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Abstract

Given the increased reporting of multi-resistant bacteria and the shortage of newly approved medicines, researchers have 
been looking towards extreme and unusual environments as a new source of antibiotics. Streptomyces currently provides many 
of the world’s clinical antibiotics, so it comes as no surprise that these bacteria have recently been isolated from traditional 
medicine. Given the wide array of traditional medicines, it is hoped that these discoveries can provide the much sought after 
core structure diversity that will be required of a new generation of antibiotics. This review discusses the contribution of Strep-
tomyces to antibiotics and the potential of newly discovered species in traditional medicine. We also explore how knowledge of 
traditional medicines can aid current initiatives in sourcing new and chemically diverse antibiotics.

Introduction
Streptomyces are the source of many of the world’s antibiotics 
and in this respect they represent a very important bacterial 
genus [1]. They are present in almost all environments from 
deep sea to high mountains [2–4]. They are Gram-positive, 
filamentous, spore-forming bacteria that are members of the 
phylum Actinobacteria. Streptomyces diverged from their 
closest relative, Kitasatospora, approximately 382 million years 
ago in the late Devonian period, coinciding with the appear-
ance of land vertebrates [5, 6]. Streptomyces are non-motile 
bacteria that spread by producing threadlike hyphae which 
penetrate surfaces in search of nutrients. When resources 
are limited, Streptomyces produce aerial hyphae that divide, 
producing spores that can resist unfavourable conditions 
and are easily dispersed to new environments or sources of 
nutrients [7].

During this growth phase Streptomyces produce secondary 
metabolites: compounds that are not strictly necessary for 
growth or reproduction, but can give the organism a competi-
tive advantage [7]. These metabolites help the vegetative 
bacterial cells by sequestering metals such as iron (sidero-
phores), protecting them from UV light (through pigmenta-
tion), inhibiting competitors (antibiotics) and also facilitating 
communication with other species [8]. This molecular diver-
sity is possible in Streptomyces through their comparatively 

large genome, which can be quadruple the size of some other 
bacterial genomes [7]. In this review, we look at the contri-
bution of Streptomyces to antimicrobial chemotherapy, new 
innovations in bioprospecting through the association of 
Streptomyces with traditional medicine and the application 
of this knowledge to antibiotic discovery.

Antibiotics from Streptomyces
The antibiotic streptomycin was discovered in 1943 by Albert 
Schatz, a PhD student of Selman Waksman, with help from 
others including Doris Ralston, Elizabeth Bugie and Christine 
Reilly [9]. During World War II, there was an urgent drive 
to find antibiotics that could fill the gap left by penicillin, 
which was ineffective against tuberculosis (TB) and some 
Gram-negative pathogens. Inspired by Fleming’s discovery, 
Waksman instructed his PhD student to screen bacterial 
isolates against a highly virulent TB strain in the basement 
of his laboratory. It was here that Schatz discovered strepto-
mycin from an isolate of Streptomyces griseus originating from 
heavily manured compost soil and another from a chicken 
gizzard [9]. Given the importance of such a discovery, the first 
vial of streptomycin, which Schatz presented to his mother, 
is still on display in the Smithsonian Institution [10]. Selman 
Waksman used his drug company connections to conduct 
the large-scale trials necessary to prove that streptomycin 
was effective against TB, bubonic plague, typhoid fever and 
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cholera [2, 9, 11, 12]. Waksman was credited with coining 
the term ‘antibiotic’ winning the Nobel Prize for Medicine in 
1952 and patenting eight antibiotics [4], some of which are 
detailed in Table 1.

Up until the 1970s, it was still relatively easy to isolate new 
compounds from Streptomyces, but since 1985 only three 
new classes of antibiotics that have been discovered [13–15]. 
One of these compounds is platensimycin, a new class 
of antibiotic from Streptomyces platensis that selectively 
inhibits cellular lipid biosynthesis. This was discovered by 
the Merck group [13, 14].

Very recently, an antibiotic-producing strain of thermotol-
erant Streptomyces sp. TM32 was isolated from the rhizos-
phere of Curcuma longa L., a medicinal plant [16]. This is 
believed to be a new strain of Streptomyces sioyaensis that 
has strong antimicrobial activities against both human and 
plant pathogens, including an antibiotic-resistant pathogen, 
Staphylococcus haemolyticus MR-CoNS [16]. It may also 

serve as an emerging source for further discovery of valu-
able and novel bioactive compounds.

Antibiotic mode of action
There are a few common modes of action for Streptomyces 
antibiotics targeting cellular components of bacteria. 
The first discovered mechanism was the interference 
with bacterial protein synthesis by blocking ribosomal 
functional sites [17]. Tetracycline, streptomycin, kana-
mycin and gentamicin block protein synthesis by binding 
to the small ribosomal subunit (30S), whereas erythro-
mycin, clindamycin and chloramphenicol target the large 
ribosomal subunit (50S). Ciprofloxacin and novobiocin 
interfere with bacterial DNA translation. Carbapenems, 
cephalosporins, vancomycin, fosfomycin, bacitracin and 
daptomycin, in comparison, interfere with the bacte-
rial cell wall or cell-membrane integrity and synthesis 
[18, 19].

Table 1. Clinically and economically important bioactive molecules from Streptomyces species, including name, mode of action and source

Bioactive 
molecule

Type Species Location /soil type

Bialaphos Herbicide S. hygroscopicus Easter Island, soil [74]

Bleomycin Anticancer 'S. verticillus' Soil, coal mine [75]

Chloramphenicol Antibiotic S. venezuelae Soil and compost [76]

Cineromycin A+B Inhibits adipocyte differentiation of 3T3-L1 cells 
via Krüppel-like factors 2 and 3

S. cinerochromogenes Tama Graveyard soil, Tokyo, Japan [77]

Clavulanic acid β-lactamase inhibitor S. clavuligerus South American soil sample [78]

Clindamycin
+
lincomycin

Antibiotic
+
Antibiotic for mycoplasmas and Actinomyces

S. lincolnensis Lincoln, NE, USA [79]

Daptomycin Lipopeptide antibiotic S. roseosporus Mount Ararat, Turkey [80]

Erythromycin Antibiotic S. erythraeus Soil, Philippines [81]

Fosfomycin Broad-spectrum antibiotic against urinary tract 
infections

S. fradiae Soil, Mount Montgo, Spain [82]

Ivermectin Antiparasitic, anti-onchocerciasis and anti-
lymphatic filariasis

S. avermitilis Japanese golf course [83]

Kanamycin Antibiotic S. kanamyceticus Soil, Nagano, Japan [84]

Neomycin Antibiotic S. fradiae and 'S. albogriseus' Soil [85]

Nystatin Antifungal S. noursei Garden soil [86]

Rapamycin Antifungal, antitumour immunosuppressive S. hygroscopicus Easter Island, soil [87]

Saframycin(s) A, 
B, C, D and E

Anticancer S. lavendulae subsp. grasserius Tama Graveyard, Tokyo, Japan [88]

Streptomycin Antibiotic against TB, cholera, bubonic plague S. griseus Compost manure, Rutgers Farm, New York, USA [12]

Tetracycline Antibiotic S. aureofaciens and S. rimosus Timothy grassland, Sanborn Field, University of 
Missouri, USA [89]

Vancomycin Antibiotic 'S. orientalis' (now named 
Amycolatopsis orientalis)

Borneo dirt [90]
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Antibiotic synthesis
Streptomyces generally synthesize their antibiotics using large 
enzymatic complexes like polyketide synthases (PKSs), non-
ribosomal peptide synthases (NRPSs) or a combination of 
both. These large multienzyme complexes use many different 
domains to accomplish chemical modifications that can 
produce a wide range of antibiotics [20, 21].

In the PKS system, antibiotics typically begin as a ketide 
monomer attached to an acyl carrier protein. Construction of 
the antibiotic proceeds through a series of enzyme-mediated 
steps typically involving acyltransferases, ketidesynthases and 
other enzymes leading to the formation of the backbone of the 
polyketide antibiotic. The growing antibiotic can be subject 
to further modifications that might include cyclization, 
decarboxylation, dehydration, reduction and methylation 
[21] (Fig. 1).

Non-ribosomal peptide synthesis is carried out by large 
enzymatic complexes. These enzymes can be found in many 
types of bacteria and are organized in modules responsible 
for the addition of one amino acid at a time [20] (Fig. 2). 
NRPS peptides may also contain nonstandard amino acids 
such as diaminobutyric acid (Dab), and can be modified by 
glycosylation, amidation and halogenation amongst other 
processes [20].

Discovery of Streptomyces in traditional medicine
Traditional medicine containing antibiotics has been around 
and used in local remedies for millennia without knowl-
edge of its active principles. One of the earliest connections 
between Streptomyces and traditional medicine is the Red Soil 
of Jordan, which has been used as a cure for skin infections for 
millennia [22]. More definitive connections have been found 
in Africa, where researchers discovered that some ancient 
Nubian bones (~300 AD) contained tetracycline. This was 
traced back to a local beer drunk by the Nubians containing 
oats that had Streptomyces growing on them [23].

Following the UK Medical Act (1852), traditional medical 
practitioners who were not officially recognized were prohib-
ited from claiming to cure illnesses. This saw traditional 
medicine in the UK fade into the background apart from in 
remote rural areas [24]. It would then be another 80 years 
before antibiotics made an official appearance in clinical 
practice with the discovery of penicillin [25].

Streptomyces from traditional medicinal plants
One of the inspirations for research into traditional medicine 
may have come from Geoffrey Cordell, who devised a series of 
systematic searches of plant metabolites for anticancer medi-
cines. This included an ethno-medical approach, which evalu-
ated written or historical evidence from traditional medicinal 

Fig. 1. Oxytetacyline synthesis by the PKS type II system: consecutive modules of the PKS type II enzyme catalyse the successive 
decarboxylative condensations of malonyl CoA, followed by modifications by transferases, oxygenases and cyclases, and additional 
modifications to produce oxytetracycline. Figure adapted from that of the Nomenclature Committee of the International Union of 
Biochemistry and Molecular Biology (NC-IUBMB) in consultation with the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature 
(JCBN) [91].
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practice [26]. Since then, many Streptomyces have been 
isolated from traditional plant medicines, especially in areas 
of low nutrient availability or extreme physiological condi-
tions [27, 28]. These Streptomyces can exist as endophytes that 
live at least a part of their life cycle inside plant tissues without 
causing damage, or epiphytes that live on the outside of the 
plants [29, 30]. Proteobacteria and Actinobacteria have been 
reported as the most frequent endophytic species [31]. Many 
studies focused on the largest areas of traditional medicine 
such as China and India, but there have also been discoveries 
in South America and Africa [32, 33] (Table 2).

Streptomyces-linked traditional medicine from 
invertebrates

Invertebrates have many associations with Streptomyces and 
traditional medicine [34–36]. In northern India, a paste 
made from crushed black ants (Bothroponera rufipes) has 
been reported to be used to treat scabies, wounds and boils 
[37]. Additionally, ground ants mixed with water are used 
to relieve toothaches [34]. What makes these remedies so 
interesting is that Streptomyces are associated with certain 
parts of the ant's exoskeleton [38]. In some cases, the ants 

Fig. 2. NRPS system for polymyxin from Paenibacillus polymyxa. The NRPS enzyme is composed of many modules that contain subunits 
(boxes) that help to attach amino acids. The thioesterase domain (TE) is responsible for cyclizing and releasing the peptide at the end of 
synthesis. Figure reproduced by kind permission of Dr T. Velkov [92].

Table 2. Streptomyces spp. isolated from traditional medical plants, including source, type and location

Plant Antibiotic Location Streptomyces Reference

Arnica montana L.,
wolf ’s bane

Cycloheximide, actiphenol, 
diketopiperazine

Mountain Nutrient-
poor soil, Brazil

Streptomyces spp.,
strong antifungal

[64]

Paraboea sinensis Vinaceuline
cyclodipeptides

Rocks and cliffs, 
Vietnam

Streptomyces sp. YIM 64018 [93]

Lychnophora ericoides 
Mart.

2,3-dihydro-2,2-dimethyl-4(1H)-
quinazolinone,
nocardamine

Brazil Effective against Trypanosoma cruzi [64]

Achnatherum inebrians, 
Drunken Horse Grass

Whole extracts Mountain Xinjiang, 
China

Streptomyces albus
effective against Aphis gossypii

[94]

Dracaena 
cochinchinensis Lour., 
Dragons blood

Actinomycin-D,
novel SPE-B11.8

Ninh Binh province, 
Vietnam

Streptomyces sp. HUST012,
effective against MRSA, MRSE, Escherichia coli 
and Klebsiella pneumoniae

[95]

Vochysia divergens Brevianamide F and cyclo-(l-Pro-l-
Phe)

Brazil
wetlands Pantanal

Effective against MRSA [96]

Heracleum souliei Pluramycin China Streptomyces sp. Y3111 [31]

Staphylococcus epidermidis (MRSE), usually harmless skin commensal that can cause difficult-to-treat multi-resistant infections.
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rub their legs over these patches (of Streptomyces) and then 
onto areas where they farm fungi [38, 39]. A prime example 
of this is leafcutter ants (Acromyrmex), which use a species of 
Actinomycete known as Pseudonocardia as a defence against 
invasive parasites in their fungal gardens [40] (Fig. 3).

It has also been found that African Tetraponera penzigi ants 
living in hollows inside Acacia trees called domatia harbour 
Streptomyces formicae, which produces potent antibiotics 
known as formicamycins (Fig. 4). These antibiotics have been 
reported to have inhibitory effects against meticillin-resistant 
Staphylococcus aureus (MRSA) and vancomycin-resistant 
enterococci [38].

The interactions between Streptomyces and ants has prompted 
researchers to examine other symbiotic relationships in 
invertebrates. For instance, it was recently discovered that 
mud dauber wasps had an association with Streptomyces 
that produce a novel polyunsaturated and polyoxygenated 

macrocyclic lactam (sceliphrolactam) which is an antifungal 
agent [41].

Sponges
Sponges have a very long history in traditional medicine 
[42], although their symbiotic relationships with antibiotic-
producing Streptomyces has only recently been discovered 
[43]. It is thought that Streptomyces from the marine envi-
ronment can offer a potentially novel source of antimicrobial 
compounds [43, 44]. Chinese researchers recently reported 
the isolation of Streptomyces tirandamycinicus sp. nov., from 
a marine sponge with antibacterial potential against Strep-
tococcus agalactiae [45]. Other researchers have isolated 
new compounds from Streptomyces associated with marine 
sponges in the Vietnam Sea, some of which are completely 
novel compounds active against both Gram-positive and 
Gram-negative bacteria and Mycobacterium tuberculosis [46]. 
Under certain conditions, these new bioactive compounds 
can also inhibit bacterial biofilm formation [47].

Antibiotics from caves
Over the last few decades, karst and cave environments have 
become popular areas for bioprospecting of antimicrobial 
Streptomyces [48, 49]. Many of these areas are often associated 
with traditional medicine. Ancient texts suggest that a milky 
white exudate covering the surfaces of some caves called 
‘moonmilk’ can heal multiple ailments [50]. Digging deeper, 
research has shown that moonmilk contains an abundance 
of Streptomyces that have antibacterial activity against a wide 
range of bacteria and fungi [49, 50], and display strong growth 
suppression against multi-resistant Rasamsonia argillacea, 
a causative agent of invasive mycosis in cystic fibrosis and 
chronic granulomatous diseases [50]. Similar studies from 
the Hampoeil cave (dolomite with limestone) in Iran, linked 
to Palaeolithic habitation, revealed many antimicrobial-
producing Streptomyces, as well as other species [51].

Streptomyces from traditional soil-based medicine
The majority of modern antibiotics are derived from soil-
based Streptomyces, so it is no surprise to discover that this 
media also features prominently in traditional medicine 
[22, 52]. Unlike Streptomyces discovered from the golden age 
of antibiotic discovery in the mid-20th century, traditional 
medicine soils are specific in their locations such as the 
Boho clay, or in their type such as glacial clay from Canada 
[52, 53]. Clay, which has long been thought to be therapeutic 
in itself, is also home to a diverse array of Streptomyces 
[22, 52–54]. Traditional glacial clay from Kisameet Bay in 
Canada has been used for millennia by the Heiltsuk people 
against skin infections [52]. When tested under laboratory 
conditions, this soil was shown to inhibit the growth of all 
six ESKAPE pathogens (Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter spp.) [52]. On the 
other side of the Atlantic, researchers in Northern Ireland 
isolated a new species of Streptomyces from an ancient soil 
remedy in a region known as Boho, West Fermanagh [53]. 

Fig. 3. A leafcutter ant (Acromyrmex) covered in Pseudonocardia. 
Photograph by João Pedro Sá Medeiros (Antwiki – https://www.antwiki.
org/wiki/Acromyrmex) [40].

Fig. 4. Formicamycin E. Adapted from [38].

https://www.antwiki.org/wiki/Acromyrmex
https://www.antwiki.org/wiki/Acromyrmex
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This alkaline soil, lying on top of carboniferous limestone, 
contained a new species, Streptomyces sp. myrophorea, that 
inhibited several strains of MRSA, vancomycin-resistant 
Enterococcus, carbapenem-resistant Acinetobacter baumannii 
and Pseudomonas aeruginosa [53] (Fig. 5).

Lessons from traditional medicine
How can associations between Streptomyces and traditional 
medical preparations help the search for new antibiotics?

Silent antibiotic clusters
After whole-genome sequencing Streptomyces coelicolor 
A3(2), researchers discovered that instead of the usual two 
or three antibiotics detected under laboratory conditions, 
the genome encoded the potential to synthesize ten times 
this number [55]. This clearly means that there were other 
antibiotic-synthesis clusters that were not always expressed 
and are, therefore, now known as ‘silent clusters’ [56]. In 
recent years, it has been found that stress or extreme environ-
mental triggers can stimulate these silent clusters to produce 
antibiotics [57–59]. Sometimes referred to as the ‘one strain, 
many compounds phenomenon’ (OSMAC) [60].

Many traditional medicines containing Streptomyces are asso-
ciated with extreme environments typically low in nutrients, 
such as deserts, high altitudes, salt plains or cold areas where 
these bacteria form symbiotic associations with indigenous 
flora [30, 61]. These harsh conditions can also be used in the 
laboratory to awaken some silent gene clusters.

Extreme environments have also been investigated by 
researchers in the hope that Streptomyces from these areas 
would express a different repertoire of antibiotics. In Russia, 
researchers have been investigating the guts of amphipods 
inhabiting the bottom of Lake Baikal, where temperatures 
are rarely above 4 ̊ C. They have isolated many Streptomyces 

strains that produce a new series of antibiotics effective 
against Gram-positive and Gram-negative bacteria [62, 63].

Co-cultivation
It is quite typical to find multiple species of Streptomyces in 
traditional medical preparations such as soil or moonmilk 
[50, 54, 64]. Now, it has been discovered that competition 
and collaboration between Streptomyces and other species 
can also awaken silent antibiotic-synthesis clusters [65]. It 
has even been reported that the addition of Streptomyces that 
do not produce antibiotics can increase the antimicrobial 
potential of other antibiotic-producing Streptomyces through 
production of enhancement compounds like cyslabdan [66]. 
Although cyslabdan (known as a potentiator) has very little 
antimicrobial activity itself, it can enhance the antibiotic 
activity of β-lactams 1000-fold by inhibiting peptidoglycan 
synthesis in MRSA [66]. As a quicker route than co-culture, 
some researchers have been adding extracts of bacterial 
competitors or sub-inhibitory doses of antibiotics to elicit 
the production of antibiotics by silent gene clusters [58]. As 
discussed earlier, antibacterial resistance in Streptomyces is 
closely linked to antibacterial production [67].

Multiple antibiotic therapy
Many traditional medicines contain a mixture of Streptomyces 
producing several antibiotics. This is a good strategy to reduce 
the possibility of resistance evolving quickly. The idea of using 
multiple antibiotics as a treatment option has become more 
widespread in the treatment of multi-resistant organisms and 
immunocompromised patients. The case of TB is one such 
example. Resistant TB strains started to appear not long after 
the introduction of streptomycin and isoniazid. The solu-
tion to this was to use an approach known as combination 
therapy. This is usually a combination of four second-line 
drugs (including amikacin, kanamycin, capreomycin and 
linezolid) with the addition of pyrazinamide over a period 
of 18–24 months. To add to this, two new anti-TB drugs, 
delamanid and bedaquiline, have also been approved for the 
first time in 50 years [68, 69].

Media stimulation of antibiotic production from 
Streptomyces
The nutritional conditions under which Streptomyces are 
cultivated affects their antibiotic production. Many traditional 
medicines are applied in their raw state, usually incorporating 
some of the original isolation material, which can be chemi-
cally quite complex. Typical laboratory Streptomyces cultiva-
tion media contains a combination of yeast extract, complex 
starches, mannitol or some other sugar, humic acids on some 
occasions and perhaps supplementary minerals. These ingre-
dients form the basis for the standard International Strepto-
myces project agars (ISP) 1–7 [70]. However, without some 
of the micronutrients or complex chemicals present in their 
original growth environments, some environmental antibiotic 
producers may lose their potency (antimicrobial production). 
To counteract this decline, recent innovations have seen 
researchers incorporate some native (isolation) material in 

Fig. 5. Streptomyces from a traditional soil cure in the West Fermanagh 
Scarplands (a) was cultivated on selective isolation agar (b) yielding 
Streptomyces sp. myrophorea (c), which inhibited MRSA, as evidenced 
by a clear zone of inhibition (d).
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their media, for instance soil that contains rare earth metals. 
These have been reported to stimulate some strains of Strep-
tomyces to increase their antimicrobial production by 12-fold 
[71, 72]. Alternatively, other researchers have dispensed with 
intricate media formulations and tried to cultivate antibiotic-
producing organisms in situ [73].

Conclusion
Due to the increase in multi-resistant pathogens and the 
dwindling number of new products being approved for the 
health market, there is an urgent need to find new sources 
of antibiotics. In the last 80 years, Streptomyces has made 
a massive contribution to the field of medicine, not only 
through antibacterial antibiotics, but also through antifungal, 
antiparasitic and anticancer compounds. Recent isolations 
of Streptomyces from traditional medicine suggest that these 
bacteria have played an integral role in human health for 
longer than previously thought. This new source of Strepto-
myces can also help to replenish the much-depleted reservoir 
of emergency antibiotics to combat multi-resistant pathogens 
and perhaps provide the much-needed structural diversity 
needed for a new generation of novel antibiotics. Moreover, 
knowledge of their traditional use is more than a mere 
historical curiosity, as they could help us to unlock impor-
tant factors in the complex production and/or application 
of antibiotics. Finally, to ensure the continued availability of 
this resource, it is imperative that the habitats and microbial 
genera associated with these Streptomyces are conserved, and 
that accurate information and data related to their prevalence, 
properties and characteristics are extensively documented.
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