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Abstract

Diagnostic and prognostic biomarkers for cancer based on gene expression profiles are viewed as a major step towards a
better personalized medicine. Many studies using various computational approaches have been published in this direction
during the last decade. However, when comparing different gene signatures for related clinical questions often only a small
overlap is observed. This can have various reasons, such as technical differences of platforms, differences in biological
samples or their treatment in lab, or statistical reasons because of the high dimensionality of the data combined with small
sample size, leading to unstable selection of genes. In conclusion retrieved gene signatures are often hard to interpret from
a biological point of view. We here demonstrate that it is possible to construct a consensus signature from a set of
seemingly different gene signatures by mapping them on a protein interaction network. Common upstream proteins of
close gene products, which we identified via our developed algorithm, show a very clear and significant functional
interpretation in terms of overrepresented KEGG pathways, disease associated genes and known drug targets. Moreover, we
show that such a consensus signature can serve as prior knowledge for predictive biomarker discovery in breast cancer.
Evaluation on different datasets shows that signatures derived from the consensus signature reveal a much higher stability
than signatures learned from all probesets on a microarray, while at the same time being at least as predictive. Furthermore,
they are clearly interpretable in terms of enriched pathways, disease associated genes and known drug targets. In summary
we thus believe that network based consensus signatures are not only a way to relate seemingly different gene signatures
to each other in a functional manner, but also to establish prior knowledge for highly stable and interpretable predictive
biomarkers.
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Introduction

Diagnostic and prognostic biomarkers for cancer based on

patient gene expression profiles are viewed as a major step towards

a better personalized medicine. Identification of disease-subtypes

and risk stratification of patients based on specific biomarker gene

signatures has the potential to help medical doctors to find an

individually optimized treatment, to avoid unnessery medication

and to reduce costs [1–3].

A wealth of gene expression data for patients is nowadays publicly

available through databases such as Gene Expression Omnibus

[4,5], ArrayExpress [6] and The Cancer Genome Atlas (TCGA).

Recently, GeneSigDB [7] has been established as a database

systematically integrating gene signatures (i.e. lists of genes being

together associated with a certain phenotype) from various

publications leading to a rich resource for meta analysis and high

level comparisons. Several authors have mentioned the small

overlap when comparing gene signatures from different studies [8–

10]. This imposes a difficulty for interpretation and validation of

gene signatures, since in general biomarker research has two major

goals: first, identification of stable and robust disease markers (i.e.

molecules, which are causally linked to the disease phenotype), and

second, discovery of targets for potential therapies. For both

purposes biomarkers are required to be reproducible [11].

Major differences between gene signatures for related disease

phenotypes can in principal have various reasons [12]: (1)

Different chip platforms could have been used, which may imply

non-identical sets of measured transcripts and thus can lead to

systematic differences in obtained gene signatures. (2) The

biological material may show certain systematic differences

between microarray studies. If, for example, breast cancer patients

in one study have a higher average age than in another study, this

may lead to differences in gene expression. (3) Experimental

protocols may differ between laboratories. (4) Microarray data is

very high dimensional and thus establishing a statistically stable

gene signature is a severe problem in the light of usual small

sample sizes. Depending on the chosen technique, minimal

changes of dataset 1 versus dataset 2 may thus lead to drastic

changes of obtained gene signatures.

Despite of this fact it was found that on a functional level (e.g.

dis-regulated pathways) gene signatures with small overlap can be

rather similar [9,13]. This motivated us to investigate two

questions: (1) Is it possible to derive a consensus signature from a

set of published prognostic gene signatures and does this consensus

signature exhibit functional enrichment of disease related genes

and known drug targets? (2) Can this consensus signature be used

as prior knowledge to derive predictive gene signatures, which

have a high stability and are easy to interprete?
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Table 1. Overview about used gene signatures.

Signature PMID predicts #Patients #Entrez IDs

Bertucci et al. 12538167 long vs. short term survival 34 21

Li et al. 18278552 recurrence 93 28

Huang et al. 12747878 recurrence 89 148

Van’t Veer et al. 11823860 long vs. short term survival 117 60

Wang et al. 15721472 metastasis occurrence 115 75

Sotiriou et al. 16478745 histologic grade 189 223

The last column shows the number of unique Entrez Gene IDs.
doi:10.1371/journal.pone.0025364.t001

Figure 1. Enrichment of ‘‘cancer’’, ‘‘breast cancer’’ and ‘‘primary tumor’’ related genes in consensus and original signatures
(hypergeometric test). Only Disease Ontology terms are depicted, which map to at least 2 genes from a signature. The black line indicates a 5%
significance threshold (after Bonferroni correction). The full list of all enriched Disease Ontology terms with Bonferroni corrected p,5% is available in Table S1.
doi:10.1371/journal.pone.0025364.g001
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To derive a consensus signature we here propose an algorithm,

which clusters genes from different gene signatures based on their

shortest path distances in a protein-protein interaction network. For

each cluster we then identify so-called lowest-common ancestors

(LCAs), which are proteins that are commonly upstream of a set of

proteins and thus may exhibit a certain regulatory influence (provided

they are not too far away). This idea has a certain similarity with the

master regulator analysis (MRA) algorithm proposed in a different

context for reconstruction of disease specific TF-target networks [14].

The set of LCAs, eventually joined with the set of genes appearing in

the majority of signatures, forms our consensus signature. Our

hypothesis, which we verified here by looking at six signatures related

to breast cancer prognosis [15–20], was that genes in such a consensus

are enriched for genes that are known to be disease associated.

Moreover, we found a strong enrichment of known drug targets.

Having verified this first hypothesis we went on to test our second

hypothesis, namely that genes in the consensus signature can be

used to guide development of predictive gene signatures in breast

cancer, which are interpretable and stable. This hypothesis was

verified in three independent gene expression datasets [21–23].

These derived signatures not only showed a significant overlap, but

were also more stable with respect to selected genes than signatures

learned from the full set of probesets on a microarray. Furthermore,

signatures derived from the consensus signature showed a high

fraction of disease related genes and targets for therapeutic

compounds, which highlights the possibility to interpret them easily.

Results

Network Based Consensus Signature is Disease Related
and Enriched for Known Drug Targets

Six gene signatures related to breast cancer prognosis, namely

[15–20], were retrieved in standardized format (ENSEMBL

identifiers) from GeneSigDB. An overview about these signatures

Figure 2. Enrichment of cancer related pathways in consensus and original signatures (hypergeometric test). Only signficantly
enriched pathways are depicted. The black line indicates a 5% FDR significance threshold (Benjamini-Yekutieli method). The full list of all enriched
KEGG pathways with FDR,5% is available in Table S3.
doi:10.1371/journal.pone.0025364.g002
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is given in Table 1. We converted signatures to Entrez gene IDs

and mapped them to a large protein interaction network compiled

from a merger of the Pathway Commons database [24] with non-

metabolic KEGG pathways (see Section Methods). These six

signatures together contained 504 genes, among which 28

appeared more than once and 17 three times. There was no

overall overlap between signatures, and no gene appearing in

more than half of the signatures.

An algorithm was developed for deriving a network based

consensus signature from these six signatures consisting of lowest

common anchestors (LCAs). Details of the algorithm as well as a

computational study investigating features of its principal perfor-

mance are described in the Methods Section of this paper.

Application of this algorithm yielded a consensus signature with

203 genes (Table S1), which was investigated further.

We used the tool FunDO [25] to look for enrichment of disease

related genes (Table S2). FunDO uses a hypergeometric test. This

revealed a high enrichment of cancer (36 genes, Bonferroni corrected

p,1e-22) and specifically breast cancer related genes (21 genes,

Bonferroni corrected p,1e-12). Interestingly enough the enrichment

of cancer and breast cancer genes was even higher in the consensus

signature than in the original signatures (Figure 1). A further analysis

of enriched KEGG pathways (hypergeometric test, Figure 2) also

showed a high enrichment of ‘‘Cell cycle’’ (FDR,1e-13, multiple

testing correction by Benjamini-Yekutieli method [26]), ‘‘Pathways in

cancer’’ (FDR,0.001), ‘‘TGF-b signaling pathway’’ (FDR,0.01),

‘‘Focal adhesion’’ (FDR,0.01), ‘‘Oocyte meiosis’’ (FDR,0.001) and

‘‘p53 signaling pathway’’ (FDR,0.05), which have all been related to

breast cancer [27–30]. Interestingly, the only other signature showing

such a strong enrichment of cancer related KEGG pathways was that

of Sotiriou et al., whereas the signature by Bertucci et al. showed a

much weaker enrichment (‘‘ErbB signaling’’, ‘‘Pathways in cancer’’,

‘‘Adheres junction’’ with FDR,0.05) and the others revealed no

enrichment at FDR cutoff 5%. In other words, no commonly

enriched pathways could be found among the six published signatures

investigated here.

Figure 3. Enrichment of drug targets in consensus and original signatures (hypergeometric test). The black line indicates a 5%
significance threshold. The full list of all drug targets and therapeutic compounds is available in Table S4.
doi:10.1371/journal.pone.0025364.g003
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We finally looked for an enrichment of targets for therapeutic

compounds against breast cancer in our consensus signature. For

that purpose we retrieved a list of 104 proteins and respective

therapeutic compounds in breast cancer, which are either in

clinical trials (also withdrawn ones), FDA approved or on the

market with the help of the software MetaCore (see Supplement

S1 and Table S4). Application of Fisher’s exact test revealed a high

over-representation of such drug targets within our consensus

signature (p,1e-10). This was interestingly higher than for all

other signatures (Figure 3). Signatures by Wang et al. and Huang

et al. did not show any enrichment of known drug targets.

Network Based Consensus Signature Can Guide
Predictive Biomarker Development

Microarray Data. We next sought out to investigate, in how

far a network based consensus signature can be used to guide

development of prognostic gene signatures. For that purpose we took

three independent microarray datasets, which had not been used to

establish any of our above investigated signatures. These were the

data by Ivshina et al. [21] (249 patients), Schmidt et al. [22] (‘‘Mainz

dataset’’; 200 patients) and Pawitan et al. [23] (159 patients). All data

were measured on the Affymetrix HGU133A chip platform,

downloaded from GEO and normalized via FARMs [31].

Predictive Power and Stability. We used SAM [32] to

identify probesets being differentially expressed between different

clinical groups of patients with a q-value cutoff of 5%. Depending on

the available information at GEO for each dataset these groups were

defined slightly different: On the Mainz dataset we tried to

discriminate patients with distant metastasis-free survival ,5 years

(46 patients) from patients with longer distant metastasis-free survival

(154 patients). On the Ivshina and Pawitan datasets we looked for

differentially expressed probesets between patients suffering from a

disease recurrence within 5 years (Ivshina: 90, Pawitan: 40) from

those, with longer relapse-free survival (Ivshina: 159, Pawitan: 119).

Only probesets corresponding to genes in our consensus signature

were used. Given these probesets we then trained a Support Vector

Figure 4. Prediction performance of differentially expressed probesets within our consensus signature (Consensus). All refers to a
signature derived from all probesets on the microarray. All signatures were trained and tested within a cross-validation procedure.
doi:10.1371/journal.pone.0025364.g004
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Machine (SVM) with linear kernel and hyperparameter C tuned in

the range 1024,1023,…102 via 5-fold cross-validation.

We evaluated the prediction performance of this approach

within a cross-validation scheme on each of the above described

datasets: Each dataset was randomly split into 10 folds and each

fold successively left out once for testing, while the others were

used for training (SAM analysis plus subsequent SVM training).

The whole procedure was repeated 10 times (10 times repeated

10-fold cross-validation). Predictions were then evaluated in terms

of area under ROC curve (AUC). This showed a performance of

our approach being significantly better (Mainz and Pawitan

datasets, p,0.05-Wilcoxon signed rank test) or at least comparable

(Ivshina dataset) as if differentially expressed probesets among all

probesets on the microarray were identified and used for SVM

training (Figure 4). That means our consensus signature was not

only interpretable, but also contained a predictive signal.

An analysis of the frequency, by which individual probesets were

selected within the cross-validation procedure clearly revealed a

higher stability compared to a signature constructed from all

probesets on the microarray (Figure 5): On the Ivshina dataset the

fraction of constantly chosen probesets was 50% among all those that

were ever selected. On the Pawitan and Mainz dataset the fraction

was around 40%. In contrast, learning a signature from all probesets

on the microarray yielded only a fraction of ,10% constantly chosen

probesets on the Ivshina and below 5% on the other datasets. This

result is not unexpected: Most genes are unable to perfectly separate

patient groups individually. Then, depending on the selected set of

patients, they may sometimes appear as significant, sometimes not,

which makes gene selection unstable. Therefore, it is natural that

restricting the set of probesets by some sort of prior knowledge (as we

did here) increases gene selection stability. Our approach may thus be

understood as a specific kind of regularization [33], in which model

complexity (here: maximal number of genes in a gene signature,

which is upper bounded by the size of the consensus signature) is

restricted in order to increase the possibility to identify a good fitting

classifier with high stability. The whole idea can be illustrated further

by a simulation, in which we compared stabilities of randomly

selected signatures from the whole microarray against randomly

Figure 5. Stability of probeset selection: The x-axis shows the number of times a probeset is selected within a 10610-fold cross-validation
procedure (i.e. 100 times at maximum). The y-axis depicts the fraction of probesets, which have been selected as often as indicated on the x-axis.
doi:10.1371/journal.pone.0025364.g005
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selected signatures from an a-priori defined set of probesets (see

detailed description in Supplement S1 and Figure S1).

Functional Analysis. We further had a closer look at the

individual signatures derived from the consensus signature (Tables S5,

S6, S7). For that purpose we ran a SAM analysis on each of the three

microarray datasets without cross-validation, only using probesets of

our consensus signature. This yielded 111 genes (175 probesets) for the

Ivshina data set, of which FunDO could relate 26 to cancer

(Bonferroni corrected p,1e-19, see Table S7) and 10 to breast

cancer (Bonferroni corrected p,1e-4). Moreover, the signature

contained 7 known targets for therapeutic compounds (enrichment:

p,2.2e-16), namely HSP90AA1(e.g. Retaspimycin, Tanespimycin,

Alvespimycin – see Table S5), TOP2A (e.g. Esorubicin, Ciprofloxacin),

ERBB2 (e.g. Trastuzumab, Pertuzumab, Gefitinib), TUB4A1A (e.g.

Estramustine), TUBA1B (e.g. Eribulin, Paclitaxel), CDK2 (e.g.

Indisulam) and EGFR (e.g. Erlotinib, Gefitinib). KEGG analysis

revealed a high enrichment of ‘‘Cell cycle’’ (FDR,1e-10),

‘‘Progesterone-mediated oocyte maturation’’ (FDR,0.001), ‘‘Oocyte

meiosis’’ (FDR,0.01) and ‘‘Pathways in cancer’’ (FDR,0.01).

For the Mainz dataset we obtained 69 genes (101 probesets), of

which FunDO could relate 18 to cancer (Bonferroni corrected

p,1e-14) and 3 specifically to breast cancer. Moreover, the

signature contained 3 known targets for therapeutic compounds

(enrichment: p,1e-4), namely TOP2A, CDK2 and TUBA1B. KEGG

analysis revealed an enrichment of ‘‘Cell cycle’’ (FDR,1e-10),

‘‘Progesterone-mediated oocyte maturation’’ (FDR,0.01), ‘‘Oocyte

meiosis’’ (FDR,0.01) and ‘‘p53 signaling pathway’’ (FDR,0.05).

Analysis of the Pawitan dataset yielded 78 genes (113 probesets),

of which FunDO could relate 19 to cancer (Bonferroni corrected

p,1e-14), 2 to primary tumors (Bonferroni corrected p,0.05) and

8 specifically to breast cancer (Bonferroni corrected p,1e-4). The

signature contained 4 known targets for therapeutic compounds

(enrichment: p,1e-14), namely HSP90AA1, TOP2A, TUBA1B and

CDK2 (Table S7). Enriched KEGG pathways were again ‘‘Cell

cycle’’ (FDR,1e-9), ‘‘Progesterone-mediated oocyte maturation’’

(FDR,0.001) and ‘‘Oocyte meiosis’’ (FDR,0.001).

Altogether these results revealed that predictive biomarker

signatures derived from the consensus signature, showed a clear

disease association in terms of enriched pathways, therapeutic targets

and disease related genes. Moreover, there was a high consistency in

enriched pathways, namely ‘‘Cell Cycle’’, ‘‘Progesterone-mediated

oocyte maturation’’ and ‘‘Oocyte meiosis’’. Even at the gene level we

observed a significant overlap (Figure 6; p,1e-5). Significance was

determined here via a permutation test (see Methods).

The results presented in this paragraph generally met our

expectations, since all signatures were derived from the consensus

signature, which has already been shown to be highly enriched for cancer

related pathways, disease related genes and therapeutic drug targets.

Discussion

In this work we demonstrated that it is possible to derive a

consensus signature from seemingly different prognostic gene

signatures in breast cancer by taking into account knowledge on

protein-protein interactions. Our approach is based on the idea,

that genes from different signatures can be clustered in the context

of a protein interaction network and that meaningful representa-

tives for these clusters can be found by looking for close, common

upstream genes. Application of this method to six published gene

signatures and subsequent enrichment analysis revealed a clear

association of our consensus signature to breast cancer related

genes, pathways and targets for therapeutic compounds.

We demonstrated that network based consensus signatures can

be useful as prior knowledge for prognostic biomarker discovery.

We suppose that the same framework could likewise be used in the

context of diagnostic biomarker discovery (disease subtype identi-

fication). On our investigated datasets the cross-validated prediction

performance with our approach, where only differentially expressed

probesets within the consensus signature were considered, was at

least comparable as if differentially expressed probesets from the

whole microarray were taken into account. Moreover and most

importantly, gene selection stability was significantly higher. The

retrieved final signatures were meaningful in terms of enriched

pathways, drug targets and breast cancer related genes.

In summary we thus believe that looking for consensus

signatures among published gene signatures from the literature is

not only a possibility to establish a functional relationship between

these signatures, but also offers a valuable source of prior

knowledge for biomarker discovery in breast cancer and thus

can bring us a bit closer to the ultimate goal to obtain an

interpretable, stable and highly predictive gene signature for

patient stratification according risk groups and disease subtypes. It

remains, however, an open question for future work, in how far

our presented results can be generalized to other disease entities.

Materials and Methods

Protein Interaction Network
Within this work we employ protein interaction data as our basic

knowledge resource. In our case a protein interaction network was

compiled from a merger of all non-metabolic KEGG pathways [34]

– only gene-gene interactions were considered – together with the

Pathway Commons database [24], which was downloaded in tab-

delimited format (May 2010). The purpose was to obtain an as much

as possible comprehensive network of known protein interactions.

For the Pathway Commons database the SIF interactions INTER-

ACTS–WITH and STATE–CHANGE were taken into account

Figure 6. Overlap of signatures derived from the consensus
signature. The total overlap between all three signatures was
significant with p,1e-5.
doi:10.1371/journal.pone.0025364.g006
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(c.f. http://www.pathwaycommons.org/pc/sif-interaction-rules.do)

and any self loops removed. For retrieval and merger of KEGG

pathways we employed the R-package KEGGgraph [35].

In the resulting network graph (13,840 nodes with 397,454 edges)

we have directed as well as undirected edges. For example, a

directed edge ARB could indicate that protein A modifies protein B

(e.g. via phosphorylation). An undirected edge A2B implies a not

further specified type of direct interaction between A and B. Nodes

in this network are identified via Entrez gene IDs. Genes in gene

signatures can be thus be mapped to our protein interaction graph.

Genes, which cannot be mapped, are not considered further.

We also investigated to expand this network further by putative

transcription factor (TF)-target gene interactions, but our simulation

study (see below) in this case clearly revealed an inferior

performance compared to using a protein-protein interaction

network only. This is probably due to the high number of false

positives among inferred TF-target associations. Details can be

found in the Supplement S1 to this paper (Figure S2).

Algorithm 1 Pseudocode for a network based consensus signature.

ConsensusSignatures(S,G,k)

Input:

S = set of gene signatures

G = partially directed graph (protein interaction network)

k = path distance cutoff (here 2)

consensus r genes appearing in .50% of all signatures

candidates r S{{consensus}

D r shortest path distance matrix between candidates (ignoring

edge directions)

H r complete linkage clustering tree of candidates w.r.t. D

for h r1…maximal pathway distance:

cut H at height h and obtain clusters

C/ clusters contaning genes from more than one signature

for each c[C:
consensus r consensus | LCA(c,k) # note that the LCA can

be empty

return consensus

Figure 7. Enrichment of disease associated genes and drug targets in dependency on the number of gene signatures considered
for a consensus.
doi:10.1371/journal.pone.0025364.g007

Network Based Consensus Signatures

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e25364



Network Based Consensus Signatures
Algorithm. Let S be a set of gene signatures and G be a

partially directed graph (protein interaction network). A k-common

ancestor (k-CA) of a set of nodesN(S is defined as that set of nodes

in G, from which all nodes inN can be reached within path distance

k. Each c[k-CA has thus a particular shortest path distance to each

n[N , which is at most k (here k = 2). We define the LCA of N
(abbreviated as LCA(N ,k)) as a subset of the k-CA. More

specifically, each g[LCA(k-CA has to fulfill the additional

criterion that the average shortest path distance to all nodes in N
is minimal. Having this defined our algorithm works as described in

pseudo code 1. The main idea is to successively look for groups of

genes stemming from different signatures, which are close with

respect to their shortest path distances in the network. For each such

group we look for the LCA. Please note that the LCA does not need

to be a non-empty set, because we have a defined path distance

cutoff k. The likelihood of the LCA being empty obviously increases

with higher spread of genes over the network.

Groups of genes are identified here by cutting a complete

linkage clustering tree at a particular height. The choice of

complete linkage clustering guarantees that we tend to get

compact groups of approximately equal diameters (i.e. maximal

shortest path distances between any pair of genes) [36]. This

makes it more likely to find an LCA, which may show a certain

regulatory influence on downstream genes.

The overall aim of our algorithm is to identify a consensus

signature, which is enriched for genes being associated with the

disease. Our hypothesis here is that LCAs together with genes

appearing in the majority of gene signatures (‘‘majority signature’’)

are good candidates for such a purpose.

The R-implementation of the proposed algorithm is part of the

Supplements to this paper (code S1).

Performance Study. We investigated the principal perfor-

mance of our algorithm in terms of enrichment of disease associated

genes and known drug targets in dependency on the number of gene

signatures considered for the consensus. For this purpose from the six

above described gene signatures we randomly picked 2,3,…,6 ones

without replacement. For the picked gene signatures we then ran our

algorithm and looked for significant enrichment of disease associated

genes and drug targets. The procedure was repeated 100 times. This

revealed a clear increase of significance in dependency on the number

of gene signatures considered for a consensus (Figure 7), which implies

that our algorithm picked up more and more disease relevant

information. We would like to point out that not only the enrichment of

cancer, but specifically also of breast cancer related genes increased

with the number of used gene signatures. This means that not only the

sensitivity, but also the specificity of the consensus signature was

improved the more gene signatures were considered.

The existence of the majority signature, i.e. the signature

containing only genes appearing in .50% of all compared signatures,

varied greatly and with no clear trend depending on the number of

compared signatures (Figure 8). Interestingly enough, in cases, where

a majority signature could be established, it generally did not show

any enrichment of disease associated genes and drug targets (Figure 9).

This suggests that even in cases, where it is possible to compute a

majority signature, our algorithm offers an additional benefit.

Significance of Overlap
The significance of an overlap between a set of n signatures was

determined via a random permutation test: We sampled 100,000

Figure 8. Fraction of times that a majority signature could be computed in dependency on the number of signatures.
doi:10.1371/journal.pone.0025364.g008

Network Based Consensus Signatures
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times signatures of the same size as the original ones from all unique

Entrez gene IDs available on the HGU133A chip. Each time the size

of the overlap was determined and in the end counted, how often the

overlap of randomly sampled signatures exceeded the overlap of the

original signatures. This yielded an empirical p-value, which was

further corrected via the method by Phipson and Smyth [37].
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Supplement S1 Further details on simulation studies,
retrieval of known drug targets construction of a TF-
target network.
(PDF)

Figure S1 Probeset selection stability with random
signatures of size n = 20 (left) and n = 50 (right).
(TIFF)

Figure S2 Enrichment of disease associated genes and
drug targets in dependency on the number of gene

signatures considered for a consensus: Additional inclusion of

TF-target gene associations.

(PDF)

Table S1 Consensus signature.
(XLS)

Table S2 Results of FunDO analysis.
(XLS)

Table S3 Results of KEGG analysis.
(XLS)

Table S4 Information on known drug targets retrieved
from MetaCoreTM.
(XLS)

Table S5 Predictive signature for the Ivshina et al. dataset.
(XLS)

Table S6 Predictive signature for the Mainz dataset.
(XLS)

Figure 9. Majority signature: enrichment of disease associated genes and drug targets in dependency on the number of gene
signatures. The enrichment was computed only, when the majority signature existed.
doi:10.1371/journal.pone.0025364.g009
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Table S7 Predictive signature for the Pawitan et al.
dataset.
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Table S8 Results of FunDO analysis for Ivshina, Mainz
and Pawitan datasets.
(XLS)

Code S1 R-implementation of pseudo-code.
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