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In humans and non-humans primates, extensive evidence supports the existence of
subcortico-cortical circuits for cognition and behavior. Lesions studies are critical to
understand the clinical significance of these functionally segregated circuits. Mapping
these circuits from lesion studies is difficult given the heterogeneous etiology of the
lesions, the lack of long-term and systematic testing of cognitive and behavioral
disturbances, as well as the scarcity of neuroimaging data for identifying the precise
location and extent of subcortical lesions. Here, we report the long-term follow-up study
of a patient who developed a loss of psychic self-activation associated to a dysexecutive
syndrome following resuscitation from cardiac arrest. Neuroimaging revealed extensive
bilateral lesions in the putamen, with a relative spare of the caudate, and exhibiting
a dorsoventral gradient that was predominantly rostrally to the anterior commissure
and spared most of the ventral striatum. In comprehensive neuropsychological and
neuropsychiatric assessments, we observed dissociation between the improvement of
the self-activation deficits and the stability of the dysexecutive syndrome. The pattern of
recovery after this lesion lends support to current models proposing the existence of two
main subcortico-cortical circuits: a dorsal circuit, mostly mediating cognitive processes,
and a ventral circuit, implicated in motivation.

Keywords: motivation, apathy, self-activation, dysexecutive, prefrontal, basal ganglia, cortico-subcortical circuits

INTRODUCTION

Loss of psychic self-activation (LPSA) is a syndrome characterized by striking reduction in
spontaneous motion and speech, almost complete lack of initiative, absence of spontaneous mental
activation of any kind, subjective “mental emptiness,” loss of interest for previously motivating
activities, and apparent emotional flatness or poor expressiveness of affect (Laplane et al., 1984;
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De Witte et al., 2008). Importantly, the lack of spontaneous
activation is temporarily reversible by external stimulation
(Poncet and Habib, 1994). This syndrome has been referred to
by various names, including auto-activation deficit (Laplane and
Dubois, 2001), athymhormia (Habib, 2004), psychic akinesia,
and reversible inertia (Laplane et al., 1984). LPSA has been
often associated with dysexecutive syndrome (Laplane, 1990),
although some patients show isolated behavioral disorder
without cognitive dysfunction (Mori et al., 1996). Psychiatric
symptoms, such as obsessive-compulsive-like behaviors, are also
a feature of LPSA syndrome (Laplane et al., 1989). Long-
term follow-up studies of LPSA have shown that the radical
impairment in auto-initiated action do not significantly recover
during the follow-up period (Poncet and Habib, 1994; Kaphan
et al., 2014), and furthermore, some patients demonstrate a clear
deterioration (Habib, 2004).

LPSA has been described to include bilateral lesions of the
basal ganglia (BG), frequently affecting the caudate, pallidus and
putamen (Bhatia and Marsden, 1994; Laplane and Dubois, 2001),
and has been explained by a disruption of a frontal-subcortical
circuit that contributes to motivation (Levy and Dubois, 2006;
Schmidt et al., 2008). However, which structures are critically
involved in LPSA remains unclear (Benke et al., 2003). The
difficulty in mapping the brain structures related to LPSA is partly
due to that previous studies have involved heterogeneous groups
of LPSA patients whose symptoms were caused by different lesion
etiologies with considerable anatomical variability. Moreover,
isolated cases often lacked of systematic evaluation of the
neuropsychological disturbances and topographical distribution
of the lesions. Consequently, the specific neurobehavioral roles
of anatomically defined regions of the BG are not as well
established as the mechanism of cognitive impairment following
BG lesions (Benke et al., 2003). Given this, there is a need for
more case studies, with comprehensive neuropsychological and
neuropsychiatric assessments, as well as neuroimaging data, in
order to advance the understanding of LPSA and, more broadly,
the motivational and cognitive deficits following injuries in
fronto-subcortical structures (Moretti and Signori, 2016).

Here, we report the case of a patient suffering of LPSA
associated to a dysexecutive syndrome following resuscitation
from cardiac arrest. Written informed consent was obtained
from the patient for the publication of this case, and for the
identifiable information. The 3-year follow-up study, comprising
neuropsychological and neuropsychiatric assessments, revealed
a significant regression of the behavioral symptoms without
concomitant recovery of the cognitive syndrome. Concurrent
neuroimaging studies, comprising computerized tomography
(CT), magnetic resonance imaging (MRI), and single-photon
emission computed tomography (SPECT), showed bilateral
damage to the BG, predominately located in the antero-
dorsal part of the striatum with relative sparing of the ventral
striatum, as well as prefrontal hypoperfusion. The pattern
of recovery and the location of the lesion lend support to
the model of functionally segregated fronto-subcortical circuits
involved in cognition and motivation, validating similar models
described in humans and non-humans primates (Haber, 2003;
Choi et al., 2012).

CASE REPORT

LD is a right-handed, 26-year-old male, with 8 years of formal
education, working as a kitchen aide. He had no medical history,
but had been addicted to heroin for approximately 1 year. He
suffered a sudden circulatory collapse of unknown duration due
to a heroin overdose. He remained in a post-anoxic coma for
15 days. Upon awakening from the coma, LD’s behavior was
characterized by significant inertia, lack of drive and complete
loss of self-activation. In the absence of stimulation, LD neither
talked, nor initiated any activity. He did not spontaneously
complain about his state, although he acknowledged being ill
and having voice, language, and memory problems. After direct
questioning, he declared that he felt complete mental emptiness.

In the neurological examination LD showed a major
impairment in his speech. His voice was aprosodic, hypophonic
and characterized by accelerated articulation that led to an
almost unintelligible speech. However, he was able to temporarily
raise the volume of his voice upon request. The examination
also revealed bilateral hyperreflexia. A psychiatric evaluation
indicated low anxiety level, and marked flattened affect. When
asked about his feelings and emotional reactions, LD declared to
have none, but that he might have some if he were to encounter
exceptionally intense situations. However, it was not possible to
observe or provoke any sign of such reactions. LD reported non-
significant depressive symptoms, and presented mild compulsive
counting and checking.

One year following symptoms onset, forelimb dystonic
syndrome appeared predominately in the left arm. The
neurological examination showed preserved motor strength,
brisk reflexes with a bilateral Babinski sign, dystonia and
an intense akinetic syndrome without rigidity. Dystonia was
particularly severe in the left hand, which was kept in a fist
posture, and in the left foot, which exhibited hyperextended
toes. He showed a pushover reaction toward his back when in
a standing position. LD was very slow to initiate gait, which was
slowed down and disturbed by akinesia, dystonia and freezing.
His face was hypomimic with loss of spontaneous blinking and
facial dystonia (so-called, sardonic smiling). Ocular movements
were characterized by slow saccades.

Various treatments were attempted during the first 15 months
following symptoms onset. LD was treated with an increasing
dosage of carpipramine (50 – 150 mg/day), which was
discontinued after 4 months due to the absence of any change
in the patient’s behavior. Clonazepan (2 mg/day) led to an
amelioration of dystonia. Levodopa was prescribed to treat the
LPSA syndrome, and the dosage was progressively increased to
a maximum of 750 mg/day, however, it was discontinued since
no clinical change was observed. Fluvoxamine treatment was also
used (100 mg/day) for 4 months, without noticeable change.

Three years following symptoms onset, LPSA had partially
regressed. LD could carry out spontaneous motor activities, such
as choosing movies to watch and going shopping regularly.
He reported increased emotional response and mental activity.
Notably, he also reported having dreams again. He described
no longer performing compulsive behaviors, or having obsessive
thoughts. Although he was able to spontaneously carry out many

Frontiers in Psychology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 2781

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-02781 January 23, 2019 Time: 13:8 # 3

Riveros et al. Fronto-Subcortical Circuits for Cognition and Motivation

FIGURE 1 | 3D T1-weighted axial and coronal sections at 3 different rostro-caudal levels of the lesion of the basal ganglia. (A) Coronal section passing at the level of
the head of the caudate nucleus and the ventral striatum. The lesions involved the dorsal striatum (arrows) while the ventral striatum was apparently spared
(arrowheads). (B) Coronal section passing at the level of the anterior commissure. Infarction was located in the upper part of the putamen (arrows) and the globus
pallidus (large arrowheads). The head of the caudate nucleus was atrophic. The ventral pallidum was spared (small arrowheads). (C) Coronal section passing at the
level of the mammillary bodies. The lesion involved the upper part of both putamen (arrows) and the globus pallidus (arrowheads), bilaterally. (D) Axial section
showing the rostro-caudal gradient of striatal lesion, which predominated in the rostral “associative” part of the striatum (arrows), and the lesion of the globus pallidus
(arrowheads).

simple everyday living activities, he still had significant difficulties
in planning and performing more complex actions, for which he
depended on external control. His speech was less hypophonic,
less accelerated, and more intelligible compared to previous
neurological examinations. He still presented facial dystonia.
Despite the persistence of asymmetric dystonic syndrome
that was more accentuated in the left hand and foot, his
motor performance strikingly improved, with quicker and more
coordinated movements.

Neuroimaging Study
A CT scan was performed within the first 15 days after the cardiac
arrest. Fourth months after the cardiac arrest, LD received a
brain MRI and a SPECT. A second MRI with sequences for 3-D
reconstruction in order to precise the localization of the striatal
damage was performed 3 years following symptoms onset.

The CT scan showed diffuse cerebral swelling. The first MRI
showed extensive bilateral lesions affecting the lenticular nucleus
and other partial lesions in the caudate nucleus, as well as
in adjacent white matter between these structures. The SPECT
scan revealed bilateral prefrontal hypoperfusion. The second
MRI allowed a more precise localization of subcortical lesions

revealing that the lesions were larger in the putamen than in
the caudate and had a clear dorsoventral gradient that was
predominantly rostrally to the anterior commissure and spared
most of the ventral striatum. The same pattern was found in the
pallidus, in which the lesions affected more the dorsal than the
ventral region. Additionally, the MRI scan showed mild lesions
of the anterior and antero-superior periventricular white matter
in the frontal region and moderate atrophy of both hippocampi
and the left hemisphere of the cerebellum (see Figures 1, 2).

Neuropsychological and
Neuropsychiatric Assessments
LD completed a comprehensive neuropsychological battery 4, 15,
and 36 months after the cardiac arrest, as well as neuropsychiatric
assessments 15 and 36 months after the symptoms onset. More
details about the assessments are presented in the Supplemental
Information section.

In the first neuropsychological assessment, LD’s lack of
initiative was a considerable limitation and it was only
partially completed at that time. In the second and third
neuropsychological assessments, the primary disorder was a
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FIGURE 2 | 3D volume rendering of basal ganglia lesion. The lesion is represented in red. Green: putamen, blue: caudate nucleus, yellow: ventral striatum, light blue:
dorsal pallidum, purple: ventral pallidum. Lower row: lateral view of the left (L) and right (R) globus pallidus and striatum. Note the predominance of the lesion in the
anterodorsal part of the striatum.

FIGURE 3 | Results of neuropsychiatric evaluation conducted at 15 and 36 months after the onset. In the Action and Motivation Disorders Evaluation Scale (Habib,
1995), the maximum score for each measure is 24. In this scale, higher scores reflect higher impairment. In the Obsession and Compulsion Evaluation Scale (Frankel
et al., 1986), subjects without obsessive or compulsion symptoms score below 40.

prominent dysexecutive syndrome with reduced verbal fluency,
cognitive slowing and considerable inertia. LD’s performance on
the California Sorting Test provided a striking illustration of his
deficits, performing similarly to patients with focal damage to
the frontal lobes (Delis et al., 1992). Other major disturbances
were a reduced global cognitive capacity, and impaired working
and episodic memory. The three consecutive neuropsychological
evaluations showed consistently below expected performance
in global cognitive efficiency and episodic memory, as well as
more severe impairments on executive functions, with a slight
improvement in conceptual capacities and lexical evocation in the
third evaluation (see Table 1).

In contrast to the stability of the cognitive disorder, the
neuropsychiatric assessment revealed a progressive recovery over
time (see Figure 3). The emotional indifference and loss of

drive scores improved by approximately 75% between the two
examinations. The apragmatism score improved by 15%. The
Obsession and Compulsion Evaluation Scale scores did not
change between the two examinations, with both scores reflecting
the presence obsessive compulsive-like symptoms.

DISCUSSION

This report presents a case of LPSA and dysexecutive syndrome
following a cardiac arrest. 3 years after the cardiac arrest, LD
exhibited dissociated improvement of his condition. His drive,
motor initiative and emotional symptoms greatly improved,
whereas the cognitive deficits remained, except for a slight
amelioration of his lexical fluency and conceptual capabilities. Of
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importance, MRI scan revealed bilateral lesions predominantly
in the putamen with a clear a dorsoventral gradient sparing most
of the ventral striatum. The dorsovental gradient was also found
in the pallidus. The association between the topography of LD’s
lesion in the BG and the evolution of his cognitive and behavioral
symptoms is consistent with models proposing the functional
segregation of fronto-subcortical circuits involved in motivation
and cognition.

Anatomical studies have shown the segregation of fronto-
subocortical circuits. Heimer and Wilson (1975) and Heimer
(2003) described the ventral striatal-pallidal system after
demonstrating that the BG, including the olfactory tubercle,

extends to the ventral surface of the mammalian brain. The
ventral striatum includes the nucleus accumbens, the medial
and ventral portions of the caudate nucleus and putamen, and
the striatal cells of the olfactory tubercle (Heimer, 1978; Haber,
2003). The medial-dorsal nucleus of the thalamus, rather than the
ventrolateral or the ventral anterior nuclei, is the primary nucleus
of the ventral striatal-pallidal system, providing indication of
segregated cortico-subcortical re-entrant circuits throughout
the BG to the motor and prefrontal cortex (Heimer, 2003).
Projections from the frontal cortex form a functional gradient of
input from the ventromedial sector through the dorsal striatum,
with the medial and orbito-frontal cortex in the ventromedial

TABLE 1 | Results of neuropsychological evaluation performed at months 4, 15, and 36 from onset.

Neuropsychological domain Time from onset (in months)

4 15 36

Global cognitive efficiency

Mini-mental state examination (28 ± 2) 16 22 20

Mattis dementia rating scale (140 ± 4) 111 124 127

WAIS-R verbal scale (100 ± 15) NT 79 84

Raven’s progressive matrices (100 ± 15) NT 99 92

Attention and working memory

Forward digit span WAIS-R (6 ± 1) 6 7 6

Backward digit span WAIS-R (5 ± 1) 3 3 4

Verbal learning – Free and cued selective reminding test

Immediate cued recall (15 ± 0.5) NT 13 15

Total free recall (39 ± 5) NT 15 13

Sum of free and cued recall (46 ± 2) NT 40 40

Free delayed recall (14 ± 1.5) NT 5 3

Sum of free and cued delayed recall (15 ± 1) NT 14 14

Recognition (15.9 ± 0.2) NT 15 16

Flexibility – Trail making test

Form A (32 ± 16) 68 50 61

Form B – Form A (37 ± 70) 243 122 107

Inhibition of interferences – Stroop test

Reading of words (108 ± 20) NT 60 56

Naming of colors (80 ± 15) NT 44 38

Color-words interference (45 ± 10) NT 16 29

Verbal fluency

Category fluency (23 ± 5) NT 8 15

Letter fluency (16 ± 5) NT 3 9

Conceptual elaboration and shifting – Modified Wisconsin card sorting test

Categories (5 ± 1) NT 2 3

Perseverative errors (2 ± 1) NT 4 3

Conceptual elaboration and shifting – California card sorting test

Condition 1- attempted sorts (20 ± 2) NT 14 15

Correct sorts (15 ± 2) NT 8 12

Perseverations (1 ± 1) NT 6 2

Condition 2- correct rule names (14 ± 2) NT 2 3

Condition 3- abstract cues (20 ± 2) NT 17 22

Explicit cues (23 ± 1) NT 24 24

Numbers in brackets indicate the expected mean ± SD in healthy adults, according to the authors of each test. NT, not tested at this time point. Mini-mental state
examination (Folstein et al., 1975), Mattis dementia rating scale (Mattis, 1976); WAIS-R, Revised Wechsler adult intelligence scale (Wechsler, 1981); RPM, Raven’s
progressive matrices (Raven, 1981); FCSRT, Free and cued selective reminding test (Grober et al., 1988); Trail making test (Reitan, 1958); verbal fluency tests, Stroop test
(Stroop, 1935); MWCST, Modified Wisconsin card sorting test (Nelson, 1976); CST, California sorting test (Delis et al., 1992).
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region, and the motor cortex terminating in the dorsolateral
region (Haber, 2003). Based on those neuroanatomical findings,
Alexander et al. (1986) suggested the existence of five cortico-
subcortical circuits involved in cognition, behavior, and motor
functions in primates and extrapolated their existence to humans.
Three of these circuits have been implicated in high-order human
behaviors: the prefrontal dorsolateral cortex circuit, the orbito-
lateral frontal cortex circuit and the anterior cingulate cortex
circuit (Cummings, 1993; Bonelli and Cummings, 2007).

The dissociation between cognition and behavior within
these circuits have been supported by neuroimaging studies
in healthy humans (Leh et al., 2007; Di Martino et al.,
2008), and patients with neuropsychiatric diseases (MacDonald
et al., 2011; Pauls et al., 2014). Draganski et al. (2008) in
a tractography study showed that segreated and overlapping
connections from cortical sites to the specific portions of the
BG, underlying the parallel processing and the integration of
motivational aspects of decision-making and cognitive contextual
representations. On obsessive-compulsive disorder patients, a
resting-state functional connectivity study found a dissociation
within fronto-subcortical circuits for cognitive flexibility and
goal-directed planning (Vaghi et al., 2017). Within the striatum,
there is extensive evidence of dissociable functions, with the
ventral portion involved in processing motivation salience, and
the dorsal part more involved in cognitive control (Doherty et al.,
2004; Jensen and Walter, 2014).

Lesion studies are less frequent; nonetheless, they offer an
invaluable opportunity to understand the functional significance
of these circuits in motivation and cognition. Dissociation
between motivation and cognitive deficits has been reported in
very few patients, besides LD. All patients previously reported
had lesions that were restricted to a part of the striatal system,
with an unequal distribution of damage along the ventral-
dorsal axis. Mori et al. (1996) described a patient with bilateral
necrosis of the ventral pallidus showing only a behavioral
disorder and not associated dysexecutive syndrome. Haaxma
et al. (1993) described a patient with bilateral lesions of the
dorsal pallidus who presented with a dysexecutive syndrome
without loss of self-activation. Miller et al. (2006) described a
patient with a bilateral lesion in the ventral pallidus secondary
to circulatory collapse due to an overdose of methadone. After
that episode, the patient developed symptoms suggestive of
severe depression, including depressed mood, anhedonia, low
energy, feelings of hopelessness and guilt, poor self-esteem,
social isolation, increased sleep, and a 20 lb.-weight gain over
the ensuing year. Neuropsychological evaluation revealed intact
cognitive functioning, including executive functions. In LD, the
delayed regression of LPSA and the stability of the dysexecutive
deficits could be explained by the presence of the dorsal-ventral
gradient of damage to BG, with varied degrees of damage
to the striatum and the pallidus secondary to anoxia. The
damage to the ventral striatum and pallidus did not result in
necrosis, explaining the clinical improvement that was observed
over time (Kesavadas et al., 2009). Thus, the persistence of
the dysexecutive syndrome could be due to a predominance
of dorsal lesions, while a relative sparing of ventral regions
could explain the improvement of motivation. This case, along

with the few cases mentioned above, suggest the involvement
of ventral circuits in motivation and the dorsal areas on
cognition.

LD also presented a delayed and moderate postural dystonic
syndrome that was predominant in the left extremities. A long
delay between BG anoxia and the development of a movement
disorder is not unusual (Bhatt et al., 1993). Dystonia can be
explained by lesions in the sensory-motor striatum, including
the right putamen posterior to the anterior commissure and the
globus pallidus (Lehericy et al., 1996). The asymmetry of the
lesions, predominantly in the right sensory-motor striatum, is
consistent with the asymmetry of the dystonic syndrome. The
motor symptoms observed in LD could be partially concealing
the behavioral manifestations of the improvement on motivation,
and therefore, the magnitude of the recovery should not be
understated.

This single-case study has limitations. First, the patient
had a diffuse injury as reflected in the bilateral prefrontal
hypoperfusion and white matter involvement. This is an inherent
limitation of single case studies with this level of specificity.
Nevertheless, it does not prevent this study to contribute with
evidence of validity to theoretical models of fronto-subcortical
circuits. Indeed, prefrontal hypoperfusion has been also reported
as part of the neural correlates of LPSA (Bogousslavsky et al.,
1991; Engelborghs et al., 2000). In addition, these lesions
and their locations did not seem to play a major role in
LD’s symptoms because the lesions did not compromise the
white matter pathways connecting the BG and the frontal
cortex (Lehericy et al., 2004; Thiebaut de Schotten et al.,
2011). Second, despite presenting evidence of the dysexecutive
deficits and the regression of LPSA, we were unable to present
longitudinal data using functional neuroimaging methods,
such as Functional Dopamine-Transporter SPECT Imaging
(DaT). This might have strengthened the correlation between
brain functioning and the dissociation in the improvement
of motivation over cognitive performance. The availability of
functional neuroimaging methods, such as DaT will allow a
more comprehensive evaluation of the physiopathology of LPSA
in vivo, and a closer examination of this hypothesis. Third,
the distinction between depression and LPSA has proven to
be difficult to make, since anhedonia and lack of initiative are
key symptoms of depression, as well as they are present in
LPSA (Laplane and Dubois, 1998). Nevertheless, in our case, the
patient did not report significant sadness or negative thoughts.
Also, the lack of initiative in LPSA was reversible when the
patient is instructed. These are two key differences between
LPSA and depression, either after a cardiac arrest (Naber and
Bullinger, 2018), or after a vascular accident (Habib, 2004). In
addition, because of the lack of response to antidepressants,
such as fluvoxamine, it seems unlikely that the motivational
symptoms can be explained uniquely by depression. Instead, the
mild depressive symptoms observed are a manifestation of the
motivational disorder. Nevertheless, temporally distant effects of
the pharmacological agents used during LD’s treatment cannot be
ruled out.

This single-case study helps to illustrate more subtle
clinical signs revealing the specialization of these circuits
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(Levy and Dubois, 2006), and it contributes to the current
understanding of motivation-cognition interactions by
illustrating how motivation, as a construct leading to value-
oriented behavior, can be distinguished from, and integrated
to affect, attention and higher cognitive processes (Braver et al.,
2014).

CONCLUDING REMARKS

The fronto-subcortical hypothesis of LPSA syndrome represents
a promising explanatory model that awaits confirmation from
more precise lesion studies (Benke et al., 2003). The present
case, together with those from Haaxma et al. (1993) and
Mori et al. (1996) lend support to the hypothesis of different
parallel fronto-subcortical circuits in humans that are involved in
cognition, behavior and motor functions, contributing to bridge
the gap between experimental studies in animal and humans,
and clinical research. Furthermore, these cases are consistent
with models proposing a transfer of information along a ventral
to dorsal gradient via circuits that span from emotional and
motivational areas to decision making and executive control
areas, and then to motor control areas (Haber et al., 2000; Haber,
2003). Only a few cases, such as LD, suggest the specialization
of these circuits in humans, advancing our understanding
of the functional significance of these circuits in purposeful
behavior.
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