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Synopsis
CD (cathepsin D) is a ubiquitous lysosomal hydrolase involved in a variety of pathophysiological functions, including
protein turnover, activation of pro-hormones, cell death and embryo development. CD-mediated proteolysis plays
a pivotal role in tissue and organ homoeostasis. Altered expression and compartmentalization of CD have been
observed in diseased muscle fibres. Whether CD is actively involved in muscle development, homoeostasis and
dystrophy remains to be demonstrated. Zebrafish (Danio rerio) is emerging as a valuable ‘in vivo’ vertebrate model
for muscular degeneration and congenital myopathies. In this work, we report on the perturbance of the somitic
musculature development in zebrafish larvae caused by MPO (morpholino)-mediated silencing of CD in oocytes at
the time of fertilization. Restoring CD expression, using an MPO-non-matching mutated mRNA, partially rescued the
normal phenotype, confirming the indispensable role of CD in the correct development and integrity of the somitic mus-
culature. This is the first report showing a congenital myopathy caused by CD deficiency in a vertebrate experimental
animal model.
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INTRODUCTION

CD (cathepsin D; EC 3.4.23.5) is an aspartic protease found
in endosomes and lysosomes of all eukaryotic cells. The patho-
physiological role of CD in organ development and homoeostasis
can be inferred from the phenotype of knockdown and knock-
out animal models, as described in mouse [1], fruitfly [2] and
zebrafish [3]. One main function of CD is to degrade long-lived
proteins transferred into the lysosomes via endocytosis, phago-
cytosis and autophagy [4,5]. Besides, CD-mediated proteolysis
is necessary for the bio-activation of specific substrates, such
as hormones [6–8], growth factors [9] and lysosomal cathepsins
[10,11]. This function is tissue-specific, and depends on the com-
partmentalization (endosome, lysosome, cytosol, extracellular
space) of CD. In skeletal muscle, CD participates together with
other cathepsins in the overall protein turnover. In skeletal muscle
fibres from patients with muscular dystrophies, inflammatory my-
opathies, rhabdomyolysis and neurogenic atrophy, CD was found
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highly expressed, compared with normal skeletal muscle, and it
was dispersed in the cytoplasm rather than concentrated in peri-
nuclear vesicles as in normal skeletal fibres [12]. In hindlimb
unloading muscle atrophy, apoptotic myofibres were character-
ized by dystrophin breakdown and cytosolic translocation of CD
[13]. It is worth mentioning that dystrophin was shown to be de-
graded by CD at pH 5.5 [14]. CD immunoreactivity, both intra-
and extra-lysosomes, were found particularly increased in small
regenerating fibres of Duchenne-type muscular dystrophy [12].
This latter finding was interpreted as associated with an active
role of CD in muscle regeneration. However, the direct involve-
ment of CD in muscle development, homoeostasis and dystrophy
remains to be demonstrated.

In the last decade, zebrafish (Danio rerio) has become a model
of choice for the study of several human muscle disorders [15,16].
In our previous work, we found that zebrafish zygotes lacking
CD develop to larvae that present with several phenotypic altera-
tions, including failure of yolk absorption, reduced body length,
microphthalmia and defective development of the digestive tract,
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the swim bladder and the retina-pigmented epithelium [3]. In this
work, we focused our attention on the development of the somitic
musculature in CD-knockdown zebrafish. We show for the first
time that the absence of CD results in congenital myopathy in
zebrafish. The present finding adds to the pathophysiological
roles of CD, and opens new insights into the pathogenetic mech-
anisms of muscle degeneration.

MATERIALS AND METHODS

MPOs (morpholinos) and rescue-CD-mutated mRNA
The 25 bp antisense MPO targeting the ATG region [T-MPO
(translation MPO)] of zebrafish CD RNA and the in vitro syn-
thesized mutant zebrafish CD mRNA carrying eight mismatches
(rescue-CD mRNA) towards the T-MPO have been previously
described [3]. T-MPO (now on CD–MPO) was purchased from
Gene Tools. The Gene Tools Standard Control 25-mer oligonuc-
leotide MPO (CTRL) was used for sham injections.

Zebrafish husbandry and manipulation
Zebrafish were housed and maintained at the MBC (University
of Torino, Italy) as previously described [17], and staged accord-
ing to the published guidelines [18,19]. Following fertilization,
the eggs at the one/two-cell stage were collected and micro-
injected, and the embryos were raised at 28 ◦C under standard
laboratory conditions. Embryos were grown in the presence of
0.003 % 1-phenyl-2-thiourea to prevent formation of melanin
pigments. Micro-injection (5 ng/egg of CD–MPO plus or not
200 pg/egg of rescue-CD mRNA) was performed using a
Nanoject II injection device (Drummond Scientific). MPO was
diluted in Phenol Red micro-injection solution. All manipula-
tions were performed according to the recommendation of the
local ethical committee.

Immunoblotting
A pool of larvae was homogenized by ultrasonication in a
buffer containing protease inhibitors and denatured in SDS-
electrophoresis buffer. Where indicated, the larvae were mechan-
ically de-yolked prior to homogenization. After electrophoresis,
proteins were transferred on to a nitrocellulose sheet and CD was
revealed with a rabbit polyclonal antibody against rat CD [20]
that cross-reacts with zebrafish CD [3]. The filter was stripped
and re-probed with a mouse monoclonal antibody against β-
actin or tubulin (Sigma–Aldrich) for assessment of protein load-
ing. HRP (horseradish peroxidase)-conjugated goat anti-rabbit
or anti-mouse antibodies (Bio-Rad) were used as secondary an-
tibodies as appropriate. Bands were imaged using the VersaDOC
Imaging System (Bio-Rad) apparatus equipped with the software
Quantity One (Bio-Rad). Protein concentration in homogenate
was measured with the Bradford method.

Histochemistry analysis
Transparent embryos were fixed overnight at 4 ◦C in 10 % NBF
(neutral-buffered formalin; Sigma-Aldrich) and embedded in 1 %
(w/v) agarose for correct positioning and sectioning (longitud-
inal sectioning, rostral to caudal). The agarose blocks were de-
hydrated by ethanol gradient and after xylene diaphanization
embedded in paraffin. Sections (4 μm) were cut with a manual
microtome (Leica Microsystems), mounted on glass slides (Su-
perfrost ultra plus microscope slides; Thermo Scientific), air-
dried overnight at room temperature (25 ◦C) and incubated at
70 ◦C for 30 min before H&E (haematoxylin and eosin) stain-
ing. Observations were performed by two independent investig-
ators with a Leica DMI 6000B fluorescence microscope (Leica
Microsystems) equipped with the software Leica Application
Suite version 1.8.0 (Leica Microsystems) or with a Leica MZ10F
Modular stereo microscope interfaced to a CCD (charge-coupled
device) camera and Leica Application Suite (version 1.8.0) soft-
ware (Leica Microsystems). Representative images of at least
three independent experiments are shown.

RESULTS

MPO disrupting the translation of CD mRNA affects
the normal development of musculature in zebrafish
larvae
We have previously shown that maternal CD mRNA was present
in unfertilized eggs, and that complete down-regulation of CD
protein in zygotes could be achieved by disrupting the translation
of both the mature maternal and the immature neo-synthesized
CD RNAs with an MPO targeting the ATG starting codon [3].
In fact, CD expression was almost completely abolished in
CD–MPO-injected embryo/larvae at 3 and 4 dpf (days post-
fertilization) (Figure 1A). We focused on the gross alterations
produced by CD–MPO. As compared with the paired counterpart
injected with control MPO, a portion of zebrafish arising from
CD–MPO-injected oocytes were bent, and showed impairment in
their movements (Figure 1B). Many of zebrafish showing these
alterations died by 4 dpf, and most of the survivors recovered
an apparent ‘quasi-normal’ phenotype by 7 dpf (a time at which
CD–MPO lost its activity). Typically, the mortality ratio in the
CD–MPO-injected population were 13.5 % at 1 dpf, 18.8 % at 3
dpf and 26.7 % at 4 dpf (average of three independent injections
with, respectively, initial n = 113; 54; 44). Thus, the proportion
of bent zebrafish in the CD–MPO-injected population decreased
with time from >90 % at 2 dpf to 20 % at 3 dpf. The bent phen-
otype recalled that reported in zebrafish models of different hu-
man myopathies, including Duchenne muscular dystrophy [21].
This observation prompted us to analyse the musculature in CD-
knockdown morphants.

Zebrafish fertilized eggs were micro-injected with standard
control MPO oligonucleotide (control injection, CTRL) or CD–
MPO, and the musculature organization was analysed by histo-
chemistry in 7 dpf larvae. At this age, the survival of zebrafish
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Figure 1 CD-knockdown zebrafish morphants exhibit a bent
phenotype
(A) Fertilized eggs at the stage of one or two cells were injected with
CD–MPO or control MPO (Co). A pool of (not de-yolked) larvae at 3 and
4 dpf was collected and analysed by Western blot for CD expression.
The Western blot of three different pools of larvae from three different
experiments is shown. In control-injected larvae, the 41 kDa mature
CD was detected, whereas in CD–MPO-injected larvae CD was absent.
Tubulin and actin were used as reference of protein loading in the
lanes. (B) Control and CD–MPO morphants at 1–4 dpf were imaged
under the stereo microscope. A representative selection from three
different experiments is shown. The bent phenotype is clearly evident
in CD–MPO morphants.

larvae was dramatically compromised. The survival rate of CD–
MPO larvae at 7 dpf was 55 +− 5 % that of control-injected
pairs (n = 80; P < 0.05; Student’s t test), and it approximates
to zero in the following days. To be noted, lethality in the
CD-knockdown population showing an apparent ‘quasi-normal’
phenotype reached the maximum at a time in which CD–MPO
lost its effectiveness. Interestingly, CD-knockout mice show an
apparent ‘quasi-normal’ phenotype at birth, and then die in an
anorexic state after 21 days [1]. These observations indicate that
deficiency of CD causes alterations in vital organs that could be
compensated for only shortly after birth. At 7 dpf, CD–MPO lar-
vae had no inflated swim bladder and showed a reduced develop-

ment of the oro-anal tract, compared with the normal counterpart
(Figure 2). The motility of CD–MPO morphants was greatly
reduced at this age, compared with matching controls. Longit-
udinal sections were stained with H&E and imaged under the
microscope. The somitic musculature of CD–MPO larvae at 7
dpf presented with evident alterations in the organization (Fig-
ure 2). In fact, the histological analysis of the musculature in
control zebrafish (Figure 2, upper panels) revealed an intense
staining with eosin (indicative of the protein content), the pres-
ence of syncytial nuclei (indicative of correct myotube formation)
and the presence of myosepta (indicative of correct organization
of the fibres). By contrast, the somitic musculature of CD–MPO
zebrafish (Figure 2, lower panels) showed a less compact archi-
tecture, as indicated by the presence of large portions not stained
with eosin. This aspect is suggestive of a minor content of myo-
fibres in the somitic musculature. In zebrafish, the formation
of somitic muscles initiates from the segmented paraxial meso-
derm soon after fertilization. By 1 dpf, the somites are separ-
ated by horizontal and vertical myosepta, sheets of laminar ten-
don that along with the notochord serve as attachment sites for
somitic muscle fibres. Despite the horizontal myosepta were
present, the muscle fibres of the CD-knockdown morphants
showed an evident disorganization. In these muscles, in fact,
myosepta appeared narrow and thin, as compared with those in
muscles of controls. In addition, the number of syncytial nuc-
lei was greatly reduced, and many nuclei showed an eccentric
position, indicative of imperfect formation of myotubes. It is
probably that these alterations concurred to the bent phenotype
and the motility impairment observed in CD–MPO zebrafish. It
is to be noted that the above alterations were found in CD–MPO
morphants with an apparent ‘quasi-normal’ phenotype.

Rescue of muscle fibre integrity by injection
of mutated zebrafish CD mRNA in CD-
knockdown fertilized eggs
To confirm that CD was indeed indispensable for the correct de-
velopment and integrity of the somitic musculature in zebrafish,
we performed a rescue experiment by co-injecting the fertil-
ized eggs with CD–MPO and an in vitro synthesized rescue-CD
mRNA. The latter carries eight nucleotide mutations in the match-
ing sequence targeted by CD–MPO. In this set of experiments,
we looked for earlier effects of the lack of mature CD on muscle
fibre organization. The musculature of zebrafish larvae was ana-
lysed at 4 dpf, a stage at which CD expression reaches the highest
level [3]. We performed three separate experiments and collected
altogether 20 larvae at 4 dpf for each type of injection (CTRL
or CD–MPO or RESCUE). We first assessed the level of CD
expression in the injected specimen. Zebrafish CD mRNA co-
difies for a 41 kDa monoglycosylated single-chain protein [22].
As shown by Western blot analysis (Figure 3), the CD–MPO
greatly reduced the accumulation of CD and the injection
of rescue-CD mRNA partially restored the level of mature
CD in zebrafish larvae (see also [3]). The (most) cranial,
trunk and caudal portions of the musculature of control and
CD–MPO 4 dpf morphants were analysed by histochemistry
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Figure 2 Histochemistry of the musculature in 7 dpf control and CD–MPO zebrafish
Control and CD–MPO-injected zebrafish at 7 dpf showing an apparent ‘quasi-normal’ phenotype were subjected to
longitudinal sectioning and H&E staining of the musculature. A selection of images from three independent experi-
ments is shown. Symbols: hm, horizontal myoseptum; i, intestine; n, notochord; sm, somitic muscle.*syncytial nucleus;
**eccentric nucleus.

Figure 3 Immunoblotting of CD
Fertilized eggs were injected with control (Co) or CD–MPO or both
CD–MPO and rescue-CD mRNA. At 4 dpf the corresponding larvae were
de-yolked, pooled and homogenized for Western blot analysis of CD
expression. At 4 dpf the expression of CD reached its maximum level.
CD–MPO abrogated the synthesis of CD. Rescue-CD mRNA allowed the
synthesis of a certain amount of CD. The position of molecular mass
standards is indicated. The Western blot shown is representative of
three independent experiments.

(Figures 4 and 5). As above, the CD–MPO zebrafish with a
bent phenotype were excluded from the analysis, to avoid biased
considerations. In CD–MPO morphants the myofibres did not
show a parallel and intact organization as in controls, rather
they appeared rippled. Histochemistry revealed an uneven stain-
ing with eosin (suggestive of empty spaces between the my-
ofibres), and a paucity of nuclei (indicative of scarce cells),
a large number of which were in an eccentric position. Al-
together, the syncytial formation of myotubes appeared dra-

matically compromised in CD-knockdown morphants. These
alterations can be better appreciated in the images at high
magnification (Figure 5). Strikingly, in CD-rescued morphants,
the somitic musculature organization, in terms of myo-
fibre horizontal and parallel disposition, cellularity and syncytial
myotubes, resembled that of controls.

DISCUSSION

In zebrafish, somitic muscles constitute a large portion of the
body and are easily accessible for analysis. In addition, zebrafish
begin to move very soon after fertilization, which allows the early
detection of muscle dysfunction. These features make the zebra-
fish an amenable vertebrate model for studies on muscle devel-
opment and atrophy [15,16], and for the identification of mo-
lecular targets to be used for early diagnosis and therapy of my-
opathies [23,24]. Muscle tissue can be subjected to a variety
of inherited, congenital and acquired diseases. Previous studies
have linked CD to acquired muscle diseases. Abnormally high
levels of expression and cytoplasmic localization of CD were
reported in damaged skeletal muscles [25], and in muscle fibres
from patients with muscular dystrophies, inflammatory myopath-
ies, rhabdomyolysis and atrophy [12,13]. Cytoplasmic translo-
cation of CD, following a primitive oxidative stress-mediated
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Figure 4 Histochemistry of the musculature in 4 dpf control, CD–
MPO and rescue-CD zebrafish
4 dpf zebrafish larvae arising from zygotes injected with control or
CD–MPO or CD–MPO plus rescue-CD mRNA were subjected to longi-
tudinal sectioning and H&E staining of the musculature. Only zebrafish
with an apparent ‘quasi-normal’ phenotype were analysed. A selection
of images from three independent experiments is shown. The longitud-
inal section of wild-type larvae at the same age (http//zfatlas.psu.edu/)
is reported for reference. Symbols: n, notochord; sb, swim bladder.

permeabilization of the lysosomal membrane, can in fact lead to
the activation of cytosolic pro-apoptotic factors [26].

The present study provides the first evidence of an active and
indispensable role of CD in the correct development and func-
tion of the skeletal musculature in zebrafish, demonstrating the
involvement of CD in congenital myopathies. This was proved
by MPO-mediated knockdown of both maternally supplied and
newly synthesized CD mRNAs in fertilized eggs at the stage of
one or two cells. A rescue experiment, in which an MPO-non-

Figure 5 Particulars of the musculature of 4 dpf control, CD–MPO
and rescue-CD zebrafish
The most cranial, trunk and caudal portions of the skeletal musculature
of the zebrafish described in Figure 4 were imaged at a high magnific-
ation as indicated. Symbols: hm, horizontal myoseptum; n, notochord;
sm, somitic muscle.*syncytial nucleus; **eccentric nucleus.

matching mRNA for zebrafish CD was co-injected with CD–
MPO, definitively confirmed the role of CD in the development
of the zebrafish musculature. At 2 dpf, a large proportion of CD–
MPO morphants exhibited a bent phenotype, a characteristic of
mutant zebrafish reproducing human myopathies [21]. Muscle
fibres form through a differentiation process characterized by the
arrest in cell proliferation and synthesis of myosin (transition
from myoblasts to myocytes) followed by syncytial fusion of
myocytes that leads to polynucleated myotubes. As compared
with control pairs, the musculature of CD–MPO zebrafish ap-
peared to have a less content of myotubes and much thinner myo-
septa. The somitic lesions in CD-knockdown morphants could
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be documented in 4 dpf larvae with an apparent ‘quasi-normal’
phenotype. It is conceivable that more dramatic alterations in the
musculature were present in morphants with the bent phenotype.
At 7 dpf, a time at which the MPO nearly lost its effectiveness,
the CD–MPO morphants still presented with abnormalities in the
somitic musculature, indicating that the congenital deficiency of
CD permanently compromised the development and integrity
of the muscle tissue. Consistent with our findings, it was shown
that the early somitic lesions in the zebrafish model of Duchenne
muscular dystrophy lasted for long time [21].

CD-knockdown morphants also showed no swim bladder
inflation. Noteworthily, both the myopathy and the abnormal
development of the swim bladder, are common features to dys-
trophin-knockdown zebrafish morphants [27]. Interestingly,
dystrophin-knockdown, dystroglycan-knockdown and CD-
knockdown zebrafish morphants all show a delayed development,
besides the somitic lesions ([3,27,28] and the present study). Re-
markably, in our study the (small) amount of CD driven by the
rescuing mRNA in the initial stages was sufficient to largely pre-
vent the developmental anomalies imparted by CD–MPO, un-
derscoring the importance of CD-mediated proteolysis in tissue
development and homoeostasis. It is to be noted, however, that in
CD-rescued morphants a portion of nuclei maintained an eccent-
ric position, indicative of an imperfect recovery in the formation
of myotubes. This could be related to the small amount of mature
CD and/or to the fact that the somitic lesions occurred before a
sufficient amount of mature CD could be synthesized.

What could be the link between CD-mediated lysosomal pro-
teolysis and muscle fibre integrity? In other words, why does the
lack of lysosomal CD negatively affect muscle tissue develop-
ment and integrity? At present, we have no definitive answer to
these questions. We can offer a hypothesis based on the known
role of CD-mediated proteolysis in muscle tissue macromolecu-
lar turnover. Protein degradation in skeletal muscle is controlled
by the two major proteolytic systems: the ubiquitin–proteasome
system and the autophagy–lysosome system. The abnormal hy-
peractivation of these two systems contributes to muscle loss and
weakness. Although excessive autophagy causes muscle wasting
and atrophy [29,30], inhibition of autophagy–lysosomal degrad-
ation is associated with myopathies such as Danon disease and
collagen VI muscular dystrophy [31,32]. Basal autophagy plays
a beneficial role in controlling muscle mass. In fact, the ablation
of Atg7, an essential autophagy gene, compromises autophagy
in muscle, and this results in the accumulation of abnormal mi-
tochondria and disorganization of sarcomeres [33]. In muscle,
the persistence of dysfunctional organelle may cause the hyper-
activation of catabolic processes that eventually lead to muscle
atrophy. Therefore an efficient basal autophagy flux seems fun-
damental to prevent sarcopenia, as it guarantees the continuous
turnover of organelles and membranes. Consistent with a bene-
ficial role of cathepsin-mediated proteolysis in myogenesis, the
expression of cathepsin B is increased in myoblasts committed to
differentiation [34], and that of CD is increased in small regen-
erating fibres of Duchenne muscular dystrophy [12]. However,
the activity of lysosomal CD decreases during differentiation and
maturation of muscles, from mononuclear cells to myotubes [35].

On these grounds, we hypothesize that in the early stage of devel-
opment lysosomal CD accomplishes an indispensable proteolytic
function associated with autophagic clearance of protein aggreg-
ates and dysfunctional mitochondria generated during the muscle
differentiation.

Besides, CD-mediated proteolysis could play a crucial role
in the assembly of myotomes and in their interaction with the
extracellular matrix. The myoseptum in the musculature of CD-
knockdown morphants appeared much thinner than in the mus-
culature of control zebrafish. The myoseptum plays a critical
role in myotome organization and in the transmission of the con-
tractile force. In zebrafish, the myoseptum develops along with
the lateral-to-medial migration of slow-twitch fibres, its thick-
ness increases with time (it reaches a 500 nm thickness by 3 dpf)
and it becomes infiltrated by fibroblast-like cells at 6 dpf [36].
Therefore extracellular matrix components of myosepta, includ-
ing collagen, laminin and fibronectin, are initially produced by
muscle cells. Fibronectin, which is a ligand for integrin receptor,
plays a critical role in somite differentiation. In fact, fibronectin
is down-regulated during slow-twitch fibres migration, and is de-
graded in the proximity of multinucleated fast muscle cells but
not in the proximity of mononucleate slow muscle cells [37].
Intriguingly, fibronectin is a substrate of CD [38]. Therefore the
primitive absence of CD could compromise the post-translational
down-regulation of fibronectin and, consequently, the correct or-
ganization of myotomes. Remarkably, the expression of both CD
and fibronectin progressively decline during muscle differenti-
ation and maturation.

Congenital alterations in the expression, compartmentaliza-
tion and functional activity of CD were shown to result in em-
bryo developmental defects and in neurodegenerative diseases
[1,3,39–43]. In this work, we provide the first evidence that the
congenital absence of CD is detrimental for the functional organ-
ization of the somitic musculature in zebrafish, indicating that
CD plays a critical and indispensable role in the development
and homoeostasis of muscle fibres. Given the high similarity
between human and zebrafish muscles [44–46], the present data
suggest that defective CD-mediated lysosomal proteolysis may
contribute to several myopathies also in humans.
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