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Abstract
Theory predicts that organism–environment feedbacks play a central role in how 
ecological communities respond to environmental change. Strong feedback causes 
greater nonlinearity between environmental change and ecosystem state, increases 
the likelihood of hysteresis in response to environmental change, and augments the 
possibility of alternative stable regimes. To illustrate these predictions and their de-
pendence on a temporal scale, we simulated a minimal ecosystem model. To test the 
predictions, we manipulated the feedback strength between the metabolism and the 
dissolved oxygen concentration in an aquatic heterotrophic tri-trophic community 
in microecosystems. The manipulation consisted of five levels, ranging from low to 
high feedback strength by altering the oxygen diffusivity: free gas exchange between 
the microcosm atmosphere and the external air (metabolism not strongly affecting 
environmental oxygen), with the regular addition of 200, 100, or 50 ml of air and no 
gas exchange. To test for nonlinearity and hysteresis in response to environmental 
change, all microecosystems experienced a gradual temperature increase from 15 
to 25°C and then back to 15°C. We regularly measured the dissolved oxygen con-
centration, total biomass, and species abundance. Nonlinearity and hysteresis were 
higher in treatments with stronger organism–environment feedbacks. There was 
no evidence that stronger feedback increased the number of observed ecosystem 
states. These empirical results are in broad agreement with the theory that stronger 
feedback increases nonlinearity and hysteresis. They therefore represent one of the 
first direct empirical tests of the importance of feedback strength. However, we dis-
cuss several limitations of the study, which weaken confidence in this interpretation. 
Research demonstrating the causal effects of feedback strength on ecosystem re-
sponses to environmental change should be placed at the core of efforts to plan for 
sustainable ecosystems.

K E Y W O R D S

dissolved oxygen, environmental change, feedback strength, hysteresis, nonlinearity, 
organism–environment feedback, stability, transient state

www.ecolevol.org
mailto:
https://orcid.org/0000-0002-3712-4301
http://creativecommons.org/licenses/by/4.0/
mailto:aurelie.garnier.research@gmail.com


5528  |     GARNIER Et Al.

1  | INTRODUC TION

Worldwide, all ecosystems are currently experiencing changing en-
vironmental conditions that may alter the feedbacks between biota 
and their environment (Naiman, Elliott, Helfield, & O’Keefe, 1999). 
Links in food webs can disappear (e.g., predator loss due to over-
exploitation: Estes et al., 2011), while fluxes can be altered, thus 
affecting the ecosystem state (e.g., eutrophication with nutrients 
in excess: Scheffer et al., 2003). The effects of climate change on 
ecosystems can have both top-down and bottom-up influences, and 
their feedbacks can be both positive and negative (Bony et al., 2006; 
Heimann & Reichstein, 2008; Moorcroft, 2003). Hence, the study 
of feedbacks and their consequences is key to understanding how 
ecosystems respond to environmental changes and management 
measures (Suding, Gross, & Houseman, 2004).

Organism–environment feedback (OEF) occurs when the activ-
ities of organisms affect their environment, and the environment 
simultaneously affects the organisms (Hutchinson, 1954; Jones, 
Lawton, & Shachak, 1994; Naiman et al., 1999; Tilman, 1988). In 
aquatic ecosystems, for example, organism respiration reduces 
the amount of dissolved oxygen (DO), while the amount of DO 
affects the vital rates of organisms (Breitburg, Loher, Pacey, & 
Gerstein, 1997; Fenchel, 2005; Fenchel & Finlay, 2008; Forster, 
Hirst, & Atkinson, 2012). Theoretical studies highlight the impor-
tance of OEF for diverse ecological issues such as niche construc-
tion (Jiang & DeAngelis, 2013; Odling-Smee, Douglas, Palkovacs, 
Feldman, & Laland, 2013), competition (Golubski, 2007), population 
extinction (Qin, Zhang, Wang, & Song, 2017), metapopulations (Han, 
Hui, & Zhang, 2009), community structure (Muthukrishnan, Lloyd-
Smith, & Fong, 2016; Seto & Iwasa, 2011), and food web dynamics 
(Brown, Ferris, Fu, & Plant, 2004a).

OEFs have sparked the interest of ecologists as a potential de-
terminant of ecosystem stability (Kéfi, Holmgren, & Scheffer, 2016; 
Lotka, 1925; Neutel, Heesterbeek, & Ruiter, 2002; Watson & 
Lovelock, 1983; Wilson & Agnew, 1992). Negative feedback loops 
tend to stabilize dynamics by dampening fluctuations that result 
from interactions, whereas positive ones can destabilize dynam-
ics as fluctuations increase in magnitude (Jones et al., 1994; Kéfi 

et al., 2016; Lenton, 2013; Lewontin, 1969; Marzloff, Dambacher, 
Johnson, Little, & Frusher, 2011; May, 1977; Scheffer, Carpenter, 
Foley, Folke, & Walker, 2001; Seto & Iwasa, 2011). The balance of 
negative and positive feedbacks is predicted to control the linearity 
of the response of an ecosystem to environmental change and deter-
mine whether that response exhibits hysteresis and abrupt changes 
(i.e., tipping points) (Figure 1a).

A well-known example of a nonlinear and hysteretic response of 
an ecosystem to environmental change is found in shallow lakes, in 
which the ecosystem state is mainly governed by OEF loops involv-
ing aquatic vegetation and phytoplankton (Scheffer, 2004; Scheffer 
& van Nes, 2007). Two stable states can be observed depending on 
the nutrient concentrations. With low nutrients, the only observed 
state is dominated by macrophytes and corresponds to clear water: 
macrophytes deplete the nutrients, thus negatively impacting the 
phytoplankton and promoting water transparency, which in turn has 
a positive effect on macrophytes. Macrophytes also provide refuge 
to zooplankton, which can control phytoplankton abundance. With 
high nutrients, the other stable state is observed, characterized by 
turbid water. Enrichment promotes phytoplankton growth, which 
affects the environment by increasing suspended particles, decreas-
ing light availability, and reducing macrophytes and thus zooplank-
ton refuges. These two states are each stable due to feedback loops 
previously described (Scheffer et al., 2001). At intermediate nutrient 
levels, either of these states can be observed depending on the his-
torical conditions; in other words, there are two alternative stable 
states.

The turbid state is often considered an undesirable state, and 
so measures such as reducing nutrient loading are sometimes taken 
to recover the more desirable clear water state (Meijer, Raat, & 
Doef, 1989; Scheffer et al., 2001). However, the measures may be 
unsuccessful, with the shallow lake remaining turbid after a reduc-
tion in nutrient loading (Meijer et al., 1989). The lake will only recover 
to a clear state after a substantial decrease in nutrient concentra-
tions, at a level below which the lake initially switched to the turbid 
state. This phenomenon, termed hysteresis, refers to the histori-
cal dependency of the system state (Holling, 1973; May, 1977). In 
general, and as mentioned, feedback systems theory predicts that 

F I G U R E  1   Theory, hypotheses, and experimental apparatus. (a) Three types of ecosystem responses to a gradual environmental change, 
depending on the feedback strength between biotic and abiotic compartments: in the absence of feedback, the ecosystem state will 
respond gradually, whereas the response will be highly nonlinear for a positive feedback loop. As the strength of the feedback increases, the 
ecosystem response becomes highly nonlinear with a catastrophic shift from state 1 to state 2 at a certain environmental condition threshold 
(represented by the green arrows). The environmental condition must decrease below the value at which the shift occurred to return to the 
previous state. Between these two environmental conditions, the system presents alternative stable states (i.e., bistability). (b) Manipulating 
the organism–environment feedback strength. The tri-trophic system is composed of two negative feedback loops governed by predation 
(gray arrow). The biotic–abiotic feedback loop between the community and the oxygen availability is represented by positive and negative 
effects (black arrow). In an open system, the oxygen availability remains constant over time, with the consumed oxygen being replaced by gas 
diffusion from the atmosphere. By contrast, in a closed system, there is no supply, meaning that the available oxygen decreases over time. 
With a low oxygen concentration, the metabolic rate may reduce or increase (dotted arrow) depending on the organism response, resulting 
in a change in the overall feedback loop sign (e.g., from negative to positive, thus increasing the chance of alternative states). (c) Apparatus to 
manipulate the organism–environment feedback strength involving oxygen. The gas exchange manipulation consisted of blocking the glass 
tubes with silicone stoppers (addition of air and closed treatments) or with a sponge stopper (open treatment). The addition of air involved 
sucking 200, 100, or 50 ml of air via the small glass tube that bubbled the liquid phase. Oxygen sensors were used in each phase (head and 
liquid) to observe the oxygen concentration over time
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stronger positive feedback can increase the likelihood of hysteresis 
and nonlinearity (Cinquin & Demongeot, 2002; Lenton, 2013; Kéfi 
et al., 2016; van de Leemput, Hughes, van Nes, & Scheffer, 2016; 
Figure 1a).

These types of systems dynamics and the role of feedbacks in in-
ducing them may be observed in other systems such as deserts, coral 
reefs, woodlands, and oceans, where other biological and environ-
mental factors are involved in the feedback loop such as fishing, over-
grazing, and climate change (Riegl & Piller, 2000; Scheffer et al., 2001). 
In the North Sea, for example, the critical transition between cod- and 
herring-dominated states had a profound effect on the local economy. 
The environmental factor behind this critical transition was likely the 
increasing sea surface temperature, which favored herring population 
growth while harming cod recruitment (Beaugrand, Brander, Lindley, 
Souissi, & Reid, 2003; O'Brien, Fox, Planque, & Casey, 2000). Hence, 
gradually changing temperatures may be one of the greatest chal-
lenges for ecosystem management under climate change.

Numerous studies have tested for the presence of multiple sta-
ble states using various types of evidence (Dai, Vorselen, Korolev, 
& Gore, 2012; Fukami, Bezemer, Mortimer, & Putten, 2005; Jiang 
& Patel, 2008; Louette & De Meester, 2007; Sait, Liu, Thompson, 
Godfray, & Begon, 2000; Schröder, Persson, & Roos, 2005, 2012; 
Weslien, Djupström, Schroeder, & Widenfalk, 2011). However, given 
the importance of the feedback strength in governing system re-
sponse to environmental change (Ratajczak et al., 2018), it is some-
what surprising that—to our knowledge—no experimental studies 
have manipulated OEF strength and tested its effects on nonlinear-
ity, hysteresis, and multistability (Schröder, Persson, & Roos, 2005). 
Experimental manipulations of the chemostat dilution rate come 
close, as the dilution rate influences the effect of resource consump-
tion on resource concentration (Dai et al., 2012; Fussmann, Ellner, 
Shertzer, & Hairston, 2000). A study by Dai et al. (2012) involved 
yeast populations in chemostats that exhibited an Allee effect (posi-
tive density-dependent growth at a low population size), alternative 
stable states, and hysteresis. However, the experiment did not aim 
to test the prediction that a stronger/weaker Allee effect would in-
crease/decrease the likelihood of alternative stable states, hystere-
sis, and nonlinear response to environmental change.

Our study aimed to examine the effects of OEF strength on 
ecosystem dynamics and ecosystem response to environmen-
tal change (temperature). Small laboratory-based communities of 
aquatic microorganisms are a relevant and convenient study sys-
tem, given the diversity of common ecological processes (growth, 
death, consumption, competition, predation), the fast generation 
time of the organisms, and their ease of monitoring and manipula-
tion. Our community was a predator–prey–resource system and 
thus had negative feedback loops between species abundances. 
The organisms involved perhaps show different non-monotonic re-
sponses to DO, such that a reduction in DO could be associated with 
increased metabolism (i.e., positive feedback) (especially for anaer-
obic organisms: e.g., Fenchel, 2005; Hardewig, Addink, Grieshaber, 
Pörtner, & Thillart, 1991), with low DO being associated with re-
duced rates such as the predation rate if the predator is intolerant to 

anoxia (Decker, Breitburg, & Purcell, 2004; Nestlerode & Diaz, 1998; 
Sandberg, Tallqvist, & Bonsdorff, 1996). DO concentration was the 
main environmental variable, since it is a key component in aquatic 
ecosystems and depends on physical and biological processes. We 
conceived a method for manipulating the strength of OEF using ox-
ygen by altering the openness of the microcosms to the surrounding 
atmospheric gases (Figure 1c). When open to the surrounding atmo-
sphere, the oxygen consumption of organisms has a weaker effect 
on DO, since the used oxygen can quickly be replaced from the sur-
rounding atmosphere. When closed, consumption has a stronger ef-
fect, thus reducing DO concentration. By manipulating the openness 
of the microcosm to the surrounding atmosphere, we manipulated 
the strength of the feedback loop between organisms and their envi-
ronment, with the possibility of creating stronger positive feedback 
in the ecosystem. If the manipulation of the oxygen availability leads 
to this effect, then the theory predicts that increasing the feedback 
strength will: (a) cause greater nonlinearity between an environ-
mental change and ecosystem state; (b) increase the likelihood of 
hysteresis in response to an environmental change; and (c) augment 
the possibility of observing alternative stable states (Fussmann 
et al., 2000; Ibelings et al., 2007; Kéfi et al., 2016; Rietkerk, Dekker, 
Ruiter, & Koppel, 2004; Scheffer & Carpenter, 2003).

However, this manipulation may simultaneously affect the rate 
at which the DO of the system changes over time (Figure 1b) due 
to the different rates at which oxygen is replenished. Indeed, a high 
biomass community in a closed system could result in a faster DO 
decrease compared to a low biomass community (with lower oxygen 
consumption). Nevertheless, high and low biomass may not differ in 
an open system when the respiration is balanced with diffusion from 
the headspace (Figure 1b). This raises the possibility that changes in 
the rate of system responses to the environmental driver changes 
could also affect the results. We therefore needed to develop the-
oretical predictions contingent on this possibility. Hence, we first 
developed and described the predictions of the minimal ecosystem 
model presented in Scheffer et al. (2001). We then compared the 
experimental results to these predictions.

2  | MATERIAL AND METHODS

2.1 | Development of theory and predictions

Imagine an ecosystem state Y (e.g., DO concentration in a pond) and 
an environmental driver (e.g., temperature) in state E. When the en-
vironmental driver previously followed an increasing trend, we used 
Y(Eup) to describe the ecosystem state, and when the environmental 
driver previously followed a downward trajectory, we used Y(Edown).

The amount of nonlinearity was calculated as the root mean 
square difference between the fitted values of a linear and nonlin-
ear model of the Y versus E relationship (Emancipator & Kroll, 1993). 
A generalized additive model fitted using the default options of 
the gam function in the mgcv r package was the nonlinear func-
tion (Wood, 2011), while the linear model was fitted using the lm 
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function in the stats r package (R Core Team, 2016). As opposed to 
relative nonlinearity, response data were not standardized to obtain 
a measure of absolute nonlinearity (Emancipator & Kroll, 1993).

The amount of hysteresis was measured as the difference be-
tween Y(Eup) and Y(Edown) for all E; we used the mean of the absolute 
difference. The absence of hysteresis implies that the ecosystem 
state will follow the same trajectory (see Figure 1a—continuous vs. 
discontinuous transition) when the environmental driver increases 
or decreases such that Y(Eup) = Y(Edown). Hysteresis implies that the 
path of the ecosystem state differs depending on the direction of 
environmental change such that Y(Eup) ≠ Y(Edown).

To simulate changes in the ecosystem state caused by changes 
in an environmental driver, we used the “minimal ecosystem model” 
presented in Scheffer et al. (2001):

where Y is an ecosystem property, a an environmental driver that pro-
motes Y, b the rate of decay of Y, r the “self-replacement” rate of Y that 
is modified by the function f(Y) in which p controls the nonlinearity 
of this self-replacement function (i.e., feedback strength), and h the 
threshold at which the shift occurs. We set b = r = h = 1. We then sim-
ulated the system with p (i.e., feedback strength) set at values ranging 
from 0 to 10, and a changing linearly from 0 to 1 and back to 0 at each 
of the two rates of change: up-and-down in 200 timesteps (fast rate of 
change) or 20 000 timesteps (slow rate). For each combination of p and 
rate of change of a, we checked for alternative stable states and mea-
sured nonlinearity and hysteresis, as described above. We also made 
the same simulations but with decreasing and then increasing changes 
in a. A reproducible description of this simulation study is available on-
line at http://opetc hey.github.io/RREEB ES/Schef fer_etal_2001_Natur 
e/report.html.

2.2 | Experimental system

Microcosms were sterile 250 ml glass jars containing 100 ml 
protozoan pellet medium (PPM) (Altermatt et al., 2015). Media 

consisted of 0.55 g of crushed protozoan pellets (Carolina 
Biological Supply Co., Burlington, N.C. USA) in 1 L of Chalkley's 
medium and then filtered through a sterile 0.45 µm membrane 
filter before sterilization by autoclave. Filtration was used to re-
move small particles to avoid debris affecting the videography 
and flow cytometry without affecting dynamics (unpublished 
work). Two additional wheat seeds per microcosm provided a 
slow-release nutrient source. Microcosms were placed in a dark 
temperature-controlled incubator to reduce the possibility of un-
wanted photosynthetic organisms.

The microbial heterotrophic aquatic community consisted of two 
bacteria species (Serratia fonticola and Bacillus subtilis), two bacte-
rivorous prey species (Colpidium striatum and Dexiostoma campy-
lum), and one predator species (Spathidium sp.). To avoid extinction 
caused by starvation, Spathidium sp. forms cysts and emerges when 
prey increase in abundance. We initiated the community with bac-
teria grown at 37°C for 24 hr and then added Colpidium striatum and 
Dexiostoma campylum. Before this addition, the prey species were 
grown in monoculture for 7 days at 15°C to reach carrying capacity. 
On day 0, in the microcosms we combined 45 ml of Colpidium stria-
tum's culture (with ~100 ind.mL−1), 45 ml of Dexiostoma campylum's 
culture (with ~300 ind.mL−1), and 10 ml of Spathidium sp. at a density 
of 12 individuals per mL.

2.3 | Experimental design

Measuring the nonlinearity of responses to an environmental driver 
requires the environmental driver to be varied. Measuring hyster-
esis requires the variation in an environmental driver to occur in 
two directions. Neither measurement requires a controlled envi-
ronmental treatment for comparative purposes (see our simulation 
results below and Schröder et al., 2005). Therefore, we exposed all 
microcosms to the same temperature regime: an increase of 0.7°C 
every two days for 30 days, constant at 25°C for a week, and then 
a decrease of 0.7°C every two days for 30 days. This rate (+2.5°C 
per week or about 0.1–0.2°C per generation) is comparable to the 
predicted temperature rise over the next 100 years that will affect 
larger organisms (IPCC, 2007). Additionally, this temperature range 

dY

dt
=a−bY+ rf(Y) and f(Y)=

Yp

Yp+hp

F I G U R E  2   Gas exchange manipulation 
method. Firstly, oxygen was removed 
from the water using nitrogen gas (N2). 
Oxygen was then recovered in the liquid 
(black circles) and head phases (white 
squares)

http://opetchey.github.io/RREEBES/Scheffer_etal_2001_Nature/report.html
http://opetchey.github.io/RREEBES/Scheffer_etal_2001_Nature/report.html
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was relevant given the wide thermal tolerance of protists (Atkinson, 
Ciotti, & Montagnes, 2003; van der Have & de Jong, 1996; Krenek, 
Berendonk, & Petzoldt, 2011; Laakso, Löytynoja, & Kaitala, 2003). 
Monocultures were kept at 15°C in their long-term stock culture 
(Altermatt et al., 2015). Note that we simulated two rates of envi-
ronmental change in the model, while we tested only one rate of 
environmental change in the experiment.

To manipulate the strength of the OEF loop, we altered the 
strength of the effect of organism respiration on DO concentration. 
We varied the rate of gas exchange between the atmosphere sur-
rounding the microcosms (assumed constant at 21% oxygen) and 
the headspace of the microcosm (Figure 2). With a higher rate of 
gas exchange (i.e., open system), the effects of organism respiration 
(i.e., oxygen consumption) on DO concentration would be weaker, as 
the consumed oxygen would be replaced by oxygen diffusion. This 
would lead to a weaker feedback loop (Figure 1b). However, a lower 
rate of gas exchange (i.e., closed system) would lead to stronger ef-
fects of respiration on DO (and a stronger feedback loop; Figure 1b), 
as the respiration is not balanced by the diffusion. In preliminary 
experiments, we observed that DO was more strongly affected by 
metabolism when the jars were more closed (unpublished data). 
Nevertheless, this does not necessarily make oxygen a limiting re-
source, as this depends on absolute DO levels rather than feedback 
strength.

The rate of gas exchange was controlled by sealing each micro-
cosm jar with a 3-cm silicone stopper with two holes (Figure 1c). 
The first hole contained a glass tube with a 0.7 cm inside diameter 
to allow microcosm sampling with a Pasteur pipette; it was sealed 
with a 0.7-cm silicone stopper (to prevent gas flux) or a sponge (to 
allow gas flux). The second hole contained a hypodermic needle 
with a 0.1-mm inside diameter fitted with a plastic adaptor that was 
sealed with a 0.4-cm silicone stopper. This apparatus allowed us to 
implement five levels of oxygen exchange treatment: continuous 
exchange (by putting a sponge in the glass tube), exchange of 50, 
100, or 200 ml air every second day (via the needle, and otherwise 
with a stopper in the glass tube and hypodermic needle), or very 
little exchange (a stopper in the glass tube and hypodermic nee-
dle). The experiment resulted in 30 microcosms with five oxygen 
exchange levels and six replicates of each. A small amount of air 
was exchanged every time the communities were sampled; hence, 
all the treatments, even the one with the stopper, were not com-
pletely sealed to gas flux. The quantified gas exchange treatments 
(addition of 50, 100, or 200 ml air) were carried out by sucking the 
air through the 0.1-mm needle with a syringe that created a suction 
effect and added air directly in the liquid phase. Test experiments 
validated that these treatment levels had the expected effects on 
DO concentrations (Figure 2).

2.4 | Data collection

All measurements were made every 2 days.

2.4.1 | Oxygen measurement

The percentage of oxygen was measured using noninvasive chem-
ical-optical sensing (Fibox 4trace, PreSens, Germany; Altermatt 
et al., 2015). This method involved fixing sensors to the inside of the 
microcosm vessel walls in the head and liquid spaces (at the same 
depth in all microcosms). These were read by a reader machine with 
a fiber optic cable to read the sensors detecting the oxygen level 
and a temperature probe to record the temperature of the micro-
cosm. The probes function equally well when wet or dry. The oxygen 
sensors were precalibrated by the PreSens company and checked in 
water at 20°C before the experiment. The sensor reader calculates 
%O2 in the liquid and headspace of the microcosms while adjust-
ing to the temperature of the microcosm. Hence, the reader reports 
21%O2 when the liquid and headspace gas are balanced, regardless 
of the temperature of the liquid and headspace gas. At each sampling 
event, oxygen was first measured without moving the microcosms to 
avoid any effects of movement.

2.4.2 | Predator density

After gently agitating the microcosm for the purpose of homogeni-
zation, we sampled 1 ml with a Pasteur pipette and replaced it with 
fresh PPM. We estimated the predator density by counting the num-
ber of Spathidium sp. individuals in 1 ml by eye under a dissecting 
microscope.

2.4.3 | Prey density with video analysis

To estimate the prey density, we used video analysis (Pennekamp, 
Schtickzelle, & Petchey, 2015). In a custom counting chamber, we 
placed 700 µl of the 1 ml previously used to count the predators 
and made a 5-s video at 25 frames per second of ~50 µl of the 
700 µl using a camera (Hamamatsu Digital camera C11440) at-
tached to a microscope (Leica M205C, 0.63X) and relevant soft-
ware (HCImage Live version 4.0.6.3). The videos were analyzed 
using the BEMOVI package; this software isolates moving par-
ticles (here, ciliates), reconstructs their trajectories, and assigns 
trajectories to species based on morphological traits (Pennekamp 
et al., 2017). The customized counting chamber had a 0.6-mm 
depth (compared to 1 mm for a Sedgewick rafter slide) to reduce 
the vertical movement of individuals during the video measure-
ment and therefore increase the accuracy of measured morpho-
logical traits.

2.4.4 | Total biomass

Similarly to prey density, we used the morphological traits (width (a) 
and length (b)) of the individuals identified in the video to estimate 



     |  5533GARNIER Et Al.

the biovolume of the prey and predator populations while assuming 
an ellipsoid shape: biovolume= (4∕3) ⋅� ⋅ (a∕2)2 ⋅ (b∕2) 

2.4.5 | Bacteria density with a flow cytometer

We diluted 20 µl from the samples in 160 µl of filtered ultrapure 
water and 20 µl of a 10-fold dilution of SYBR® Green. This mixture 
was incubated at 37°C for 15 min in the dark to stain the DNA in 
each cell. The flow cytometer (Accuri C6 with multi-well sampler, 
BD Biosciences, San Jose, CA, USA) was run with the following pa-
rameters: sampled volume 30 µl; medium fluid speed; FSC-H thresh-
old of 20 000 and SSC-H threshold of 400. These two parameters 
refer to morphological traits: forward scatter (FSC) is proportional 
to particle size, while side scatter (SSC) measures the cellular rough-
ness or internal complexity. These thresholds allow for the detection 
of small bacteria such as Serratia fonticola (e.g., Griffiths, Petchey, 
Pennekamp, & Childs, 2018; Tabi, Petchey, & Pennekamp, 2019).

2.5 | Measured variables

Firstly, we focused on DO concentration and total biomass (i.e., eco-
system states), as they summarize the state and effect of the ecologi-
cal community. With these ecosystem variables, we characterized 
two components (nonlinearity and hysteresis) to describe how the 
ecosystem state changes with a gradual change in temperature.

2.5.1 | Nonlinearity

For each microcosm and separately for the temperature increase 
and decrease phases, we calculated the nonlinearity of the rela-
tionship between DO concentration and total biomass against the 
temperature. Nonlinearity was calculated as in the simulations.

2.5.2 | Hysteresis

To estimate hysteresis in response to the increasing and then de-
creasing temperature experienced by each microcosm, we com-
pared the DO concentrations and total biomass measured at a given 
temperature. A close match between the ecosystem variable in the 
increasing and decreasing temperatures would indicate a lack of 
hysteresis, while a difference would indicate hysteresis. For each 
microcosm, we estimated hysteresis as in the simulations (i.e., mean 
absolute difference between the paired ecosystem variables).

2.6 | Statistical analyses

Analyses were performed using the statistical software r (R Core 
Team, 2016).

2.6.1 | Time series analysis

We performed principal component analysis (vegan r package: 
Oksanen et al., 2019) to detect a temporal change in community 
(predator, prey, and bacteria density) and ecosystem variables (DO 
concentration and total biomass) over time. Species abundances 
were log10 transformed; all variables (species abundance, DO and 
total biomass) were scaled to obtain a standard deviation of 1 and 
centered (mean equal to 0) to enable comparison. We also per-
formed cluster analysis to detect the presence of potentially al-
ternative regimes based on the (dis)similarity between time series. 
Indeed, two alternative regimes would be characterized by two 
dissimilar dynamics. (Dis)similarity was measured using a dynamic 
time warping (DTW) distance (Sarda-Espinosa, 2019). The number 
of alternative regimes was assessed using hierarchical cluster anal-
ysis on this DTW distance with the Ward agglomeration method. 
This analysis was performed with the dtwclust r package (Sarda-
Espinosa, 2019). To search for evidence that the manipulation of 
feedback strength affected the presence and number of alterna-
tive regimes, we tested whether the cluster was associated with 
the gas exchange treatment using logistic regression and the likeli-
hood ratio test (stats r package).

2.6.2 | Nonlinearity and hysteresis analyses

To test for an effect of the gas exchange treatment (i.e., feed-
back strength) on nonlinearity and hysteresis measurements, 
we used an analysis of variance (ANOVA) with the feedback 
strength treated as a categorical explanatory variable. We added 
the membership of the previously identified clusters as categori-
cal explanatory variables, resulting in an analysis of covariance 
(ANCOVA).

3  | RESULTS

3.1 | Development of theory and predictions

Let us first examine the case where p, nonlinearity in the self-re-
placement term or feedback strength, is less than ~4, in which case 
there is no positive feedback in the system and only one stable state 
for any value of the environmental driver (Figure 3a). With a slow 
rate of environmental change, there is no measured hysteresis (as 
expected) and no effect of p on measured hysteresis. By contrast, 
with a fast rate of environmental change, hysteresis is observed, 
and an increase in p causes an increase in measured hysteresis 
(Figure 3d). Nevertheless, even with p < 4, nonlinearity rises with in-
creases in p regardless of the rate of environmental change, although 
the general increase contains some stable or even slightly downward 
phases (Figure 2b,c).

Now consider when p > 4, such that there is positive feedback 
in the systems, with two stable states existing for some values of 
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the environmental driver. Here, the measures of hysteresis and 
nonlinearity behave as expected, with increases in p leading to 
greater hysteresis and nonlinearity regardless of the rate of envi-
ronmental change (Figure 3). The extent of hysteresis, however, is 
greater when environmental change is faster.

Results with the opposite pattern of environmental forcing (a 
decreasing and then increasing) differed only in terms of observed 
absolute nonlinearity during the downward phase. In this case, 
greater nonlinearity was observed when environmental change 
was faster.

3.2 | Empirical results: Evidence for alternative 
dynamic regimes

All communities started with around 10% DO, 106 bacteria per ml, 
1,000 prey per ml, and 10 predators per ml (Figure 4). In the principal 
component analysis (PCA) of variability in the ecosystems through 
time and among replicates (Figure 5), the first axis represented 
55.1% of the variance, and generally, DO and organisms were nega-
tively associated. The second axis (23.4%) represented a variation 
in a typical trophic cascade. For example, when the prey population 

F I G U R E  3   Simulation results using the minimal ecosystem model (Scheffer et al., 2001). (a) The ecosystem state shifts when increasing 
the environmental condition depending on the strength of the positive feedback (colors). (b–d) Simulation results showing the effects of 
the strength of positive feedback and the rate of environmental change on the empirical measures in (b-c) nonlinearity and (d) hysteresis of 
response to an environmental driver. Alternative stable states are present only above x-axis values of about 4
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F I G U R E  4   Dynamics of %O2 in the liquid (dark blue), headspace (black), bacteria density (brown), prey (green), and Spathidium sp. (red) for 
each microcosm (i.e., five gas exchange treatments with six replicates). The label colors correspond to the clusters in Figure 5b
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was high (positive PC2 scores), the predator and bacterial popula-
tions were low (negative PC2 scores) (Figure 5a). Total biomass and 
prey density were highly correlated, as the latter made up a large 
part of the former.

The gas exchange treatment, especially the addition of air by 
bubbling, did not affect the nutrient concentrations, as there was 
no difference in the mean bacterial density (ANOVA, F4,25 = 1.36, 
p = .27). Therefore, for the remainder of the manuscript, we focus 
on predator–prey dynamics. During the increasing temperature 
phase (days 1–33), the dynamics were similar in all gas exchange 
treatments (Figure 5c) with a decrease in prey and an increase in 
predators. DO also increased with the diffusion from the headspace 
into the liquid. During the decreasing temperature phase (days 34–
67), the dynamics started to diverge between and within the gas 
exchange treatments (Figure 5c). In the open system, the dynam-
ics were constant over time (i.e., no change in the temporal scores) 
with low prey, low predators, and high DO concentration (negative 
PC1 scores; Figure 5c). In the other gas exchange treatments, the 
dynamics were less similar. Most replicates were in the same PCA 

space as the “open” treatment, whereas a few showed higher total 
biomass and/or lower DO concentration (i.e., positive PC1 scores). In 
the closed treatment, the divergence between replicates was larger 
than for the other gas exchange treatments.

The divergence in dynamics within treatments was confirmed 
with the time series cluster analysis. Two clusters described the 
dynamics of DO (Figure 5d) and total biomass (Figure 5e). For DO, 
the first cluster with 21 microcosms referred to the stabilized DO 
(negative PC1 scores). The second cluster with nine microcosms 
(none “Open”, one “+200 ml”, one “+100 ml”, two “+50 ml”, and five 
“Closed” replicates; Figure 5d) described the dynamics with lower 
DO values (positive PC1 scores).

Statistical evidence showed that a community in a particular 
cluster was influenced by the gas exchange treatment (logistic re-
gression with likelihood ratio test (LRT): df = 4, deviance = 12.79, 
Pr(>Chi) = 0.012). For the total biomass, only four microcosms 
formed the second cluster (one “+200 ml” and three “Closed” rep-
licates; Figure 5e). This cluster described dynamics with a larger 
total biomass (positive PC1 and PC2 scores; Figure 5b). Note that 

F I G U R E  5   Analyses of community and ecosystem dynamics. The first two dimensions of principal component analysis (PCA) explained 
78.5% of the variance observed with (a) the overall correlation between the variables and (b-c) the temporal trend of the PCA scores. The 
temporal trend was divided into the gas exchange treatment and temperature phase to facilitate the reading, with the beginning (black circle) 
and end (black square) of the dynamics. The time series cluster analysis for (d) DO and (e) total biomass highlighted two clusters (i.e., two 
dynamic regimes). The clusters (A, B, and C) in panel (b) resulted from the combination of two cluster analyses (panels d and e) with cluster 
A (in blue) grouping the microcosms classified in both “cluster 1,” cluster B (in purple) grouping the microcosms in “cluster 2” for DO and in 
“cluster 1” for total biomass, and cluster C (in red) grouping the microcosms classified in both “cluster 2”
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the microcosms identified in this cluster were also characterized by 
lower DO concentrations. The probability of having a microcosm 
from the “closed” system in this cluster was marginally significant (lo-
gistic regression with LRT: df = 4, deviance = 9.84, Pr(>Chi) = 0.043).

3.3 | Empirical results: Nonlinearity of 
environmental change and system state relationship

For DO, during the gradual temperature increase, nonlinearity was 
greater in replicates with stronger feedback (i.e., those with less gas 
exchange) (Table 1; Figure 7a). During the gradual temperature de-
crease, there was a similar trend toward greater nonlinearity in more 
closed treatments, but without statistical significance (Table 1) due 
to the higher variability among replicates (Figure 7b).

We observed that during the gradual temperature increase, nonlin-
earity did not differ between the two clusters (Table 1). Indeed, the DO 
in all the microcosms increased toward the oxygen level in the head 
phase (Figure 4), while the difference in nonlinearity observed between 
treatments was due to a difference in the level reached. Interestingly, 
the nonlinear response of DO to decreasing temperatures depended 
on the cluster of a given community (Table 1; Figure 7b). When the 
predator–prey system persisted, the consumption of oxygen was 
greater than the supply, leading to a decrease in DO. This pattern was 
especially pronounced in the closed systems for the three microcosms. 
However, in microcosms with extinctions or in open systems, oxygen 
levels remained stable (i.e., linear) over the temperature decrease due 
to the absence of consumption or its compensation by diffusion.

For the total biomass, the feedback strength had no effect in terms 
of increasing temperature (Figure 7d), regardless of whether the clus-
ter was included or not (Table 1). However, the nonlinear response of 

the total biomass to decreasing temperatures depended on the cluster 
of a given community. This pattern was especially pronounced in the 
closed systems for the three microcosms (Table 1; Figure 7e).

3.4 | Empirical results: Hysteresis

Gas exchange treatments associated with stronger feedbacks 
tended to cause greater hysteresis (Table 1; Figure 6c,f), highlight-
ing the greater divergence of total biomass between the increasing 
and decreasing temperature phases (i.e., hysteresis) with increasing 
feedback strength. For the hysteresis measured with DO dynam-
ics (Figure 7c), the effect was found not significant due to consid-
erable variability among replicates (Figure 6). However, the mean 
difference of DO varied significantly between the two clusters 
(Table 1), notably with a larger mean difference in the microcosms 
with the strongest feedback (Figure 7c in closed microcosms). For 
the hysteresis measured with total biomass dynamics (Figure 7f), 
both the gas exchange and the cluster affected the mean differ-
ence (Table 1).

To summarize, when the information of the clusters was not in-
cluded, the effects of feedback strength were weaker for hysteresis 
and nonlinearity when the temperature decreased. Therefore, with 
changing environmental conditions, nonlinearity and hysteresis de-
pend greatly on the system cluster/state.

4  | DISCUSSION

Our experimental finding that manipulating the strength of the OEF 
by reducing gas exchange increased hysteresis and nonlinearity 

TA B L E  1   Statistical summary of the effect of gas exchange (i.e., feedback strength) on nonlinearity for the increasing and decreasing 
temperature phases as well as hysteresis for the measurements of dissolved oxygen and total biomass. We considered the gas exchange 
treatment to be a categorical variable (with ANOVA). Additionally, we tested the temporal dynamics depicted with hierarchical cluster 
analysis. Therefore, the responses were analyzed with ANCOVA in which the explanatory variables were the gas exchange and the cluster, 
both categorical variables. We tested the interaction between the gas exchange and the cluster, although we only reported the data when 
the difference between the models with and without the interaction was significant (p < .05)

 

Dissolved oxygen Total biomass

ANOVA ANCOVA ANOVA ANCOVA

F p F p F p F p

Nonlinearity during the increasing temperature phase

Gas exchange 3.040 .036 3.125 .033 1.345 .281 1.293 .301

Cluster   1.702 .204   0.016 .899

Nonlinearity during the decreasing temperature phase        

Gas exchange 0.915 .471 3.325 .027 2.458 .072 4.389 .009

Cluster   66.815 <.001   13.910 .001

Interaction       7.733 .011

Hysteresis        

Gas exchange 2.115 .109 2.447 .074 2.789 .048 3.999 .013

Cluster   4.932 .036   11.849 .002
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F I G U R E  6   Ecosystem variables (DO and total biomass) across the temperature and temporal gradients. Each row shows a gas exchange 
treatment with six replicates. The color gradient represented the temporal change: from gray to blue (for DO) and from gray to violet (for 
total biomass). The label colors correspond to the clusters in Figure 5b
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corresponds with the predictions of feedback systems theory. 
However, we did not observe any catastrophic shift between two 
ecosystem states (e.g., high and low levels of DO and total biomass), 
but rather a continuous transition (Figure 6). This result is coher-
ent with a feedback strength p < 4 in a simple ecosystem model 
(Figure 3d). Continuous transitions are also observed in systems with 
weak positive feedback (Figures 1a and 2a; Kéfi et al., 2016; Scheffer 
et al., 2001) and stronger negative feedback (e.g., Clements & 
Ozgul, 2016, 2018). Therefore, our manipulation of feedback did not 
appear to make the ecological dynamics switch from those charac-
teristics of a system dominated by negative feedback to those char-
acteristics of a system dominated by positive feedback. We believe 
that the observed hysteresis results from mechanisms other than 
strong positive feedbacks, which create alternative stable states.

In communities with low hysteresis in DO, the predator–prey 
system appeared to become functionally extinct, while in com-
munities with high observed hysteresis in DO, the predator–prey 
system persisted and consumed a significant amount of DO from 

the water. We can interpret these results in two ways. Firstly, in 
the presence of a positive feedback loop, the recovery of the pred-
ator–prey system could be explained by the mismatch between 
the rate of environmental change and the biological responses 
with an overly fast environmental change (Figure 3d) or a slowing 
down of the system dynamics. Secondly, in the absence of a posi-
tive feedback loop, the recovery could be due to a combination of 
two mechanisms: (a) the oxygen limiting the predation rate (Decker 
et al., 2004; Nestlerode & Diaz, 1998; Sandberg et al., 1996), which 
acted simultaneously with (b) the increasing temperature that po-
tentially favored prey growth over predator growth on account of 
their different maximum growth rates (rmax) scaled to their body 
size (i.e., the rmax of a large predator will occur at a lower tempera-
ture compared to that of a small prey at a higher temperature; 
Brown, Gillooly, Allen, Savage, & West, 2004b; Angilletta, Steury, & 
Sears, 2004). In both scenarios, the observed hysteresis appears to 
be only apparent, resulting from a transient state combined with the 
recovery of the predator–prey system impacting the total biomass 

F I G U R E  7   Effects of gas exchange treatment on nonlinearity and hysteresis of the ecosystem variables: (a-c) DO and (d-f) total biomass. 
The nonlinearity of the relationship between ecosystem variables and temperature is shown during the first half of the experiment when 
temperatures were increasing (a, d) and during the second half when they were decreasing (b, e). The measurement of hysteresis (mean 
absolute difference between paired measurements) for each microcosm is shown according to their gas exchange treatment (c, f). The 
pairing of measurements was made at the same temperature, one during the temperature increase, and the other during the temperature 
decrease. The symbols and colors represent the clustering for cluster 1 (black circle) and cluster 2 (white triangle), similarly to Figure 5d, 5e



5540  |     GARNIER Et Al.

and DO levels. Moreover, the absence of hysteresis resulted from 
the extinction of the biological system, driven by the temperature 
(Clements, Collen, Backburn, & Petchey, 2014; Long, Petchey, & 
Holt, 2007). Population cycles and extinctions are typical dynamics 
in predator–prey systems (Fussmann et al., 2000). In closed experi-
mental systems (e.g., microcosm) in particular, extinctions are often 
observed due to the relatively homogeneous environment (e.g., no 
refuge for prey) (Hauzy, Tully, Spataro, Paul, & Arditi, 2010) and the 
potentially small population size (Pimm, Jones, & Diamond, 1988). 
Hence, the difference in population dynamics observed within 
treatments could result from chance alone, which would then have 
large effects on subsequent system dynamics.

What do we mean by apparent hysteresis? Hysteresis is the dif-
ference in the trajectory of the ecosystem state with different di-
rections of environmental change. The observation of changes in 
hysteresis alongside changes in OEF strength is only indicative of 
alternative stable states if the system dynamics are relatively slow 
compared to the environmental change. In addition to emphasiz-
ing the importance of considering changes in the system timescale 
that accompany changes in the feedback, our findings point to the 
benefits of studies that aim to test the underlying assumptions or 
mechanisms of theories about how ecosystems respond to environ-
mental change. It is apparent, because the system appears to exhibit 
hysteresis. A different measure of hysteresis, and specifically one 
that assumes or requires very slow environmental change to reach 
equilibrium, would not show evidence of hysteresis in the absence 
of alternative stable states. Some believe that this different measure 
should be termed real hysteresis, while others may claim that appar-
ent hysteresis does not exist, because from a certain perspective, 
it may appear to be internally inconsistent. Indeed, the difference 
between apparent and real hysteresis is that if a system only displays 
apparent hysteresis, then it is only a matter of time before the eco-
system returns to its previous state, whereas a system with real hys-
teresis will never return. This apparent hysteresis relates to debates 
about stable versus transient states (e.g., Fukami & Nakajima, 2011; 
Hastings, 2004). Indeed, natural communities may rarely reach sta-
ble states due to the mismatch between community response to dis-
turbance and the disturbance regime (Pickett & White, 1985). These 
points to the need for a more careful consideration of the rate of 
environmental driver change relative to the rate of system change 
and their combination with changes in the strength of OEF.

We did not assess the stability of the observed ecosystem states. 
Yet the predictions of the tested theory on nonlinearity and hys-
teresis assume that the equilibria are locally stable. Hence, without 
a deeper mechanistic understanding of the system perhaps aided 
by a parameterized mechanistic model, we could not confirm that 
the match between experimental and predicted treatment effects 
occurred for the right reasons (i.e., difference in timescale); this 
could therefore be a coincidence. Similarly, we could not ascertain 
the stability of the clusters for the community time series observed; 
thus, we could not test for the effects of the feedback treatment 
levels on the likelihood of alternative stable states. A longer ex-
periment and/or different temperature variation treatments may 

provide information to support the presence of alternative regimes 
in community composition (Faassen et al., 2015; Siteur et al., 2014; 
Vanselow, Wieczorek, & Feudel, 2019). Another option would be to 
manipulate the initial conditions among the replicates and test for 
the effects of feedback strength on the modality of the relationship 
between the initial conditions and the long-term community compo-
sition and dynamics (Dai et al., 2012).

With our manipulation of OEF strength, oxygen gained the poten-
tial to be the limiting resource in our predator–prey system. However, 
we lack quantitative information about organism responses to DO 
concentration (i.e., for the growth rate variation with this environ-
mental variable, or whether it is linear). Furthermore, the different 
species of microbes in our experiment may exhibit different responses 
to DO concentration. For example, some species of protozoa thrive 
in anoxic conditions, while others are more common in the pres-
ence of oxygen (Bick, 1973). Colpidium striatum and Serratia fonticola 
can grow either in aerobic or anaerobic conditions (Fenchel, 2005); 
it is unknown whether Spathidium is affected by low oxygen levels 
(Andrushchyshyn, Magnusson, & Williams, 2003). Again, recording 
the responses of individual species to DO concentration across tem-
peratures in a factorial design would provide some of the information 
required to better understand the mechanistic causes of the patterns 
observed in our experiment, potentially by constructing a model 
for the joint dynamics of species biomass and oxygen flux. A fur-
ther question about the experimental system relates to whether the 
prey or predator benefits in ways other than increased productivity 
caused by the presence of wheat seeds. We are unaware of any such 
benefit. While some other benefits have so far been undiscovered, 
wheat seeds were present in all treatments, and so such a benefit 
would be independent of any treatment, although we cannot rule out 
the possibility that such a benefit could interact with the treatment.

Overall, a great deal of research remains to be done. Firstly, a 
theoretical model of our system, ideally parameterized with em-
pirical data about how organisms affect their environment and 
vice versa, would allow us to confirm that we are observing the 
predicted patterns (i.e., greater nonlinearity and hysteresis) for the 
right reasons. Secondly, it is a priority to understand the impor-
tance of OEF strength given that there are various environmental 
changes other than temperature and that multiple simultaneous 
changes occur. Thirdly, the effects of biodiversity on the influence 
of OEFs are important in order to understand and predict species 
richness and composition, which may both drive and respond to 
environmental change. Finally, we imagine that novel empirical 
manipulations of OEF strength, such as our own, have the con-
siderable potential to shed light on the processes governing eco-
logical dynamics: for example, how gradual environmental change 
might result in abrupt ecological changes (Ratajczak et al., 2018).

As pointed out by Scheffer and Carpenter (2003), although ob-
servations can provide hints, experiments, while limited in scale 
and realism, are an essential element of any research on the ex-
istence of alternative attractors. Presumably, the importance of 
experiments should apply equally, if not more, when examining 
the features of ecosystems in which nonlinearities, hysteresis, 
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and alternative stable states are more or less likely. Despite the 
importance of theories about feedbacks, nonlinearity, hysteresis, 
and multistability for understanding ecosystem dynamics, we could 
find no previous studies manipulating OEF strength. As our study 
raises many questions and shows that inference can be compli-
cated since OEF manipulations can also affect the timescale of the 
system dynamics, we hope that this leads to a refinement of the 
experimental methods used for testing the mechanism responsible 
for determining how ecosystems respond to environmental change.
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