FBS) (Seromed, 
Munich, Federal Republic of Germany [FRG]), 5 × 10 -~ M 2-mercaptoethanol, 10 mM 
Hepes, penicillin/streptomycin, additional amino acids (11), and a source of IL-2 in 150- 
mm petri dishes. Clones A9 and B3 were derived from 5-d primary BALB/c anti-DBA/2 
mixed lymphocyte cultures. Both of these clones are anti-Mlsa-specific, noncytolytic, and 
have been described elsewhere (12). CTL clones 7, 10, 11, and 12 were derived from 
peritoneal exudate lymphocytes isolated from C57BL/6 mice immunized against P815 
cells. Clone 11 has a known specificity of anti-H-2K a (data not shown). Clone 14 is a 
C57BL/6-derived CTL clone directed against MoLV-associated antigenic determinants. 

Cytolytic Assay. Effector cells and 5'Cr-labeled target cells (generally 8,000/well) were 
mixed at various effector/target (E/T) ratios in round-bottom, 96-well microtiter plates 
(Greiner, Nurtingen, FRG), centrifuged (1,000 rpm, 2 min), and incubated at 37°C for 2 
h as previously described (11). At this time, the plates were centrifuged (2,000 rpm, 5 
rain), the supernatant of each well was collected, and the radioactivity measured in a 
gamma counter (LKB multigamma counter; LKB, Bromma, Sweden). Target cells incu- 
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bated in medium alone or in 1% Nonidet P-40 (NP-40) detergent were used to obtain 
spontaneous and maximum 5~Cr-release values, respectively. Percent specific lysis was 
calculated as described (11). All E/T data points were performed in replicates of three to 
six with the standard deviation of any series of replicates not >12%. 

For assays in which lectin was present, Con A was added to the effector/target cell 
mixtures at 5 #g/ml and remained in the assay for its duration. During the cytolytic assays 
in which EGTA was used, effector and target cells were mixed, centrifuged as described 
above, and incubated for 30 rain at 23°C. EGTA (20 raM/well final concentration) was 
then added and the cells incubated an additional 2 h at 37°C before determination of the 
5~Cr-release. In the antibody-blocking experiments, target cells, monoclonal antibody 
(mAb) (1:500 final dilution), and effector cells were added in that order, and the assay 
performed as described above, mAb was present throughout the course of the assay. The 
mAb used (S13-I 1, anti-H-2K a) was the kind gift of Dr. S. Tonkonogy, North Carolina 
State University, Raleigh, NC. 

Preparation of Liposomes. Liposomes were prepared by a modification of previously 
published procedures (13-15). Briefly, donor cells were extensively washed in phosphate- 
buffered saline (PBS) to remove medium and serum contaminants, followed by a 30 min 
incubation at 4°C in 0.5% NP-40-Tris-HCl-saline buffer, pH 7.4. After centrifugation at 
3,000 rpm for 10 min (to remove nuclei and mitochondria), the supernate was collected 
and added to Sendai virus hemagglutinin/neuraminidase (HN) and fusion (F) proteins 
that had been prepared as described (7). The cellular/viral protein mixture (ratio of 5-  
10:1) was then added to lipids (DPPC and cholesterol, 1:1 molar ratios; protein/lipid 
ratio, 1:1) previously dried from chloroform by nitrogen in a small, round-bottom flask 
and incubated for 5 min at 37°C. The flask was vortexed briefly and the solution dialyzed 
against a 1,000-fold excess of PBS at 4°C for 48 h. In a typical experiment, 50 × 106 
donor cells were solubilized in 1.0 ml of detergent-containing buffer, resulting in a 
supernate containing ~ 1 mg of cellular protein. This material was then added to 100 #g 
of purified HN and F proteins (in 1.0 ml), and the cellular/viral protein mixture added 
to 1.1 mg of dried lipids (DPPC and cholesterol, 1:1 molar ratio). The 2.0 ml solution 
was dialyzed against 2 liters of PBS. At the end of 48 h, the liposomes were collected by 
high-speed centrifugation (50,000 g, 1 h) and washed with PBS in this manner. The 
resuspended liposomal pellet would then be defined as containing 50 × 108 cell equivalents. 
This method resulted in the formation of multilamellar liposomes ranging in size from 
0.5 to 10 #m, with the majority in the 1-4 #m range. Approximately 50% of the original 
cellular protein is incorporated into the liposomes. 

Cellular Reconstructions. Liposomes and recipient cells were incubated together in 1.0 
ml of 0.14 M NaC1, I0 mM Tris-HCl, 3 mM KCI, 0.8 mM MgSO4, pH 7.4, buffer for 60 
rain at 4°C to allow liposome/cell binding. The cells were washed by centrifugation (1,500 
rpm, 5 min, twice) in ice-cold PBS and resuspended in 1.0 mi of DMEM without FBS. 
The cells were then incubated for 30 min at 37 °C to allow liposome/cell fusion, washed 
twice by centrifugation in DMEM containing FBS, and resuspended in DMEM-FBS for 
the assays. Unless otherwise stated, all fusions were performed at a ratio of two cell 
equivalents of liposomes to recipient cells; i.e., in a typical experiment 1 × 106 recipient 
cells were fused with liposomes derived from the equivalent of 2 × 106 donor cells. 
Designation of the experimental protocol is "F(donor)/recipient", which indicates that 
liposomes derived from a specific donor were fused to the indicated recipient. 

Resu l t s  

Characterization of the Transfer System. T h e  exper imenta l  p rocedu re  we used 
to examine  the r equ i remen t s  for  the expression of  cytolytic activity and immu-  
nologic specificity by C T L  consisted o f  the following steps. Cytolytic T cell clones 
were  solubilized in the nonionic de te rgen t  NP-40 and the matr ix  and plasma 
m e m b r a n e  componen t s  separa ted  f rom nuclear  and  mi tochondr ia l  constituents.  
Matrix proteins  (detergent- insoluble fract ion pr imari ly  consisting of  actin) were  
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retained to increase liposome stability (14). To this cellular protein mixture were 
added Sendai virus envelope proteins that had been purified from detergent- 
solubilized viral preparations. These envelope proteins were of two types: a 
hemagglutinin-neuraminidase protein (HN) and a fusion protein (F). The HN is 
required for virus binding to cells, while F mediates the fusion of viral/cell 
membranes. The viral/cellular protein mixture was added to exogenous lipids 
to construct liposomes. Exogenous lipids were included to reduce the require- 
ments for large amounts of cloned CTL cells and Sendal virus, whose natural 
iipids would otherwise be the only source of lipids for liposome construction. 
Liposomes were formed by dialysis of  the lipid-protein mixture against PBS and 
harvested by high speed centrifugation. This procedure yielded only large 
multilameilar liposomes, the average size being - 1 - 4  #m. To fuse liposomes 
with recipient cells, we incubated the two together at 4°C for 60 min to allow 
Sendal HN protein-mediated binding of liposomes to the cells. The cells were 
then pelleted by centrifugation, resuspended in medium without FBS, and 
incubated at 37°C for 30 min to allow F protein-mediated fusion of the bound 
liposomes with the cells. At the end of this time, the fused cells were again 
pelleted and washed by centrifugation. The fused cells were then used immedi- 
ately in assays to test for cytolytic activity and immunologic specificity. 

When liposomes were derived in this manner from C57BL/6 anti-P815 CTL 
clones and fused with noncytolytic anti-Mls ~ T cell clones., it was found that 
specific cytolytic activity could be transferred to cells that lacked this property 
(Table I). The presence of this activity in the fusion products was evidenced by 
the ability of the cells to lyse P815 target cells but not the irrelevant EL4 target 
cells. The reconstruction of cytolytic cells seemed to be possible using liposomes 
prepared from a single CTL clone or a mixture of several C57BL/6 anti-P815 

TABLE I 

Transfer of Cytolytic Activity by Liposomes to Noncytolytic T Cell Clones 

Experiment Effector population 

Percent specific lysis* 

P815 EL4 
(H-2 d) (H-2 b) 

1' Liposomes alone 0 9 0 
Clone A9 alone 8 0 
F(7)/A9 65 7 

2 i Liposomes alone a 6 0 
Clone A9 alone 5 0 
Clone B3 alone 6 0 
F(7,10,11,12)/A9 72 0 
F(7,10,11,12)/B3 67 0 

* Data are expressed as the percent specific lysis obtained after 2-h 
incubation at an E /T  cell ratio of 10:1. 

* Liposomes were derived from CTL clone 7 (C57BL/6 anti-P815) and 
fused with noncytolytic clone A9 (anti-Mlsa). 

0 Equivalent number  of liposomes were used as would be present in the 
fusion products. 

! Liposomes were derived from a mixture of CTL clones 7,10,I 1, and 12 
(all C57BL/6 anti-P815) and fused with either clone A9 or clone B3, 
both noncytolytic (anti-Mlsa). 
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TABLE II 

Acquisition of Specific Cytolytic Activity by Noncytolytic Clones Requires 
Fusion of Liposomes Derived from Cytolytic Clones with Intact Cells 

Percent specific lysis 

Experiment Effector population P815 EL4 
(H-2 d) (H-2 b) 

1" Clone A9 alone 5 ND* 
Clone A9 + Con A 5 ND 
Liposomes alone 2 ND 
Liposomes + Con A 2 ND 
F( 10)/A9 8 8 1 

2 o 

31 

Clone A9 alone 3 0 
EL4 alone 0 0 
Liposomes (7) alone 1 0 
Liposomes (EL4) alone 1 1 
Clone 7 97 6 
F(EL4)]7 91 0 
F(EL4)/A9 1 0 
F(7)/A9 85 0 

Clone A9 alone 1 ND 
Clone 10 56 ND 
F(10)/A9 65 ND 
Clone I0 + EGTA 0 ND 
F(10)/A9 + EGTA 1 ND 

Experiments 1, 2, and 3 represent three independent experiments. 
* Liposomes were derived from CTL clone 10 (C57BL/6 anti-PSI5) and 

fused with noncytolytic clone A9 (anti-Mls'). Cytotoxicity assays were 
performed at an E/T cell ratio of 10:1 for 2 h at 37°C. Whenever 
indicated, Con A (5 #g/ml) was present throughout the assay. 

* Not done. 
! Liposomes were derived from either CTL clone 7 (C57BL/6 anti-P815) 

or EL4 tumor cell line and fused with either clone 7 or clone A9. S~Cr- 
release assays were performed at an E]T cell ratio of 10:1. 

! Liposomes were derived from clone I 0 (C57BL/6 anti-P815) and fused 
with clone A9. Cytotoxicity assays were performed at an E/T cell ratio 
of 1 : 1. Whenever indicated, the effector and target cells were incubated 
at 23 °C for 30 rain, EGTA was added (20 raM/well final concentration), 
and the cells incubated for an additional 2 h at 37°C. 

C T L  c lones .  
In  a d d i t i o n a l  e x p e r i m e n t s ,  we d e t e r m i n e d  tha t  n e i t h e r  t he  c o n s t r u c t e d  l ipo-  

somes  n o r  t he  r e c i p i e n t  cells  w e r e  ab l e  to  i n d u c e  cytolysis  when  t h e  lec t in  C o n  
A was i n c l u d e d  in t he  cy to ly t ic  assay ( T a b l e  I I ,  e x p e r i m e n t  1). Cyto lys is  was 
o b s e r v e d  on ly  w h e n  the  l i p o s o m e s  h a d  b e e n  fused  wi th  t he  r e c i p i e n t  cells. T h i s  
o b s e r v a t i o n  e x c l u d e d  the  poss ib i l i ty  t ha t  iysis o f  t he  t a r g e t  cells was t he  r e su l t  o f  
u n f u s e d  l i p o s o m e s  p r e s e n t  in t he  assay o r  a l a t en t  cy to ly t ic  capac i ty  o f  t he  
r e c i p i e n t  cells. T h i s  e x p e r i m e n t  also s h o w e d  tha t  t h e  i i posomes  by  t h e m s e l v e s  
w e r e  no t  tox ic  to  t he  t a r g e t  cells.  

I t  is poss ib le ,  h o w e v e r ,  t ha t  t he  cy to ly t i c  ac t iv i ty  c o u l d  be  d u e  to  a f unc t i ona l  
a l t e r a t i o n  in t h e  r e c i p i e n t  cells  as a r e su l t  o f  t he  fus ion  such  tha t  t he  a n t i g e n i c  
spec i f ic i ty  w o u l d  be  c o n t r i b u t e d  by  the  d o n o r  l i posomes  a n d  the  cytolysis  by  the  



266 TRANSFER OF SPECIFIC CYTOLYTIC ACTIVITY BY LIPOSOMES 

recipient cells. To examine this possibility, liposomes were constructed from 
either cytolytic or noncytolytic cell lines and fused with either cytolytic or 
noncytolytic recipients (Table II, experiment 2). When liposomes from a non- 
cytolytic T cell line (EL4) were fused with a cytolytic CTL clone, the fused clone 
was unaltered in its cytolytic capacity. When the liposomes from noncytolytic T 
cells were fused with noncytolytic recipients, the fusion products remained 
noncytolytic. Only when the liposomes were derived from cytolytic donors were 
cytolytic fusion products obtained. Thus, it appears that to obtain cytolytic fusion 
products, the donor cells must be cytolytic and the liposomes must be introduced 
into cells. 

We also examined the effect of  EGTA on the cytolytic activity displayed by 
the fusion products (Table II, experiment 3). It has been previously demonstrated 
(16) that Mg ~+ is required for CTL binding to target ceils, while Ca 2+ is essential 
for the cytolytic phase of the lyric process. The cytolytic assay was performed as 
usual except that a 30 min preincubation period at 23°C was included. Under 
these conditions, the fusion products bound to the target cells (as observed by 
light microscopy) but lysis was negligible. The mixture of fusion products and 
target cells was then incubated for 2 h at 37°C in the presence or absence of 
EGTA, which chelates Ca 2+. The fusion products behaved exactly as the CTL 
clone from which the liposomes had been derived. That is, cytolysis was com- 
pletely inhibited when Ca 2+ was not available in the assay. 

In the experiments described above, the cytolytic capacity of the fusion 
products was examined at only one E/T ratio. Additional experiments were 
performed in which the lytic capacity of the fusion products was compared with 
that of  the donor CTL clones. The results of a representative experiment are 
shown in Fig. I. It can be seen that over a wide range of  E/T ratios (1:3-10:1), 
the lytic activity of the fusion products was similar to that of the donor CTL 
clone. It thus appears that upon transfer of components from a CTL into a 
suitable recipient cell (such as A9 or B3), the cytolytic capacity of such a fusion 
product is highly efficient. 

In an attempt to quantitate the liposomai transfer of  cellular constituents to 
the various recipient cells, we performed the following experiment. Viable donor 
CTL were labeled with fluorescein isothiocyanate (FITC) (17) and liposomes 
constructed as described above. These liposomes were then fused to various 
recipient cells and examined for fluorescence by fluorescence-activated cell sorter 
(FACS) analysis. Positive controls consisted of donor cells freshly labeled with 
FITC. Negative controls were recipient cells incubated with identically con- 
structed liposomes lacking the Sendai virus HN and F proteins. Examination of 
three different recipient cells demonstrated that indeed transfer of  FITC had 
occurred during the fusion process. It was observed that 100% of the recipient 
cells (for each of  the three different cell types) had undergone fusion as assessed 
by this criterion. Calculation of the amount of fluorescent material transferred 
revealed that each of the recipient cell types examined had acquired ~5% of the 
labeled cellular components present in the positive controls (data not shown). 

Antige~ic Specificity of Fusion Products. To further verify the specificity of the 
/ytic activity of the fusion products, we derived liposomes from a C57BL/6 (H- 
2 b) anti-P815 CTL clone directed against H-2K a alloantigens (that is, its lytic 
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FIGURE 1. Cytolytic efficiency of fusion product. The CTL donor clone 10 (C57BL/6 anti- 
P815) (O) and the fusion product F(10)/A9 (liposomes constructed from clone 10 and fused 
with clone A9) (e) were assayed for cytolytic activity on P815 target cells in a 2-h, 51Cr-release 
assay. Incubation with liposomes or clone A9 alone resulted in <3% lysis of P815 target cells. 

activity was inhibited by mAb against H-2K a but not mAb against H-2D a or H- 
2La), fused them with (anti-MIs a) noncytolytic clone A9, and then tested whether 
the lytic activity of the fusion products could be blocked by anti-H-2K a mAb 
(Fig. 2). It was found that the lytic activity of the fusion products could indeed 
be inhibited by this mAb, indicating that the liposomai transfer had conferred 
to A9 cells the immunologic specificity of the donor  CTL. 

The  antigenic specificity of the fusion products also was assessed by using a 
panel of target cells bearing different antigens. For these experiments we used 
as liposome donors two C57BL/6 CTL clones with distinct antigenic specificities, 
namely anti-P815 clone 7 and anti-MoLV clone 14. As shown in Fig. 3, clone 7 
displayed lytic activity against P815 (H-2 a) target cells and another H-2 a (MoLV- 
induced) cell line, LSTRA. However, it was nonreactive with H-2 b (MoLV- 
induced) MBL-2 target cells. In contrast, clone 14 lysed MBL-2 target cells but 
had no activity against P815 or LSTRA tumor  cells. When liposomes derived 
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FIGURE 2. Ability of monoclonal antibody to inhibit the acquired lytic activity of fusion 
products. Cytolytic assays were performed either in the presence (solid symbols) or absence 

d 51 (open symbols) of mAb S 13-11 (anti-H-2K). Cr-labeled PS15 cells were used as target cells 
and either clone 11 (C57BL/6 anti-H-2K d) or the fusion product F(11)]A9 (liposomes con- 
structed from clone 11 and fused with clone A9) were used as effector cells. 

from clone 7 were fused with A9 cells, the fusion products exhibited the same 
specificity pattern as CTL clone 7 (Fig. 3). Reciprocally, when clone 14 was used 
as the liposome donor, the fusion products obtained with A9 cells exhibited the 
same lytic reactivity as CTL clone 14. These results thus indicate that immuno- 
logical specificity was related to the source of liposomes and not to the recipient 
cells. 

Dose-Response Analysis of Liposomal Transfer. To examine the efficiency of 
liposomal transfer, varying numbers of liposomes from clone 7 or clone 14 were 
fused with the noncytolytic clone A9, and the lytic activity of the fusion products 
was tested on the corresponding target cells. The results of two such experiments 
are shown in Fig. 4. It can be seen that the solubilization of the CTL and 
subsequent liposomal transfer to the recipient cells was a highly efficient process, 
since significant cytolytic activity was imparted to the A9 recipient cells after 
fusion with one cell equivalent of liposomes from either CTL clone. In these 
experiments, maximal efficiency of transfer occurred with five cell equivalents 
of liposomes. In other experiments, transfer of  two to five cell equivalents 
resulted in comparable lytic activity. Surprisingly, a further increase in the 
amount of liposomes used for fusion resulted in a concomitant decrease in 
cytolytic activity. Further experiments in which unfused liposomes were titrated 
into a cytolytic assay demonstrated that such free liposomes did not directly 
inhibit cytolysis (data not shown). Whether this decrease of activity was due to 
the introduction of excess lipids and/or  cellular proteins has not been ascertained, 
but recipient cell viability was equivalent at all cell equivalent ratios tested (>90%; 
data not shown). 

Liposomal Transfer of Cytolytic Activity Is Not Restricted to Noncytolytic T Cell 
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FIGURE 3. Specificity of fusion products. Liposomes were constructed from either clone 7 
(C57BL/6 anti-P815) or clone 14 (C57BL/6 anti-MoLV) and fused with clone A9 (anti-Mls~). 
The original CTL clones and the fusion products were assayed for cytolytic activity in a 2-h, 
51Cr-release assay. Target cells were either P815 (H-2d), LSTRA (H-2n-MoLV), or MBL-2 (H- 
2b-MoLV). Effector populations consisted of clone 7 (O), clone 14 (A), F(7)/A9 (O), and F(14)/ 
A9 (&). Lysis of any one of the target cells by either of the liposome populations or clone A9 
alone was <2% at an E/T cell ratio of 10:I. Experiments 1 and 2 represent two independent 
experiments. 

Clones. In the previous experiments ,  we had only investigated the possibility o f  
t ransferr ing the cytolytic activity a n d / o r  the antigen specificity f rom C T L  clones 
to noncytolytic T cell clones. T h e  feasibility of  using t ransformed T cell lines as 
well as non -T  cell lines as recipients for  liposomal fusion was also examined.  As 
shown in Table  III, it was possible to obtain cytolytic fusion products  with a 
variety of  recipient cells, a l though a variable degree  o f  cytolytic activity was 
observed. Fusion products  obtained with two T cell lines, the BW5147 thymoma 
and a subline of  EL4 thymoma cells, expressed low but  significant cytolytic 
activity. However ,  a separate subline of  EL4 cells yielded fusion products  that 
expressed high cytolytic activity. Surprisingly, fusion products  obtained with the 
B cell line M 12.4.1 were also able to express lytic activity, thus indicating that 
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FIOURE 4. Efficiency of cytolytic transfer between CTL and noncytolytic cells by liposomes. 
Liposornes were constructed and fused with recipient cells at the indicated cell equivalents as 
described in Materials and Methods. 5tCr-release assays were then performed at an E /T  cell 
ratio of 1:I using either P815 or MBL-2 target cells. (O) clone 7 (C57BL/6-anti-P815); (0) 
F(7)/A9; (A) clone 14 (C57BL/6 anti-MoLV); (&) F(14)/A9. 

cells other than those of T cell origin could serve as suitable recipient cells. In 
these experiments, the clones A9 and B3, normally used as recipients in the 
experiments described above, again demonstrated high cytolytic activity after 
fusion with the same liposomes. Since liposome-mediated transfer of FITC- 
labeled material to each of three different recipients was equivalent (see above), 
these observations suggest that the differences in cytolytic expression among the 
fusion products were not due to different extents of liposomal fusion and transfer 
to the recipient cells, but rather were related to some inherent factor(s) in the 
recipient cells. Moreover, it is also apparent that the cytolytic activity of the 
fusion products was specific irrespective of the origin of the recipient cell, since 
no lysis of irrelevant EL4 target cells was observed with any of the fusion 
products tested (Table III). 

Discussion 
In this study, we investigated some of the requirements for the expression of 

specific CTL activity by transferring this activity from cloned CTL to various 
noncytolytic recipient cells. In particular, material derived from detergent- 
solubilized CTL clones was inserted into synthetic liposomes and, with the aid of 
Sendai virus envelope proteins, fused with various recipient cells. These experi- 
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TABLE III  
Liposomal Transfer of Specific Cytolytic Activity from Cytolytic Clones Is 

Not Restricted to Noncflolytic T Cell Clones 

Experiment Effector population 
Percent specific lysis* 

P815 EL4 
(H-2 a) (H-2 b) 

Clone A9 alone 1 ND 
M12.4.1 alone 0 ND 
BW5147 alone 2 ND 
EL4 alone 0 ND 
F(10)/A9' 94 ND 
F(10)/M 12.4.1 62 ND 
F(10)/BW5147 18 ND 
F(10)/EL4. I 17 ND 

2~ Clone A9 alone 3 0 
Clone B3 alone 1 0 
M12.4.1 alone 1 0 
EL4.2 alone 0 0 
F(7)/A91 85 0 
F(7)/B3 70 2 
F(7)/M 12.4.1 77 0 
F(7)/EL4.2 80 0 

* Data are presented as percent specific lysis at an E/T cell ratio of 10:1 
during a 2-h assay. ND, not done. 

* Liposomes were derived from CTL clone 10 (C57BL/6 anti-P815) and 
fused with either noncytolytic clone A9, B cell line M12.4.1, T cell line 
BW5147, or T cell line EL4.1 (a ouabain-thioguanine-resistant subline 
of EL4). 
Liposomes were derived from CTL clone 7 (C57BL/6 anti-P815) and 
fused with either clone A9, clone B3, B cell line M12.4.1, or T cell line 
EL4.2 (a H-2K ~- D b+ subline of EL4). 

! Liposomes derived from either clone 7 or clone 10 resulted in <3% 
specific lysis when tested alone against either P815 or EL4 target cells. 

m e n t s  d e m o n s t r a t e d  t ha t  b o t h  specif ici ty a n d  lytic act ivi ty cou ld  be  i m p a r t e d  to 
r ec ip ien t  cells. E i p o s o m e s  c o n s t r u c t e d  wi thou t  Sendal  v i rus  p ro te ins  did  not  b ind  
eff ic ient ly  to  r ec ip ien t  cells and  were  unab l e  to t r an s f e r  cytolyt ic  acivity. L ipo-  
somes  con t a in ing  b o t h  ce l lu lar  a n d  viral  p ro te ins  h a d  no  d i rec t  lyric act ivi ty even  
in the  p r e s e n c e  o f  C o n  A. F u r t h e r m o r e ,  on ly  w h e n  l iposomes  were  de r i ved  f r o m  
cytolyt ic  d o n o r s  a n d  i n t e g r a t e d  in to  in tac t  cells was specific cytolyt ic  act ivi ty 
expressed .  

Noncy to ly t i c  T cell c lones  were  h ighly  sui table  as r ec ip i en t  cells fo r  the  
i n t r o d u c t i o n  o f  specific C T L  c o m p o n e n t s .  Also sui table  we re  va r ious  noncy to ly t i c  
t u m o r  T cell lines such as E L 4  a n d  B W 5 1 4 7 .  A l t h o u g h  the  express ion  o f  C T L  
act ivi ty  va r i ed  a m o n g  the  fus ion p r o d u c t s  o b t a i n e d  with these  d i f f e r e n t  r ec ip ien t  
cells, each  one  o f  the  t h r e e  lines tes ted  d i sp layed  s ignif icant  cytolyt ic  capabi l i ty .  
I t  does  not  s eem tha t  this var iabi l i ty  in cytolyt ic  express ion  was d u e  to the  abil i ty 
o f  the  d i f f e r en t  cell types  to be  fused  with the  l iposomes.  Possibly, this d i f f e rence  
is r e l a t ed  to u n d e t e r m i n e d  n u c l e a r / c y t o p l a s m i c  factors .  I f  s o m e  sor t  o f  r ec ip ien t  
cell c o n t r i b u t i o n  is r e q u i r e d  fo r  the  express ion  o f  cytolyt ic  act ivi ty a f t e r  l iposomal  
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fusion (since iiposomes containing CTL components are themselves inactive), 
then it is reasonable to expect that various recipient cell types could exhibit 
different levels of cytolytic capacity. This contribution could be either nuclear, 
such as a signal from the fusion product to the target cell as proposed by some 
investigators for the mechanism of CTL-mediated lysis (18-20), or could merely 
be a cytoplasmic interaction that, upon receptor occupancy, exposes an enzyme- 
like activity that causes target cell lysis (21, 22). However, it should be noted that 
regardless of the cell type used as a recipient, there was no difference in the 
antigenic specificity exhibited by the fusion products. Surprisingly, even a lymph- 
oid cell line of non-T cell origin, the B cell line M12.4.1, could serve as a suitable 
functional recipient for liposomes containing CTL components. This finding 
suggests that metabolic activities necessary for the expression of CTL function 
are present in B cells but that these cells lack the membrane and/or  other 
cytoplasmic components that are essential for binding to, and/or lysis of  target 
cells. Examination of recipient cells other than those of  lymphoid origin for their 
ability to express CTL function upon fusion with liposomes is currently under- 
way. If indeed nonlymphoid cells are suitable recipients, the implication would 
be that all cells are potentially able to express such a specialized function, given 
the proper CTL-derived components. 

Experiments involving the ability of mAb to inhibit specifically the lytic activity 
of fusion products, as well as the analysis of the patterns of iytic reactivity 
displayed by recipient cells of  liposomes containing membrane proteins from 
CTL of two different specificities confirmed the high degree of  specificity 
conferred by this transfer system. Since no attempt was made to separate the 
function of target cell recognition from that of lysis, it remains to be determined 
whether these two activities can be dissociated or not. 

In contrast to the high cytolytic activity of liposome-derived fusion products 
described here, previous work from our laboratory (4) indicated that cytolytic 
"cybrids" obtained by fusing enucleated CTL clones (which were noncytolytic) 
with EL4 tumor cells expressed low and variable lytic activity. The discrepancy 
may in part be due to the fact that the lytic activity of the CTL clones used in 
the latter experiments was susceptible to inhibition by mAb against Lyt-2 (Lyt- 
2-dependent CTL), while Lyt-2-independent CTL clones were used as liposome 
donors in the experiments presented here. CTL that are inhibited in their 
activity by anti-Lyt-2 antibodies appear to possess relatively low affinity and/or 
few antigen receptors (23, 24). Further work is needed, however, to ascertain 
whether the effectiveness of liposome-mediated transfer of CTL activity depends 
on the availability of CTL with high affinity or more numerous receptors. It also 
is noteworthy that enucleated CTL clones were not cytolytic even in the presence 
of Con A, but had to be fused with noncytolytic recipient cells to exhibit 
functional activity (4). These findings, which are in agreement with the present 
results, support the contention that the noncytolytic recipient cell provides some 
(nuclear and/or  cytoplasmic) contribution that is essential for the expression of 
specific cytolytic activity by fusion products. 

Jakobovits et al. (5) have demonstrated that the unresponsiveness of lympho- 
cyte populations to particular mitogens was not due to an inherent lack of the 
necessary intracellular machinery, but rather was due to the absence of appro- 
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priate membrane components. Upon transfer of B cell membrane components 
to T cells, or vice versa, the fused cells could now respond to a normally 
nonstimulatory mitogen. Our ability to construct cytolytic cells using a B cell line 
as a fusion recipient is in accord with these observations. It should be noted that 
the transfer system we used here is similar to that used by Jakobovits et al. (5), 
in that we also used Sendal virus envelope proteins to mediate fusion. This 
system appears to be preferable to that using polyethyleneglycol because it is less 
toxic (>90% cell viability after fusion) and highly efficient (90-100% of cells can 
be fused). However, our system differs from that ofJakobovits et al. (5) in that 
our liposomes were constructed from synthetic lipids, thus enabling the use of 
smaller quantities of  cellular and viral components. 

Finally, although the participation of cytoplasmic CTL constituents (including 
granules) cannot be ruled out, the present study provides suggestive evidence 
that the cellular component(s) responsible for specific CTL activity resides solely 
in (or is associated with) the plasma membrane and can be fully functional after 
transfer into recipient cells that lack this property. It is not known, however, 
whether other activities that are linked with membrane-associated receptors, 
such as antigen-dependent lymphokine production and cellular proliferation, can 
be expressed by fusion products. If antigen-specific function in fusion products 
can be shown to be maintained for sufficiently long periods of  time (and 
preliminary experiments indicate that near optimal cytolytic activity persists for 
at least 6 h), then the iiposomal transfer system described here should provide a 
powerful tool to examine these questions. Moreover, it may allow a direct testing 
of the functional activity of purified membrane constituents such as the putative 
T cell receptors recently described by several groups (25-27). 

S u m m a r y  
Murine cytolytic T iymphocytes (CTL) clones were solubilized in Nonidet P- 

40 detergent, and the matrix and membrane proteins separated from the nuclear 
constituents. These proteins, in combination with exogenous lipids and Sendal 
virus envelope proteins, were used to construct liposomes that were then fused 
with noncytolytic cloned T cell recipients. The resultant fusion products were 
found to be highly cytolytic and appeared to express the same specificity as the 
original donor clone. Further analysis showed that the liposomal transfer process 
was extremely efficient. Moreover, in addition to noncytolytic T cell clones, 
three transformed T cell lines and one B cell line were found to express specific 
cytolytic activity after fusion with appropriate liposomes. Inhibition experiments 
using monoclonal antibodies against target cell antigens, as well as analysis of  the 
lytic reactivity pattern of the fusion products, confirmed the high degree of 
specificity conferred to the recipient cells. This study thus indicates that the two 
characteristics typically associated with CTL, namely antigen-specific recognition 
and cytolytic activity, can be solubilized from CTL and transferred to recipient 
cells that do not express these characteristics. 
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Received for publication 30June 1983 and in revised form 3 October 1983. 



274 TRANSFER OF SPECIFIC CYTOLYTIC ACTIVITY BY LIPOSOMES 

References 

1. Berke, G. 1980. Interaction of cytolytic T lymphocytes and target ceils. Prog. Allergy. 
27:69. 

2. Jensenius, J. C., and A. F. Williams. 1982. The T lymphocyte antigen-receptor 
paradigm lost. Nature (Lond.). 300:583. 

3. Marchalonis, J. J., and J. C. Hunt. 1982. The antigen receptor of thymus-derived 
lymphocytes: progress in the characterization of an elusive molecule. Proc. Soc. Exp. 
Biol. Med. 171:127. 

4. Reme, T, H. R. MacDonald, A. L. Glasebrook, andJ.  C. Cerottini. 1983. Cytolytic 
activity of cytoplasts and cybrids derived from cloned CTL lines. In Intercellular 
Communication in Leucocyte Function. J. W. Parker and R. L. O'Brien, editors. J. 
Wiley and Sons, Ltd., Chichester, UK. 141-148. 

5. Jakobovits, A., N. Sharon, and I. Zan-Bar. 1982. Acquisition of mitogenic respon- 
siveness by nonresponding lymphocytes upon insertion of appropriate membrane 
components. J. Exp. Med. 156:1274. 

6. Farrar, J. J., F. Fuller-Farrar, P. L. Simon, M. L. Hilfiker, B. M. Stadler, and W. L. 
Farrar. 1980. Thymoma production of T cell growth factor (interleukin 2). J. 
Immunol. 125:2555. 

7. Scheid, A. S., and P. Choppin. 1974. Identification of biological activities of para- 
myxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by 
proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 57:475. 

8. Roux, L., and J. J. Holland. 1979. Role of defective interfering particles of Sendai 
virus in persistent infections. Virology. 93:91. 

9. Glasebrook, A. L., M. Sarmiento, M. H. Loken, D. P. Dialynas, J. Quintans, L. 
Eisenberg, C. T. Lutz, D. Wilde, and F. W. Fitch. 1981. Murine T lymphocyte clones 
with distinct immunological functions, hnmunol. Rev. 54:225. 

10. MacDonald, H. R., R. P. Sekaly, O. Kanagawa, N. Thiernesse, C. Taswell, J. C. 
Cerottini, A. Weiss, A. L. Glasebrook, H. D. Engers, K. T. Brunner, and C. Bron. 
1982. Cytolytic T lymphocyte clones. Immunobiology. 161:84. 

11. Cerottini, J. C., H. D. Engers, H. R. MacDonald, and K. T. Brunner. 1974. 
Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune 
spleen cells in mixed lymphocyte cultures. J. Exp. Med. 140:703. 

12. Kelso, A., A. L. Glasebrook, O. Kanagawa, and K. T. Brunner. 1982. Production of 
macrophage-activating factor by T lymphocytte clones and correlation with other 
lymphokine activities. J. Immunol. 129:550. 

13. Hale, A. H., M.J. Ruebush, D. T. Harris, and M. P. McGee. 1981. Elicitation of 
anti-H-2 cytotoxic T lymphocytes with antigen-modified H-2-negative stimulator 
cells. J. Immunol. 126:1485. 

14. Herrmann, S. H., and M. F. Mescher. 1981. Secondary cytolytic T lymphocyte 
stimulation by purified H-2K k in liposomes. Proc. Natl. Acad. Sci. USA. 78:2488. 

15. Prujansky-Jakobovits, A., D. J. Volsky, A. Loyter, and N. Sharon. 1980. Alteration 
of lymphocyte surface properties by insertion of foreign functional components of 
plasma membranes. Proc. Natl. Acad. Sci. USA. 77:7247. 

16. Martz, E. 1977. Mechanisms of specific tumor cell lysis by alloimmune T lymphocytes: 
resolution and characterization of discrete steps in the cellular interaction. Contemp. 
Top. Mol. lmmunol. 4:301. 

17. Butcher, E. C., and I. L. Weissman. 1980. Direct fluorescent labeling of cells with 
fluorescein or rhodamine isothiocyanate. I. Technical aspects. J. Immunol. Methods. 
37:97. 

18. Russel, J. H., V. R. Masakowski, and C. B. Dobos. 1980. Mechanisms of immune 
lysis. I. Physiological distinction between target cell death mediated by cytotoxic T 



HARRIS, MACDONALD, AND CEROTTINI 275 

lymphocytes and antibody plus complement. J. lmmunol. 124:1100. 
19. Russel, J. H., and C. B. Dobos. 1980. Mechanisms of immune lysis. II. CTL-induced 

nuclear disintegration of the target begins within minutes of cell contact. J. lmmunol. 
125:1256. 

20. Russell,J. H., V. R. Masakowski, T. Rucinsky, and G. Phillips. 1982. Mechanisms of 
immune iysis. III. Characterization of the nature and kinetics of the cytotoxic T 
lymphocyte-induced nuclear lesion in the target. J. Immunol. 128:2087. 

21. Ferluga, J., G. L. Asherson, and E. L. Becker. 1972. The effect of organophosphorus 
inhibitors, p-nitrophenol, and cytochalasin B on cytotoxic killing of tumor cells by 
immune spleen cells and the effect of shaking. Immunology. 23:577. 

22. Redelman, D., and D. Hudig. 1980. The mechanism of cell-mediated cytotoxicity. I. 
Killing by mouse cytotoxic T lymphocytes requires cell surface thiols and activated 
proteases. J. Immunol. 124:870. 

23. MacDpnald, H. R., N. Thiernesse, and J. C. Cerottini. 1981. Inhibition of T cell- 
mediated cytolysis by monoclonal antibodies directed against Lyt-2: heterogeneity of 
inhibition at the clonal level. J. lmmunol. 126:1671. 

24. MacDonald, H. R., A. L. Glasebrook, C. Bron, A. Kelso, andJ.  C. Cerottini. 1982. 
Clonal heterogeneity in the functional requirement for Lyt-2/3 molelcules on cyto- 
lytic T lymphocytes (CTL): possible implications for the affinity of CTL antigen 
receptors. Immunol. Rev. 68:89. 

25. Haskins, K., R. Kubo, J. White, M. Pigeon, J. Kappler, and P. Marrack. 1983. The 
major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation 
with a monoclonal antibody. J. Exp. Med. 157:1149. 

26. Reinherz, E. L., S. C. Meuer, and S. F. Schlossman. 1983. Delineation of antigen 
receptors on human T lymphocytes. Immunol. Today (Amst.). 4:5. 

27. Meuer, S. C., K. A. Fitzgerald, R. E. Hussey, J. C. Hodgdon, S. F. Schiossman, and 
E. L. Reinherz. 1983. Clonotypic structures involved in antigen-specific human T 
cell function. Relationship to the T3 molecular complex. J. Exp. Med. 157:705. 


