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High-throughput metabolomics predicts drug–
target relationships for eukaryotic proteins
Duncan Holbrook-Smith , Stephan Durot & Uwe Sauer*

Abstract

Chemical probes are important tools for understanding biological
systems. However, because of the huge combinatorial space of
targets and potential compounds, traditional chemical screens
cannot be applied systematically to find probes for all possible
druggable targets. Here, we demonstrate a novel concept for over-
coming this challenge by leveraging high-throughput metabolo-
mics and overexpression to predict drug–target interactions. The
metabolome profiles of yeast treated with 1,280 compounds from
a chemical library were collected and compared with those of
inducible yeast membrane protein overexpression strains. By
matching metabolome profiles, we predicted which small mole-
cules targeted which signaling systems and recovered known
interactions. Drug–target predictions were generated across the 86
genes studied, including for difficult to study membrane proteins.
A subset of those predictions were tested and validated, including
the novel targeting of GPR1 signaling by ibuprofen. These results
demonstrate the feasibility of predicting drug–target relationships
for eukaryotic proteins using high-throughput metabolomics.
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Introduction

Chemical screening refers to a broad array of experimental tech-

niques where the biological or biophysical properties of collections

of small molecules are assayed in order to identify small molecules

with some activity of interest (Entzeroth et al, 2009). This family of

approaches has long been a source of chemical probes that can be

used to understand signaling systems by selectively and dynami-

cally modulating their activity (Zeng et al, 2005; Filippakopoulos &

Knapp, 2014), as well as a source of lead compounds for pharma-

ceutical development (Swinney, 2013). In a classical target-based

chemical screen, one macromolecular target is chosen and an assay

is devised that can monitor the ability of small molecules to perturb

the target. Although this general approach has proven useful in

many instances (Capdeville et al, 2002; Wakeling et al, 2002), for

any additional protein that becomes a target the screening process

must be started anew. If we are to be able to systematically identify

chemical probes and use them as tools to understand cellular signal-

ing, a method for reducing the combinatorial space of thousands of

druggable macromolecules (Hopkins & Groom, 2002) and drugs is

needed. One way to reach this goal is through the prediction of

drug–target relationships. A range of approaches has been used in

the past to predict drug–target relationships. These include compu-

tational docking of small molecules in known structures (Kuntz

et al, 1982), structure-independent machine-learning based strate-

gies (Erhan et al, 2006), among many other approaches (Hierony-

mus et al, 2006; Carpenter, 2007; Gregori-Puigjan�e et al, 2012; Feng

et al, 2014). These approaches have strengths and weaknesses

(Scior et al, 2012), but none of them currently appears to hold the

promise of universal prediction of drug–target interactions.

An experimental alternative to prediction could exploit that

genetic mutations and small molecule drugs alike are able to alter

the activity of their target macromolecules and hence might cause

similar phenotypes (Baum et al, 2010; Campos & Zampieri, 2019).

Thus, it can be possible to predict which drugs alter the activities of

which gene products or processes based on the similarity of the

phenotypes they elicit (Stegmaier et al, 2004). However, because

traditional chemical screens have only allowed for the measurement

of relatively small numbers of parameters for each drug treatment,

phenotypic data generated in chemical screens have not contained

enough information to predict drug–target interactions. Marshalling

omics approaches into chemical screening offers opportunities to

overcome this limitation. Transcriptional, proteomic, or metabo-

lomic profiles can serve as a fingerprint of the state of the cell

(Raamsdonk et al, 2001) and allow for the comparison of various

states in order to generate predictions of mode of action (Zampieri

et al, 2018). Although transcriptomics and proteomics can offer fine

grained and gene-specific representations of the cellular state, with

current technologies both approaches cannot offer the throughput at

a reasonable cost that is necessary for large-scale chemical screen-

ing. By comparison, with the advent of metabolomics techniques

where the measurement time per sample is < 1 min (Fuhrer et al,

2011), it is now possible to measure the effects of thousands of
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drug-like molecules on the relative abundances of metabolites in the

cell. The application of metabolomics approaches to Saccharomyces

cerevisiae has allowed for powerful investigations of gene function

(Allen et al, 2003; Zhu et al, 2012; Breunig et al, 2014) as well as

broader questions of how growth is coordinated (Kresnowati et al,

2006; Castrillo et al, 2007).

Here, we apply metabolomics approaches to S. cerevisiae in

order to demonstrate proof of concept that it is possible to predict

drug–target relationships by comparing the metabolome profiles of

inducible overexpression strains to yeast treated with 1,280 drugs

from a chemical library. Since membrane-bound proteins are an

important and challenging target class, we first decided to focus on

a collection of 6 inducible overexpression mutants in membrane-

bound receptors. This approach was shown to be able to recover

known as well as novel relationships between drugs and signaling

systems. We subsequently expanded our study to 80 more proteins

that are both intracellular and membrane bound in such a way that

could be employed at a genome-wide scale. That approach was used

to successfully recapture known drug–target interactions for both

membrane-bound and cytosolic targets, for both signaling and meta-

bolic targets, suggesting that this approach has broad potential to

predict drug–target interactions in yeast and perhaps eventually in

mammalian systems.

Results

Metabolome profiling of inducible overexpression receptor
mutants

To elucidate whether it is possible to predict drug–target interac-

tions based on metabolome profiles of overexpression mutants in a

eukaryotic context, six membrane protein encoding genes from

yeast were targeted for analysis (Fig 1A). Three of them (GAP1,

RGT2, and SNF3) coding for transceptors (Conrad et al, 2014), two

encode G-protein coupled receptors (GPR1, and STE2) (Versele

et al, 2001), and one encodes the thaumatin receptor IZH2 (Villa

et al, 2009). The chosen b-estradiol inducible overexpression system

offers several benefits including high overexpression levels, being

based in a prototrophic strain background, and tight control over

gene expression (McIsaac et al, 2013). Since the native promoter is

replaced by a tight synthetic promoter, in the absence of inducer the

phenotype of the overexpression strains generally reflect a loss of

expression of the target gene (McIsaac et al, 2013), although some

low copy genes appear to be expressed sufficiently in the absence of

estradiol for some level of function (Arita et al, 2021). The tunable

nature of the overexpression system was exploited by assessing the

metabolic effect of treating the strains with a wide range of inducer

concentrations as well as two time points.

Yeast were cultivated in 96-well format deep well plates in

synthetic defined media with amino acids and were grown from a

starting optical density at 600 nm (OD600) of 0.1. Eight different

concentrations of the inducer, spanning seven orders of magnitude,

or DMSO controls were added for a duration of 1.5 and 3 h. These

conditions were chosen to allow for robust expression of the recep-

tors without necessarily allowing the cell time to compensate for

their expression. DMSO concentrations were kept consistent across

all treatments here and in subsequent experiments so that the effect

of the solvent on the metabolome (Allen et al, 2004) was held

constant. The treatments were timed such that a final OD600 of ~1.0

was achieved at the time that metabolite extracts were collected.

Cells were harvested by centrifugation and metabolites were

extracted with cold solvent from cell pellets. The intracellular

metabolite extracts were analyzed by flow-injection analysis time-

of-flight mass spectrometry (FIA TOF MS) (Fuhrer et al, 2011). FIA

TOF MS makes use of a chromatography-free system that allows for

high-throughput profiling of metabolite extracts. The tradeoff for

this throughput lies in the inability of the system to resolve

compounds with the same molecular weight, and that it can misan-

notate ions or misquantify the abundance of ions that are in

crowded regions of the mass spectrum. The 13,615 ions were identi-

fied after spectral processing, of which 1,029 could be annotated to

a compound within the KEGG compound library. Analysis was

restricted to the 226 metabolites that are part of the S. cerevisiae

KEGG collection. Raw ion intensities were normalized for temporal

drifts and also for biomass at the time of sampling. Although growth

rate is known to exert a strong effect on the metabolome (Castrillo

et al, 2007; Boer et al, 2010; Campos & Zampieri, 2019), after

biomass normalization there was no appreciable increase in hit

quality from growth rate normalization and so it was omitted. This

resulted in the observation of robust changes in the metabolome,

where 37% of overexpression treatments caused at least one

metabolite to change in abundance by at least two-fold, and the

median maximum absolute log2 fold change observed for each treat-

ment was 0.9. Dose-dependent patterns of metabolic changes were

seen for the different concentrations of inducer added. For example,

disaccharides accumulated in GPR1 overexpression strains in condi-

tions where < 1 nM of inducer was added, and a decrease in disac-

charide levels occurred in cases where more inducer was added

(Appendix Fig S1). The accumulation of the disaccharide trehalose

is a previously observed phenotype of GPR1 loss of function

mutants (Iyer et al, 2008) that occurs due to its contribution to

▸Figure 1. Method schematic for drug–target prediction through metabolome profiling.

A Schematic diagram of study organization. Metabolome profiles were collected from yeast that were treated with 1,280 drugs as well as yeast where 6 genes were
independently expressed.

B The Spearman correlation coefficients for the comparison of z-scored drug and overexpression metabolome profiles are shown in a heat map format with a call out
of the indicated cluster. In that cluster, a pattern of decreasing correlation was observed as is indicated by the trend in average �1 to 1 scaled correlations shown in
the line plot.

C The relationship between the Spearman correlation of the metabolome profiles of yeast treated with drugs and each GPR1 overexpression condition is shown for two
example drugs across the different concentrations of inducer that were used.

D The fit of a logistic curve to the normalized correlation data (scaled between 0 and 1 for minimum and maximum values) from C is shown.
E A summary of the analysis of the two example drugs.
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signaling through protein kinase A (Kraakman et al, 1999). These

results show that the range of inducer concentrations used is suffi-

cient to generate overexpression that causes measureable effects on

the metabolome. This is a necessary precondition for a meaningful

comparison of metabolome profiles between overexpression and

drug treatments with the goal of matching profiles to predict drug–

target relationships. In addition, the abundance of amino acids also

increased in abundance under the induced overexpression of the

amino acid transceptor GAP1 (Appendix Fig S1). The induced over-

expression of the other targets also showed altered patterns of abun-

dance of metabolites in central metabolism such as hydroxyethyl

thiamine diphosphate for SNF3 and oxoglutarate for RGT2

(Appendix Fig S1).

Metabolome profiling of yeast treated with chemical library

Similar to the overexpression experiments, yeast were cultivated

and drug treatments were timed such that cultures grew exponen-

tially in synthetic defined media with amino acids from a starting

OD600 of ~0.1 to an OD600 of 1.0 at the time of metabolite extrac-

tion, placing them within an exponential growth phase. Prelimi-

nary experiments showed that drug treatments could cause

significant metabolome changes within 30 min (Appendix Fig S2),

and the relatively short treatment had the advantage of capturing

the effects of drugs on the metabolome before extensive acclimati-

zation or effects on growth rate has occurred. Within the main

screen, the entire Prestwick chemical library of 1,280 FDA-

approved compounds was applied to the same background strain

of yeast. The drug treatments were performed at a concentration

of 10 µM and metabolite extracts were prepared and analyzed

using the same FIA TOF MS approach described earlier. Despite

few of the drugs having a known target in S. cerevisiae, 14% of

drug treatments caused at least 1 of the 226 annotated metabolites

to increase or decrease two-fold compared with the batch average

value, and the median drug treatment had a maximum metabolite

log2 fold change of 0.83. This demonstrates that in general the

drug treatments were able to perturb the yeast metabolome.

Results exhibited several expected metabolome changes for drugs

with known targets within yeast. For example, the protein synthe-

sis inhibitor cycloheximide showed an increase in the abundance

of many amino acids, consistent with previous reports (M€ulleder

et al, 2016) (Appendix Fig S3A and B). Statins also showed an

accumulation of HMG-CoA (Appendix Fig S3C) that is likewise

consistent with its role as an HMG-CoA reductase inhibitor that is

active in yeast (Callegari et al, 2010).

Comparison of drug and overexpression metabolome data

In order to identify which drug treatments elicit similar metabolome

profiles to those of the inducible overexpression mutants, the Spear-

man correlation coefficients for each overexpression mutant with

each drug treatment were calculated for both time points (Fig 1B).

Within these correlations, it was possible to identify cases where

there was a trend with respect to the degree of similarity of metabo-

lite profiles in a drug and overexpression condition (Fig 1B right

panel, Fig 1C). To systematically identify and assess the quality of

the relationships between overexpression strength and metabolome

profile similarity, a logistic curve fitting approach was used

(Fig 1D). This approach allowed for the identification of drug–gene

pairs where the data conformed well to the expected dose-

dependence relationship. We quantified the hit quality using the fit

quality together with the maximum absolute correlation score

observed at any point in the dose–response relationship (Fig 1E).

Drug–target pairings with logistic curve fit qualities that were in

the top 10% for each gene were selected and ranked based on their

maximum absolute Spearman correlation coefficients (Fig 2A).

When the alpha factor peptide, an agonist for STE2, was included in

these analyses it ranked in the top 1.6% of filtered comparisons for

STE2 (Fig 2A) and only 0.04% of all comparisons of drugs to STE2

ranked higher than alpha factor in both fit quality and maximum

absolute Spearman correlation (Appendix Fig S4A for STE2 and

Appendix Fig S4B all targets). In addition, metabolites with altered

abundances under alpha factor treatment could be seen to show

altered levels as STE2 expression was modulated (Appendix Fig S1).

This demonstrates the ability of this approach to identify known

ligand–target relationships. At least one drug per gene passed the fit

threshold and had a maximum absolute correlation that was greater

than that of the alpha factor positive control, although top ranking

GPR1 hits exhibited larger correlation coefficients than for the other

genes tested (Fig 2A). Among the highest ranking hits based on

maximum Spearman correlation coefficients, ~60% of the hit dose–

response relationships showed a negative slope (Appendix Fig S4C),

although unfiltered fits did not show the same skew (Appendix Fig

S4D). This suggests that the majority of the highest ranking hits are

acting in an antagonistic manner toward their target protein.

Chemical genetic analysis of metabolome response to
drug treatments

Since the hits’ effects on the metabolome in the chemical screen are

predicted to be due to perturbation of their putative target, it would

▸Figure 2. Hit characterization for drug–target predictions.

A For drug–gene comparisons with a logistic fit quality in the top 10% of all those compared for each gene, the maximum absolute Spearman correlation coefficient for
each hit comparison is shown in descending order. The horizontal dashed line indicates the maximum absolute correlation coefficient for the comparison of the
metabolome of cells treated with the STE2 agonist alpha factor to STE2 overexpression conditions. The position of a STE2 to alpha factor comparison is indicated with
a yellow star.

B The number of metabolites that change significantly when wild-type yeast and mutants in the predicted target are treated with the indicated drugs at a
concentration of 10 µM is shown. Drugs targeting GPR1 are written in black text, with drugs targeting SNF3 and RGT2 written in purple and green, respectively.
Orange filled bars are predicted antagonists for GPR1.

C The levels of trehalose compared with a DMSO-treated control are shown for both wild-type yeast and gpr1 strains treated with predicted antagonists for GPR1. The
bar height indicates mean values, and error bars indicate the standard deviation of the mean. Asterisks indicate a P-value of < 0.05 from a two-sided Student’s t-test
(n = 4 biological replicates) when comparing the WT and gpr1 responses to the drug. Results are representative of 3 independent experiments.
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be expected that mutants with deleted target-encoding genes would

show an impaired response to the drug. To test whether this is the

case for the drug–target predictions, both wild-type and loss-of-

function mutants in the putative target of the chosen drugs were

treated with a subset of 15 of the highest ranking hit compounds,

subject to the filters described in the methods section. Since hits for

GPR1 showed significantly higher maximum absolute correlations

than for other targets, the tested drugs were mostly for that target.

Treatments were performed at a concentration of 10 µM for 30 min,

after which intracellular metabolites were extracted and measured

as described above. Comparing the number of metabolites that

changed significantly in abundance across genetic backgrounds

showed that the wild-type yeast exhibited more metabolite changes

than the mutants in 12 of the 15 cases (Fig 2B), consistent with the

hypothesis that those drugs act on their target pathway. These

results were seen for at least one drug predicted to target each of the

three tested proteins. This suggests that this novel method has the

promise of effectively identifying hit compounds across a range of

different targets. In order to confirm that drug–gene interaction

predictions were robust, more focused attention was given next to

drugs predicted to target GPR1.

Focusing on the metabolome changes for the nine predicted

antagonists for GPR1 that were tested, we were able to observe a

significant increase in the amount of the disaccharide trehalose in

many of the cases when wild-type was treated with those antago-

nists (Fig 2C). This is consistent with the known effect of sugar

signaling through GPR1 on trehalose (Iyer et al, 2008), as well as

the effect of induced expression of GPR1 on disaccharide levels

(Appendix Fig S1). For all of the antagonists that increased trehalose

amounts, there was a reduced relative accumulation of trehalose for

a gpr1 mutant treated with the drug compared with the wild-type

case (Fig 2C). This is consistent with drugs acting through the

antagonism of GPR1 signaling.

In order to confirm the results of the flow-injection analysis that

was used to generate hits, metabolome extracts were collected

again for yeast treated with GPR1 antagonists and with induced

receptor expression. These samples were measured using a liquid-

chromatography mass spectrometry approach. As mentioned earlier,

the correlations between drug treatments and different strengths of

gene overexpression were calculated for each drug and gene. When

the hit drug–gene relationships were evaluated, the obtained results

were very similar for all comparisons except for felbinac, which still

showed a positive correlation (Appendix Fig S5). This demonstrates

the robustness of the underlying measurements that were used to

generate the tested predictions.

The structures of the five predicted GPR1 antagonists that signifi-

cantly increased trehalose levels include several members with simi-

lar chemical structures (Fig 3A). Since drugs with similar effects are

expected to have similar structures, we decided to investigate

whether the structures of putative antagonists are more similar than

would be expected by chance alone. To do this, we calculated the

maximum common substructure (MCS) Tanimoto score (Chen &

Reynolds, 2002) for the five predicted GPR1 antagonists. In addition,

over 10,000 iterations of a group of five random compounds from

the Prestwick were sampled and their chemical similarities were

computed. The distribution of median MCS scores (Fig 3B) showed

that the median MCS score for the GPR1 antagonists is more similar

than would be expected from random. Although the structural simi-

larity is mostly seen between ibuprofen, fenbufen, and felbinac; the

level of structural similarity is larger than what would be expected

by chance. This provides support of the assertion that the set of

compounds that are able to increase disaccharide levels may share a

molecular target.

Predicted GPR1 antagonists phenocopy known gpr1 phenotypes

One of the specific phenotypes of yeast lacking a functional copy

of GPR1 is the reduction of filamentous growth. In order to test

whether the putative GPR1 antagonists were capable of pheno-

copying the mutant in this regard, a plate washing assay was used

(Cullen, 2015). Since BY4741 is incapable of filamentous growth it

was washed away with no residual growth (Appendix Fig S6). On

the other hand, the DMSO-treated Σ1278b S. cerevisiae strain,

which is capable of filamentous growth, was able to penetrate the

agar and show residual scars in the agar after washing. Mannose,

a natural antagonist for GPR1 (Lemaire et al, 2004), was confirmed

to be able to block the invasive growth of Σ1278b, demonstrating

the ability of the assay to recover the effect of a known antagonist

(Appendix Fig S6). Most of the Σ1278b yeast treated with 20 µM

of the putative antagonists also showed reduced filamentous

growth (Fig 3C), with ibuprofen showing the most striking reduc-

tion in filamentous growth. Indeed, ibuprofen was able to reduce

filamentous growth with treatments concentrations as low as 1 µM

(Fig 3D). This reduction in a phenotype associated with GPR1

▸Figure 3. Hit validation for drug–target relationship predictions.

A The chemical structures of predicted antagonists for GPR1 that showed a relative increase in trehalose in panel b are shown.
B The distribution of the median maximum common substructure Tanimoto similarity for 10,000 random selections of five compounds from the Prestwick library are

shown in black. The dotted red line indicates the top 5% of values, and the dotted blue line indicates the median similarity score for the predicted antagonists for
GPR1 that showed a relative increase in trehalose in (Fig 3B), which are pictured in (Fig 3C).

C The average quantified filamentous growth is shown for BY4741 and Σ1278b yeast spotted onto media supplemented with either a vehicle control (DMSO 0.1% (v/v)
or the indicated compounds at a concentration of 20 µM across four biological replicates. Error bars represent the standard deviation of the mean between the
averages of the replicates, and asterisks indicate P-value < 0.05 for a two-sided Student’s t-test comparing normalized values to the DMSO control (n = 4 biological
replicates).

D The average quantified filamentous growth is shown for BY4741 and Σ1278b yeast spotted onto media supplemented with either a vehicle control (DMSO 0.1% (v/v)
or the indicated concentrations of ibuprofen. Error bars represent the standard deviation of the mean between the averages of the replicates, and asterisks indicate
P-value < 0.05 for a two-sided Student’s t-test comparing normalized values to the DMSO control (n = 4 biological replicates).

E The average relative amount of trehalose in ibuprofen-treated cells compared with a DMSO treatment is shown. The bar height indicates mean values, error bars
indicate the standard deviation of the mean, and asterisks indicate P-value < 0.05 for a two-sided Student’s t-test comparing to the WT control (n = 8 biological
replicates). Results are representative of three independent experiments.
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function is consistent with the role of these drugs as novel antago-

nists for GPR1 signaling.

Finally, we aimed to more clearly test whether the action of

ibuprofen occurred via a reduction in signaling through its down-

stream G-protein, GPA2 (Kraakman et al, 1999). As described

earlier, when gpr1 mutants were treated with ibuprofen, the treha-

lose response was dampened compared with WT yeast. This was

also observed for its G-protein GPA2 (Fig 3E). In addition, a mutant

in the GPCR STE2 showed a normal trehalose response to ibuprofen

treatment (Fig 3E). This demonstrates that the effect of gpr1 and

gpa2 mutations on the response of trehalose to ibuprofen is not a

general property of disrupted signaling through GPCRs in the cell

and provides further evidence the iburprofen acts through the

GPR1-GPA2 signaling system.

Of the 15 hit drugs that were tested, only two failed to show a

positive result in at least one of the validation experiments. This

shows that the prediction strategy is strongly enriching for high

quality hits. Of the nine predicted GPR1 antagonists whose activities

were tested, two of them showed positive results in all subsequent

validation experiments (ibuprofen and ipriflavone). This represents

a minimum recall rate of 22% for validating newly predicted antago-

nists of GPR1 based solely on the comparison of drug and mutant

metabolome profiles.

Prediction of drug target relationships for non-membrane
proteins

In order to test the broader applicability of this approach, as well as

its suitability to genome-scale deployment, a collection of 86 genes

were selected from the non-essential Yeast Estradiol strains with

Titratable Induction (Arita et al, 2021) (YETI) library. This collection

of genes was composed primarily of enzymes as well as receptor-

related proteins due to their druggable nature and their importance

as pharmacological targets. In addition, this gene-list was chosen

such that it was comprised mostly of non-membrane proteins. This

was done in order to test the generalizability of the approach

outlined earlier beyond membrane proteins.

The overexpression yeast strains were grown to an OD600 of

~0.7, at which time they were treated with 10 µM of b-estradiol or
the vehicle control DMSO. Cultures were treated with estradiol for

1.5 h prior to extraction, at which point metabolites were extracted

as described earlier. Similarly, metabolomics data were generated

by flow-injection mass spectrometry as described earlier. Upon z-

scoring, these metabolome profiles were subjected to hierarchical

clustering to assess the recovery of expected relationships. In order

to take an unbiased approach, GO biological process enrichment

was performed on each cluster in order to determine whether

mutants whose metabolome profiles cluster together have related

functions. GO term enrichment was seen for almost all clusters in

the analysis (Fig 4A). These clusters showed a greater GO enrich-

ment than would be expected by chance, with empirical P-values of

< 0.001 as determined through 10,000 rounds of data shuffling and

GO enrichment. These data demonstrate that that the inducible

overexpression generates metabolome profiles that capture the

biological roles of the genes that are overexpressed.

The genes selected for these experiments included seven cases

for which known drug–target relationships are established (Dataset

EV8), allowing for a systematic analysis of the recovery of true-

positives within the dataset. The overexpression metabolome pro-

files were compared with those of yeast treated with the compounds

from the Prestwick library, as well as those treated with their known

agonists or antagonists. Because yeast were treated with only one

concentration of estradiol, the logistic-fitting approach described

above was not applicable. Instead, the similarity of each z-scored

average metabolome profile was simply compared with each drug

treatment in the induced or uninduced state. For antagonists, a posi-

tive similarity was expected between the genetic treatment and the

drug treatment, while an agonist would be expected to have a nega-

tive similarity. In the case of induction, agonists were expected to

have a positive similarity to the estradiol treatment and antagonists

would rather be expected to have a negative similarity.

Pearson correlation, Spearman correlation, and cosine similarity

were evaluated for their ability to recover positive control interac-

tions within the dataset. The similarity scores of each drug within

the positive control and Prestwick dataset were ranked per mutant,

and the ranking of the positive control compounds in their compar-

ison was used in order to produce a receiver operating characteristic

(ROC) curve for each set of comparisons. Strikingly, when any of

the three similarity metrics were used to test the recall of the posi-

tive controls with the estradiol-treated yeast, the interactions were

found to rate remarkably highly within the dataset. This resulted in

an area under the curve with respect to recovery of true positive

versus false positives of between 0.74 for Spearman similarity, 0.66

for cosine similarity, and 0.84 for Pearson correlation (Fig 4B). This

may in part be due to strong changes in relatively few metabolites

underlying some positive control interactions (Appendix Fig S7). By

comparison, positive controls were recalled significantly more

poorly for the comparisons with the uninduced yeast (Appendix Fig

S8, AUC 0.63). This suggests that the employment of inducible over-

expression more effectively captures the relationship between drugs

and their targets, at least under the relatively short drug treatments

that were employed in this study. In addition, when the analysis

was performed either with looser restrictions for which ions to

include in the analysis, the recovery of positive controls was not

improved (maximum AUC 0.8, Appendix Fig S9).

Akin to the dose-dependent analysis performed earlier, this anal-

ysis captured known true-positive drug–target interactions. Next,

we wanted to determine whether the drug–target predictions that

were obtained across the dataset were relatively homogenous or

whether different inducible overexpression strains showed specific

patterns of drugs that are predicted to target them. In order to assess

this, we determined the number of times that each given drug was

found to be in the top 20 drugs for any of the mutants in the analy-

sis (Fig 4C). This distribution demonstrated that almost 300 of the

drugs were not in the top 20 for any gene, but the second most

common number of top 20 appearances per drug was 1. This

suggests that this approach can generate diverse drug–target predic-

tion for a range of different target types.

As discussed above, there is a general expectation that small

molecules that are able to modify the activity of a particular target

are more likely to share structural features than drugs which do not.

In order to test whether our top predictions showed a pattern of

structural similarity which is greater than would be expected by

chance, we determined the median structural similarity for top rank-

ing hits for each gene, and compared that distribution of values to

those which arise through chance alone. Top hits showed a median
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structural similarity that was significantly greater than that observed

in randomized data (Appendix Fig S10), suggesting that our pipeline

not only recaptures known drug–target interactions but also recov-

ers expected relationships between structurally similar drugs.

Discussion

In this work, we present a conceptually novel method for systematic

prediction of drug–target interactions that is based on the similarity of

metabolome profiles in inducible overexpression mutants and drug-

treated cells. Through this approach we demonstrated for the first

time that high-throughput metabolomics can recover drug–target

interactions in a eukaryotic cell and that this is possible for cell surface

signaling proteins as well as cytosolic proteins. This approach has a

number of advantages for identification of hit compounds in eukary-

otes. Unlike traditional chemical screens, it has the potential to gener-

ate robust, whole-genome predictions of drug–target interactions.

Despite this scalability, our approach also shows a true-positive rate

that is in line with more classical screening approaches. In all, 80% of

the predicted drug–target interactions that were tested through chemi-

cal genetics gave a positive result. This demonstrates a high recall rate

of compounds from a screening phase to their first validation. With

further analysis of the effects of drugs acting as antagonists for GPR1,

we found that 22% of hit drugs gave positive results of activity on all

three assays that were performed. Similar rates of attrition for hit

compounds can be found in traditional chemical screens when hits

are analyzed for activity using approaches that are orthogonal to the

initial screen (Swingle et al, 2017). Furthermore, when we broadened

our approach we were able to recover true-positive drug–target inter-

actions with an AUC of 0.84, demonstrating the ability of the approach

to recover previously known drug–target relationships. Because our

approach uses an untargeted methodology, more of the 13,000 ions

that were detected can eventually be annotated to metabolites when

better databases become available. In addition, the data presented in

this article serve as a resource in which the effects of 1,280 drugs on

A

B C

Figure 4. Drug–target predictions for non-membrane proteins.

A Average z-scored metabolome profiles are clustered for all estradiol-induced overexpression strains. GO enrichment analysis is performed on all clusters with the
most widely shared biological process that is significantly enriched within that cluster indicated.

B ROC curves indicate the recovery of 7 true-positive drug–target interactions within the dataset compared with the number of false discoveries from the remaining
1280 drugs within the dataset. The recovery of expected interactions is shown using Spearman correlation, Pearson correlation, and cosine similarity. These similarity
metrics allow for an area under the curve of 0.72, 0.84, and 0.66 for those similarity metrics, respectively.

C The number of occurrences where each drug within the library is in the top 20 ranking interactions for each target is tabulated for drugs that cause significant (P-
values < 0.05) changes in at least 5 metabolites.
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the yeast metabolome are made available for future drug–target rela-

tionship predictions or for other purposes. Importantly, we demon-

strated the effectiveness of our approach for membrane proteins that

are intrinsically difficult to work with from a biochemical perspective

(Carpenter et al, 2008). This is a tremendous problem from the

perspective of chemical screening, since membrane proteins are

important for understanding cell signaling systems and also are impor-

tant drug targets (Rask-Andersen et al, 2014) and play key roles in

drug toxicity for proteins such as in solute carrier proteins (Girardi

et al, 2020). Because our approach does not require biochemical

manipulations, it avoids this pitfall.

We developed an in vivo screening approach, and thus it is possi-

ble that the drugs are metabolized by the cell and that a metabolized

form is interacting with the target. However, this can be an advan-

tage for in vivo screening approaches. For example, leads from

in vitro screening approaches can prove ineffective in vivo due to

metabolism of the drug. Further, when targeting intracellular

proteins it is desirable to use a screening approach such as ours that

relies on the ability of small molecules to enter the cell since this is

a key aspect of the efficacy of the drug in vivo. The increasingly

granular connections made between mechanisms of uptake and

drug sensitivity highlight the importance of not taking this for

granted (Girardi et al, 2020). These strengths highlight the efficacy

of this method for identifying drug–target interactions.

The chemical library chosen for this study is composed of

compounds with known mechanistic targets in various organisms.

However, the five identified antagonists for GPR1 have no previ-

ously known targets in yeast. Ipriflavone is a synthetic isoflavone,

and nalidixic acid is a quinolone antibiotic. Most intriguingly, the

last three of the drugs (ibuprofen, fenbufen, and felbinac) are non-

steroidal anti-inflammatory drugs (NSAID) targeting cyclooxygenase

in higher cells. Previous reports have indicated that ibuprofen can

reduce the formation of biofilms by the pathogenic fungus Candida

albicans (Alem & Douglas, 2004), and that combinatorial treatment

of the yeast with ibuprofen and fluconazole can prove more effec-

tive than fluconazole treatment alone (Costa-de-Oliveira et al,

2015). Here, we demonstrated that ibuprofen can reduce filamen-

tous growth, and that it antagonizes GPR1. Filamentous growth in

S. cerevisiae has been used to understand the mechanisms of biofilm

formation in pathogenic yeasts (Cullen & Sprague, 2012), and since

the C. albicans genome encodes a GPR1 homolog, these results

suggest that ibuprofen may disrupt biofilm formation in C. albicans

through affecting the activity of GPR1. These results suggest the

potential utility of developing analogs of ibuprofen that could serve

as higher potency antagonists to specifically inhibit C. albicans

GPR1 and thus reduce the burden of this pathogen.

This approach is not free of limitations. Although it could be

used to identify agonists, it identified antagonists at a higher rate.

This is a common result for chemical screens (Hughes et al, 2011)

and may be caused by partial agonists acting as a competitive antag-

onists since an endogenous ligand is present in the media for most

of the targets (Detry et al, 1984). Another potential limitation is that

many more high ranking hits were discovered for GPR1 than for the

other targets in the study. GPR1 showed strong overexpression

inducer dose-dependent changes in metabolism, which allowed for

strong matching between the metabolomes of drug treatments with

those of overexpression conditions for GPR1 compared with the

other genes in the panel. This is expected, since the matching of

drugs and genes depends on the quality of the metabolome response

to the genetic perturbation. This is, however, unlikely to be a signifi-

cant limitation because previous results from other organisms have

shown that most loss-of-function mutations have a measureable

effect on the metabolome (Fuhrer et al, 2017). In addition, this

approach makes use of both overexpression and loss-of-function

conditions, meaning that it can still work in circumstances where

redundancy hides the influence of a loss-of-function mutation on

the metabolome. Another potential limitation lies in the selection of

media conditions. Drug treatments or mutations that might have a

strong consequence for the metabolome can be hidden in growth

conditions where a particular metabolic pathway is not being used.

Thus it is important to select conditions such that they maximize

the chance of being able to detect metabolome responses for key

classes of targets, but this consideration is equally relevant for other

in vivo screening approaches. Finally, as with all chemical screening

approaches, the predicted drug–target relationships are not responsi-

ble for the entirety of the effect of any given small molecule on the

cell. Indeed, the small molecules from the library would be expected

to affect a collection of targets (Mestres et al, 2009). However, we

demonstrated that the response of the cell to small molecule treat-

ments was at least in part contingent of the presence of its putative

target thus demonstrating that the effect of the drugs are generally

mediated at least in part through that target. This makes the

approach a sensible way of identifying lead compounds for chemical

probe or drug development.

Taken together, these results raise the possibility of predicting

drug–target interactions on a genome-wide scale and thus offers a

roadmap to a broad catalogue of predicted drug–target relationships

across the genome. Such a catalogue would be invaluable for speed-

ing the rate of discovery of chemical probes that can be used to

tease apart signaling systems by selectively and dynamically altering

the activity of targets within the cell, but would also speed the rate

of lead compound identification for drug development.

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalog number

Experimental models

Yeast artificial transcription factor overexpression system (McIsaac et al, 2013) N/A

YETI non-essential library collection (Arita et al, 2021) N/A
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Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

Prestwick Chemical Library: 1,280 drug collection Prestwick Chemical N/A

Chemicals, enzymes, and other reagents

Yeast extract BD Biosciences 288630

Bacto-peptone BD Biosciences 214530

G 418 disulfate salt Sigma-Aldrich A1720

Ammonium sulfate Sigma-Aldrich A4418

Yeast nitrogen base BD Biosciences 233530

D-(+)-glucose Sigma-Aldrich G8270

Dextrose Sigma-Aldrich D9434

Agar BD Biosciences 214530

Amino acid dropout supplement without uracil Sigma-Aldrich Y1501

b-Estradiol Sigma-Aldrich E8875

Dimethylsulfoxide (DMSO) Sigma-Aldrich 276855

Ibuprofen Sigma-Aldrich I4883

a1-Mating factor Sigma-Aldrich T6901

Thaumatin Sigma-Aldrich T7638

Atorvastatin Sigma-Aldrich 1044516

Hydroxyuracil Sigma-Aldrich H8627

Aminooxyacetate Sigma-Aldrich C13408

Pentostatin Sigma-Aldrich SML0508

Fluvastatin Sigma-Aldrich PHR1620

HPLC-grade acetonitrile Sigma-Aldrich 34998

HPLC-grade methanol Sigma-Aldrich 34885

HPLC-grade water Sigma-Aldrich 1153331000

Trehalose quantification kit Megazyme K-TREH

Software

Matlab R2018b The MathWorks, Inc. N/A

Python 3.9.5 https://www.python.org/ N/A

Spyder 4.1.4 https://www.spyder-ide.org/ N/A

SciPy 1.5.0 (Virtanen et al, 2020) N/A

Scikit learn 0.23.1 https://scikit-learn.org/

R 4.0.3 https://cran.r-project.org/ N/A

RStudio 1.2.1335 https://www.rstudio.com/ N/A

Clusterprofiler 3.16.1 (Yu et al, 2012; Wu et al, 2021) N/A

coop 0.6-3 https://github.com/wrathematics/coop N/A

ImageJ (Carpenter, 2007; Rueden et al, 2017) N/A

Other

6550 iFunnel Q-TOF mass spectrometer Agilent N/A

MPS2 autosampler Gerstel N/A

1290 Infinity LC System Agilent N/A

InfinityLab Poroshell 120 HILIC-Z column (2.1 × 100 mm, 2.7 µm) Agilent 679775-924

InfinityLab Poroshell 120 HILIC-Z guard column (2.1 mm, 2.7 µm) Agilent 821725-947

Sunrise plate reader Tecan N/A
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Methods and Protocols

Yeast cultivation
Yeast cultivated in liquid culture were grown at a temperature to

30°C shaking at a frequency of 250 rpm. For solid plate growth,

yeast were allowed to grow at 30°C. Cloning was performed using

YPD plates with G-418 (10 g/l yeast extract (BD Biosciences:

288630), 20 g/l Bacto-peptone (BD Biosciences: 211830), 5 g/l agar

(BD Biosciences: 214530), 300 µg/ml G-418 (Sigma-Aldrich:

A1720)). Yeast grown for Figs 1–3 were cultivated in SD media

(5 g/l ammonium sulfate (Sigma-Aldrich: A4418), 1.7 g/l Yeast

Nitrogen base (BD Biosciences: 233530), 20 g/l D-(+)-glucose

(Sigma-Aldrich: G8270)) with uracil amino acid dropout (1.94 g/l

Yeast Synthetic Drop-out Medium Supplements without uracil

(Sigma-Aldrich: Y1501)). In Fig 4A and B, growth was in SD media

(see above) with histidine dropout [1.94 g/l Yeast Synthetic Drop-

out Medium Supplements without histidine (Sigma-Aldrich:

Y1751)].

Strains used for study
All b-estradiol inducible strains constructed for this study were

generated using the system described by McIsaac (McIsaac et al,

2013). Briefly, the KanMX resistance gene as well as the synthetic b-
estradiol responsive Z4EV promoter was amplified from the pMN10

plasmid. This was done with primers with 50 ends matching the

sequence 300 base pairs upstream of the target gene’s transcrip-

tional start site for the forward primer and matching the reverse

complement of the start of the open reading from for the reverse

primer. The generated PCR products were transformed into the

DBY12416 strain using the LiAC/SS carrier DNA/PEG method (Gietz

& Schiestl, 2007a). Transformants were selected through growth on

YPD + G-418 plates and correct replacement of the native promoter

was confirmed by PCR and DNA sequencing. The wild-type control

strain for overexpression strain was constructed in the same way,

but only the KanMX gene was amplified and it was inserted in an

intergenic region upstream of the HO locus. For chemical-genetic

experiments described in Figs 2B and C, and 3E, deletion mutants in

a haploid BY4741 background were used. For those experiments,

the strains were transformed with the pHLUM minichromosome

(M€ulleder et al, 2012) to restore prototrophy using the transforma-

tion approach described above. In this case, selection was

performed on YNB plates supplemented with ammonium sulfate

and glucose.

Metabolite extraction
For all metabolite extractions, cultures were grown to a target OD600

of 1.0 with at least two cell doublings between inoculation and

harvesting. Cultivation was performed in deep 96-well plates at a

volume of 1.2 ml. OD600 was monitored 4 times, leading to a final

volume of 1 ml at the time of sampling. For overexpression experi-

ments, the yeast were treated with the indicated concentrations of

b-estradiol dissolved in DMSO (Sigma-Aldrich: E8875, final concen-

tration 0.1%) for 1.5 and 3 h prior to sampling. Extractions were

performed at an OD600 of ~1.0. For dose–response-induced overex-

pression experiments, biological replicates were the result of sepa-

rate wells within the same plate that were inoculated from

independent precultures. For the overexpression experiments

outlined in Fig 4, biological replicates represent cultures inoculated

and cultivated in separate 96-well plates. For drug treatments, the

yeast were treated with the drugs at a concentration of 10 µM, or

100 µg/ml for alpha factor, for half an hour prior to sampling. The

final concentration of the vehicle (DMSO) in these cases was also

0.1% (v/v). Within drug-treatment overexpression experiments

biological replicates represent cultures inoculated and cultivated

within separate 96-well plates. Treatment concentrations and pairings

for positive control drug treatments are reported in Dataset EV8. At

the time of harvesting the samples were centrifuged for 1 min with a

force of 2,254 g. The supernatant was discarded and 150 µl of cold

extraction solution [40% (v/v) HPLC-grade acetonitrile (Sigma-

Aldrich: 34998), 40% (v/v) HPLC-grade methanol (Sigma-Aldrich:

34885), 20% (v/v) HPLC-grade water (Sigma-Aldrich: 1153331000)]

was added to the residual cell pellet. The extraction was covered and

placed at �20°C for 1 h. After 1 h, the deep-well plates holding the

extraction were centrifuged for 1 min at 2,254 rcf before 100 µl of the

supernatant was taken and transferred into conical 96-well plates

(Huber lab: 7.1058) before being sealed (Huber lab: 7.0745) for long-

term storage at �80°C until the time of measurement.

Flow injection time-of-flight mass spectrometry
Mass spectrometry was performed using an Agilent 6550 Series

quadrupole time-of-flight mass spectrometer (Agilent) by and adap-

tation of the method described by Fuhrer et al (2011) Analysis was

performed using an Agilent 1100 Series HPLC system (Agilent) was

coupled to a Gerstel MPS 3 autosampler (Gerstel). The mobile phase

flow rate was set of 0.15 ml/min, with the isocratic phase composed

of 60:40 (v/v) isopropanol and water buffered to a pH of 9 with

4 mM ammonium fluoride. Online mass axis correction was

performed with taurocholic acid and Hexakis (1H, 1H, 3H-

tetrafluoropropoxy)–phosphazne) within the mobile phase. The

instrument was run in 4 GHz mode for maximum resolution while

collecting mass spectra between 50 and 1,000 m/z.

Analysis of flow injection mass spectrometry data
Mass spectrum centroiding, merging, and ion annotation was

performed as described in Fuhrer et al Raw ion intensities can be

found in Dataset EV1. (Fuhrer et al, 2011) Data normalization and

analysis was performed in Python using the Pandas package

(McKinney, 2019). Briefly, the datasets were filtered for outliers in

terms of OD600 at the time of sampling as well as in total ion

current. Previously measured mass spectra for the compounds in

the Prestwick chemical library were used to filter out drugs that

were misannotated as metabolites. Raw ion intensities were normal-

ized to counteract temporal drifts, as well as OD600 effects. To

remove temporal drifts, a LOWESS regression was fitted for each

ion with respect to injection sequence per measurement batch. The

trend with respect to injection sequence was then subtracted, and

differences in median ion intensity across the batches were similarly

subtracted. OD600 normalization was accomplished through a

linear regression for each ion with respect to the OD600 at the time

of sampling, and removing those residual trends. Normalized ion

intensities were z-score transformed. For chemical screening

samples, the z-scores were calculated for each ion with x represent-

ing the value for the sample in question for that ion. Sigma was the

standard deviation of the intensity of that ion for all samples derived

from the same 96-well plate. Mu was the average of the intensity of

that ion for all samples derived from the same 96-well plate. For
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dose–response overexpression samples, the z-scores were calculated

for each ion with x representing the value for the sample in question

for that ion. Average z-score were calculated for every drug and

overexpression condition. Sigma was the standard deviation of the

intensity of that ion for the paired estradiol-treated WT samples. Mu

was the average of the intensity of that ion for the paired estradiol-

treated WT samples. Average z-scored ion intensities between the

drug treatment and overexpression data sets were merged into one

data set and the Spearman correlation coefficient was calculated for

each drug with each overexpression condition. For the single estra-

diol concentration overexpression conditions described in Fig 4, z-

scores were calculated using the same approach as described for the

drug-treated cases. The effect of normalization on the variance

explained by the data’s principal components is depicted in

Appendix Fig S11. z-Score values with ion annotation can be found

in Dataset EV2. For the metabolomics data depicted in Fig 4, raw

ion intensities can be found in Dataset EV7 and average z-scored

ion intensities can be found in Dataset EV9.

Logistic fitting of Spearman R values for hit prioritization
Logistic curve fitting was done using the optimize.curve_fit function

from SciPy (Virtanen et al, 2020) For each overexpression and time

point dose response, the data were scaled between 0 and 1 using the

scikit-learn MinMaxScaler function. A logistic curve function was

then fit to the relationship between estradiol dose and scaled Spear-

man R values. Fits were done using a 2-point method for computing

the Jacobian matrix. A starting point of 2 for the inflection point and

steepness of 0 was chosen. The returned optimized values as well

as the estimated covariance were stored, with the covariance metric

being used to rank fits on their quality. Logistic fit output values can

be found in Dataset EV3. Comparisons with a covariance score indi-

cating a fit in the top 10% of comparisons were considered as poten-

tial hits. As described above, this level is sufficient to recover the

true positive interaction of alpha factor with STE2, and allows for

the recovery of fit qualities of similar or marginally poorer quality.

Candidates hits were further filtered based on whether they had a

maximum absolute Spearman correlation as high or higher than that

of the comparison of alpha factor with STE2. For further analysis,

control and steroid-related hits were discarded as artifacts of the b-
estradiol induced overexpression system. Cosine similarity was

calculated using the R “coop” package, and the similarity output

was used in the same analytical pipeline outlined above. Fits with

an inflection point outside of the bounds of the concentrations of

estradiol that were added were also discarded.

Liquid-chromatography mass spectrometry
Metabolite extracts were prepared as described above. Metabolite

extracts were subjected to chromatographic separation through

normal phase chromatography. Separation was performed using

Agilent Infinity 1290 UHPLC stack with Agilent 1100 Series binary

pump with an InfinityLab Poroshell 120 HILIC-Z column

(2.1 × 100 mm, 2.7 µm, Agilent) including an InfinityLab Poroshell

120 HILIC-Z UHPLC guard column (2.1 mm, 2.7 µm, Agilent).

Samples were analyzed using an Agilent 6550 Series quadrupole

time-of-flight mass spectrometer running in negative extended

dynamic range mode. Mobile phases were 10 mM ammonium

acetate pH 9 in water with 5 µM medronic acid, and 90:10 acetoni-

trile:water with 10 mM ammonium acetate pH 9. A flow rate of

600 µl/min was used with a total measurement duration of 5 min.

Mobile phase compositions were set as described in Dataset EV4.

Online mass-axis correction was performed using purine and

hexakis. Data analysis was performed in Agilent MassHunter Quan-

titative Analysis (Version B.07.00) with peaks chosen based on

retention time matching to compounds in standard solution. 20

parts per million m/z windows were used for peak selection, with

integration performed using spectal summation of specified time

and mass windows. Average Log2 transformed fold changes were

calculated between samples, and the Pearson correlation coefficient

was calculated for each pairing of induced receptor overexpression

and drug treatment. Peak areas for overexpression and drug treat-

ments are reported in Datasets EV5 and EV6 respectively.

Structural similarity comparison
The R package ChemmineR (Cao et al, 2008) was used for all chem-

informatics described here. SDF files were generated from the

SMILES structural descriptions accompanying the Prestwick library.

The pairwise MCS Tanimoto similarity score was then calculated

between all the SDF representations of the drugs using a MCS algo-

rithm, and fingerprint similarity was calculated with a pairwise

Tanimoto comparison of binary fingerprints.

Trehalose assays
Trehalose extractions were performed as described above for metabo-

lite extractions with the following modifications: Strains were culti-

vated in synthetic defined media including all amino acids, samples

were washed twice with distilled water prior to metabolite extraction,

and metabolite extractions were allowed to proceed for 18 h at

�20°C. Trehalose measurement was performed using an enzymatic

detection kit (Megazyme: K-TREH). 20 µl of metabolite extracts were

subjected to analysis, the difference in NADPH absorbance was

measured with a Tecan Infinite M Nano+ plate reader before and after

the addition of the trehalase enzyme to the assay in order to estimate

relative residual treahalose between samples.

Filamentous growth assays
Filamentous growth was assayed using a plate washing assay (Gietz

& Schiestl, 2007b). Briefly, 5 ml of melted YEPD agar medium

(10 g/l yeast extract (BD Biosciences: 288630), 20 g/l Bacto-peptone

(BD Biosciences: 211830), 5 g/l Agar (BD Biosciences: 214530),

20 g/l Dextrose (Sigma-Aldrich: D9434)) with a temperature of

approximately 55°C was mixed with 5 µl of the indicated drugs or

vehicle control in order to reach a final concentration of 20 µM or

the concentrations indicated in the figure caption. The drug-media

mixture was deposited into the wells within 6 well plates and

allowed to cool. For mannose experiments, 100 µl of 200 g/l D-(+)-

mannose or a water control was added to each well prior to media

addition. Both BY4741 and Σ1278b yeast were grown to stationary

phase in precultures, and 5 µl of the yeast were spotted onto the

solid media within the plates. The yeast were allowed to grow on

the media for 3 days. The colonies were then photographed, and the

surface yeast was washed away. The residual scars left in the media

from the filamentous growth were then photographed

(Appendix Fig S12 for images). For ibuprofen dose–response experi-

ments, the experiments were performed at a 1 ml scale in 24-wll

plates with the residual scars photographed under transillumination

(Appendix Fig S13 for images). The amount of scarring of the agar
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was quantified using the gel analysis tool in ImageJ (Rueden et al,

2017) with subtraction from an untreated well to establish baseline

conditions.

GO enrichment analysis
YETI library yeast strains were clustered by Ward’s method based

on Manhattan distance. The 86 genes in the dataset were split into

15 clusters based on the distance between the clusters and the genes

within those groups were subjected to GO enrichment analysis. GO

term enrichment was tested using the ClusterProfiler R package (Yu

et al, 2012; Wu et al, 2021). The ratio between the occurrence of the

most widespread but significantly enriched biological process term

in each cluster and the background rate in the genome was calcu-

lated and the average enrichment factor for all mutants was deter-

mined. Enrichment factors were determined for both the genuine

data and data where the group membership had been shuffled.

When this randomization was performed 1,000 times, the empirical

P-value for the relative enrichment rate for the true data was found

to be < 0.001.

Data availability

The raw flow-injection mass spectrometry data are deposited in the

MassIVE database (https://massive.ucsd.edu) and can be accessed

using the code MSV000086451. LC-MS drug treatment raw data are

available using the MassIVE code MSV000087420. LC-MS gene over-

expression data are available using MassIVE code MSV000087421.

Raw mass spectrometry data for drug treatment and overexpression

experiments introduced in Fig 4 are available with MassIVE codes

MSV000088124 and MSV000088125 for drug treatment and overex-

pression data, respectively. All other data, including processed mass

spectrometry data, are provided as EV Datasets, as indicated subse-

quently: Dataset EV1: raw ion intensities, sample metadata, and ion

information for Prestwick and titrated overexpression experiments.

Dataset EV2: top ion annotations and average z-scores for Prestwick

and titrated overexpression screens experiments. Dataset EV3: logis-

tic fit output for drug and overexpression comparison. Dataset EV4:

mobile phase compositions and flow-rates for LC-MS analysis.

Dataset EV5: peak areas for LC-MS analysis of overexpression

mutants. Dataset EV6: peak areas for LC-MS analysis of drug treat-

ments. Dataset EV7: annotated ion intensities and sample informa-

tion for mass spectrometry in Fig 4. Dataset EV8: true-positive

drug–target relationships shown in Fig 4. Dataset EV9: average z-

scored ion intensities for mass spectrometry shown in Fig 4.

Expanded View for this article is available online.
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