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Upper tract urothelial carcinoma has a luminal-
papillary T-cell depleted contexture and activated
FGFR3 signaling
Brian D. Robinson1,2,3,15, Panagiotis J. Vlachostergios4,15, Bhavneet Bhinder5,6, Weisi Liu4, Kailyn Li4,

Tyler J. Moss7, Rohan Bareja5,6, Kyung Park1, Peyman Tavassoli1, Joanna Cyrta1,3, Scott T. Tagawa 2,3,4,8,

David M. Nanus2,3,4,8, Himisha Beltran2,3,4,8, Ana M. Molina2,3,4,8, Francesca Khani1,2,3,

Juan Miguel Mosquera1,2,3, Evanguelos Xylinas2,9, Shahrokh F. Shariat2,10, Douglas S. Scherr2,

Mark A. Rubin 1,2,3,8,11, Seth P. Lerner12, Surena F. Matin13, Olivier Elemento3,5,6,8,16 &

Bishoy M. Faltas 3,4,8,14,16

Upper tract urothelial carcinoma (UTUC) is characterized by a distinctly aggressive clinical

phenotype. To define the biological features driving this phenotype, we performed an inte-

grated analysis of whole-exome and RNA sequencing of UTUC. Here we report several key

insights from our molecular dissection of this disease: 1) Most UTUCs are luminal-papillary;

2) UTUC has a T-cell depleted immune contexture; 3) High FGFR3 expression is enriched in

UTUC and correlates with its T-cell depleted immune microenvironment; 4) Sporadic UTUC

is characterized by a lower total mutational burden than urothelial carcinoma of the bladder.

Our findings lay the foundation for a deeper understanding of UTUC biology and provide a

rationale for the development of UTUC-specific treatment strategies.
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Upper tract urothelial carcinoma (UTUC) accounts for
5–10% of all urothelial carcinomas (UCs)1. UTUC is a
distinct clinical entity with an aggressive clinical behavior

and a more advanced presentation compared to urothelial
carcinoma of the bladder (UCB)1. Recently, the Cancer Genome
Atlas (TCGA) study classified UCB into five molecular subtypes
(luminal-papillary, luminal-infiltrated, luminal, basal/squamous,
neuronal). Since TCGA did not include UTUC2, it is currently
unknown whether UTUC recapitulates the same molecular sub-
types2–6. Furthermore, our understanding of the immune milieu
of UTUC is incomplete.

These knowledge gaps have hindered the development of
effective UTUC-specific therapeutic strategies. To dissect the
central biological features of UTUC’s tumor and immune cell
compartments, we analyzed whole-exome sequencing (WES) and
RNA sequencing (RNAseq) data from high-grade UTUC tumors
from patients at three different institutions [Weill Cornell Med-
icine (WCM), Baylor College of Medicine and MD Anderson
Cancer Center (BCM–MDACC)]. We used whole-exome and
RNAseq data from UCB tumors from the TCGA cohort as a
comparison cohort5. This enabled us to define the biological
differences between UC arising from the upper and lower urinary
tracts and to gain insights into the unique mechanisms that drive
UTUC biology. We show that UTUC is predominantly luminal-
papillary and T-cell depleted. We identify FGFR3 as a putative
regulator of UTUC’s immune contexture through attenuation of
interferon gamma (IFNG) signaling. Finally, we report that the
tumor mutational burden in sporadic UTUC is lower than UCB,
despite reduced expression of DNA mismatch repair (MMR)
transcripts and proteins.

Results
UTUC and UCB mutational profiles. We performed whole
exome sequencing (WES) of 37 UTUC primary tumor–normal
pairs. We only included patients with high-grade UTUC tumors.
Most patients were former or current smokers (64.8%) (Supple-
mentary Table 1). We identified FGFR3 mutations in 11/37
(29.7%) (Fig. 1a), a significantly higher frequency compared to
the 17/124 (13.7%) mutations detected in TCGA UCB (Wilcoxon
test P= 0.04) (Fig. 1b). In contrast, we found no significant dif-
ference in the prevalence of mutations in chromatin modifying
(KMT2D, ARID1A, KDM6A), receptor tyrosine kinase path-
way (PIK3CA, HRAS), transcription factor (RXRA, KLF5, ELF3),
and cell cycle regulation (TP53, RB1, CDKN1A, CDKN2A) genes
between our UTUC and TCGA UCB cohorts (Fig. 1a, b).

To define the mutagenic mechanisms that shape the genomic
landscape of UTUC, we performed a mutational signature
analysis to identify the prevalent Catalog of Somatic Mutations
in Cancer (COSMIC) signatures in the WCM UTUC, BCM-
MDA UTUC, and TCGA UCB cohorts7. We identified the
COSMIC APOBEC-associated signatures 2 and 13 as the
dominant mutational signatures in UTUC (Fig. 1c). We also
identified C>T transitions at CpG dinucleotides. This signature is
characterized by high numbers of small indels at mono/
polynucleotide repeats and is associated with defective MMR
(Fig. 1d). Another mutational signature in UTUC was found to be
related to defective nucleotide excision repair (NER)8 (Fig. 1d).
Collectively, these data suggest that these three mutational
processes (APOBEC, MMR, NER) (Fig. 1d) are responsible for
the majority of mutations in UTUC.

Somatic downregulation of DNA damage repair (DDR) genes
in UTUC. The association between germline mutations in MMR
genes that cause microsatellite instability (MSI) and Lynch
syndrome and increased susceptibility to the development of

UTUC is well established9–11. However, it is unclear whether
non-Lynch (sporadic) UTUC patients have defective DDR and an
increased mutational burden. To define whether somatic dysre-
gulation of DDR genes could play a similar role in inducing a
hypermutated phenotype in non-Lynch UTUC patients, we
assessed the mRNA expression level of DDR pathway genes in
UTUC (WCM, BCM-MDA) and UCB (TCGA). We focused our
analysis on identifying differentially expressed genes in the
canonical DDR pathways [MMR, base-excision repair (BER),
NER, homologous recombination (HR), non-homologous end
joining (NHEJ), Fanconi anemia (FA), translesion synthesis
(TLS)] comparing UTUC with UCB (Fig. 2a). We identified a
significant somatic dysregulation of 35 canonical DDR genes in
UTUC (Fig. 2a). We analyzed germline WES data from patients
in our UTUC cohorts (WCM, BCA-MDA) and identified no
germline mutations in the canonical MMR genes (MLH1, PMS2,
MSH2, MSH6). Interestingly, we observed significantly lower
somatic mRNA expression of three canonical MMR genes:
MLH1, MSH2, and MSH6 in UTUC tumors compared to TCGA
UCB tumors (Fig. 2a). To determine whether this decreased
mRNA levels further translated into a low expression of MMR
proteins, we used immunohistochemistry (IHC) to quantify their
expression in WCM UTUC tumors (n= 16) compared to stage-
matched WCM UCB tumors (n= 14). We found that the levels of
MLH1, PMS2, MSH2, and MSH6 proteins were significantly
lower in UTUC tumors (Fig. 2b, c). This confirmed that lower
expression of these proteins is a characteristic feature of UTUC
even in the absence of germline or somatic mutations in the
respective genes in the WCM UTUC cohort.

To determine whether downregulation of these proteins
impaired DNA MMR, we examined WES data for short tandem
repeats (MSI) using the MSI sensor program12 that calculates the
percentage of unstable microsatellites from UTUC and UCB
tumor–normal paired WES data. Surprisingly, the median MSI
sensor scores were similar in WCM UTUC and TCGA UCB.
Both were below the previously defined threshold of 3.5, which
was shown to accurately classify microsatellite unstable tumors12

(Fig. 2d). Furthermore, WCM UTUC samples harbored a
significantly lower mean total mutational burden (TMB)
compared to TCGA UCB tumors (2.91 versus 5.46 mutations
per MB) (Fig. 2e). This suggests that the somatic downregulation
of MMR proteins is insufficient to produce MSI and is not a
major driver of mutagenesis in non-Lynch UTUC. Collectively,
these findings indicate that the decrease in the mRNA and
protein levels of MMR genes in sporadic UTUC does not
translate into MSI or a higher TMB.

UTUCs are predominantly luminal-papillary. To characterize
the gene expression profiles which define UTUC, we generated an
RNAseq meta-dataset from 32 UTUC tumors and the TCGA
UCB cohort. To ensure homogeneity, we performed sample
normalization of the data prior to standardization and fitted the
quantiles of each sample’s raw data to be similar. We also com-
pared the z-scores of the mRNA expression of 40 housekeeping
genes among tumor samples from WCM UTUC, BCM-MDA
UTUC, and TCGA UCB and found no significant differences for
the majority of these genes (Supplementary Fig. 1). Using the
University of North Carolina (UNC) 47-gene signature (BASE47)
classifier3, we found that 27/32 (84.3%) of the UTUC tumors
clustered with the luminal subtype (Fig. 3a and Supplementary
Table 2) as opposed to only 59/128 (46.1%) in UCB2. To ensure
that this luminal expression pattern is a consistent biological
property of UTUC, we confirmed this finding using several dif-
ferent methods. First, we interrogated the same meta-dataset
using two additional validated classifiers of urothelial carcinoma
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subtypes. When we applied the MDACC classifier which divides
UC into luminal, basal, and p53-like subtypes4, we found that 22/
32 (68.7%) of UTUC tumors clustered with the luminal subtype
(Supplementary Fig. 2 and Supplementary Table 2) versus only
47/128 (36.7%) of UCB2. Using the recent TCGA classifier which
segregates UC into luminal-papillary, luminal-infiltrated, luminal,
basal-squamous, and neuronal subtypes2, we confirmed that
UTUC has a luminal-papillary phenotype (20/32, 62.5%), with
the majority of remaining UTUC tumors also exhibiting a
luminal expression profile (8/12, 67%) (Supplementary Fig. 3 and
Supplementary Table 2). This is in contrast to 35/128 (27.3%) of
luminal-papillary UCB tumors in the TCGA UCB cohort, with
only a minority of the rest (35/93, 37.6%) also segregating with
luminal or luminal-infiltrated subtypes2. To confirm these find-
ings using a different approach, we used non-negative matrix
factorization (NMF)13, a sensitive unsupervised statistical method
to dissect and extract the key biological features of UTUC from

our high dimensional RNAseq dataset13. The NMF analysis
revealed three principal components characterized by luminal/
carcinoma in situ (CIS)-low, basal/squamous-like, and extra-
cellular matrix (ECM)/epithelial–mesenchymal transition (EMT)-
related gene sets2. Principal component analysis (PCA) was then
performed on the coefficients obtained from NMF to visualize the
separation of the three components (Fig. 3b). This demonstrated
that the luminal-papillary component is a defining feature of
UTUC. Our results suggest that the majority of UTUCs represent
a distinct subset within the continuum of UC differentiation that
shares similar characteristics with the luminal-papillary subtype
of UCB.

UTUC has a T-cell depleted immune contexture. The immune
contexture of tumors is an essential determinant of the host’s
anti-cancerimmune response14 and clinical outcomes. To dissect
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Fig. 1 Genomic differences between upper tract urothelial carcinoma (UTUC) and urothelial bladder carcinoma (UCB). a Prevalence of frequent somatic
genomic alterations in 37 patients with UTUC from the Weill Cornell Medicine (WCM UTUC) and Baylor College of Medicine–MD Anderson Cancer
Center (BCM–MDACC UTUC) cohorts. The somatic mutational rate for each tumor is represented by vertical barplots (total number of non-silent
mutations per megabase (MB)). Patient and tumor characteristics are represented on the top right. b Horizontal barplot showing differences in mutational
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Asterisk indicates statistically significant changes in paired comparison between BCM-MDA UTUC and TCGA UCB (*Fisher’s Exact test P= 0.001).
c Heatmap of a cosine similarity matrix of COSMIC mutational signatures and observed mutational signatures in UTUC (WCM, BCM-MDA) and TCGA
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the gene expression profile of UTUC that characterizes its
immune contexture, we developed a 170-gene classifier com-
prising key immune genes (Supplementary Table 3). This classi-
fier separated tumors independent of their anatomical origin into
T-cell inflamed, and T-cell-depleted clusters. Interestingly, the
majority of UTUC (WCM, BCM-MDA) tumors (28/32, 87.5%)
were T-cell depleted (Fig. 4a) with consistent downregulation of
T-cell related (CD8A, CCL2, CCL3, CCL4, CXCL9, CXCL10)15

and IFNG signaling genes16 (Fig. 4a). In contrast, TCGA UCB
tumors were almost evenly distributed between T-cell inflamed
(57/128, 44.5%) and T-cell depleted (71/128, 55.5%) immune
subtypes (UTUC vs. UCB (Fisher’s exact test P= 0.0009)
(Fig. 4a).

FGFR3 is a putative driver of UTUC’s immune-depleted con-
texture. To identify the signaling pathways that characterize
UTUC’s immune contexture, we performed gene expression
analysis to detect outliers. We detected outlier FGFR3 mRNA

expression in 14/32 (43.7%) of the tumors in our UTUC (WCM,
BCM-MDA) cohorts (Fig. 4b). We identified nine activating
missense mutations in these tumors. These findings suggest that
activated FGFR3 signaling potentially plays a prominent role in
the distinct gene expression profile of UTUC.

We then went on to assess whether FGFR3 is differentially
expressed between T-cell inflamed and T-cell-depleted tumors.
Indeed, we identified significantly higher FGFR3 expression in the
T-cell-depleted cluster which harbored the majority of the UTUC
tumors (Fig. 4c). We interrogated the functional link between
FGFR3 signaling and the T-cell-depleted phenotype observed in
UTUC. We reanalyzed a previously published dataset of mRNA
expression from the RT-112 UC cell line following doxycycline
(dox)-inducible short hairpin RNA (shRNA) knockdown of
FGFR317,18. We found that several IFNG response genes
including BST2, MX2, IRF9, GBP2 were upregulated after
FGFR3 knockdown (Fig. 4d). Confirming these results, we
found that BST2 and IRF9 were significantly downregulated in
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Fig. 3 UTUC is predominantly luminal. a Supervised consensus clustering and heatmap of mRNA expression data from WCM UTUC, BCM-MDA UTUC,
and TCGA UCB metadataset. BASE47 classifier (UNC) genes are listed on the right. Assigned TCGA, MDACC, and UNC clusters are represented on top
(color key, bottom right). WCM UTUC and BCM-MDA UTUC cluster with the luminal subtype (yellow vertical bars) by UNC criteria, luminal subtype by
MDACC criteria (orange horizontal bars) and luminal-papillary subtype by TCGA classification (red horizontal bars). b Non-negative matrix factorization
(NMF) of WCM UTUC, BCM-MDA UTUC, and TCGA UCB tumors segregates gene expression along three principal components: basal/squamous
(purple), luminal/CIS-low (pink), and extracellular matrix/epithelial–mesenchymal transition (ECM/EMT) (green). WCM UTUC tumors represented as
black dots and BCM-MDA tumors represented as dark gray dots cluster with the luminal/CIS-low component
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the T-cell-depleted cluster which harbored the majority of
UTUCs in our patient cohort (Supplementary Fig. 4). We also
found a statistically significant upregulation of other IFNG
response genes in the FGFR3 shRNA+ dox dataset when

compared to the control (ctl)+ dox dataset (Fig. 4e). To confirm
this observation and define whether pharmacologic inhibition of
FGFR3 will have a similar effect on IFNG response genes
(Supplementary Table 4), we tested the effects of erdafitinib, a
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small molecule FGFR3 inhibitor, in three different UC cell lines
(RT-112, RT-4, and SW780). These cell lines harbor FGFR3 fusions
(RT-112, RT-4: FGFR3-TACC3; SW780: FGFR3-BAIAP2L1)
resulting in constitutively activated FGFR3 signaling19. We found
that treatment with erdafitinib led to a significant upregulation of
BST2, a hallmark of activated interferon signaling (Fig. 4f).
Collectively, these findings show that FGFR3 plays an important
role in shaping the T-cell-depleted phenotype in UTUC in a cancer-
cell autonomous manner.

Discussion
We performed a comprehensive genomic and transcriptomic
analysis of UTUC to identify the key biological features that
differentiate UTUC from UCB. We found that the majority of
UTUC tumors are luminal-papillary and T-cell depleted.

Previous studies identified a link between Lynch syn-
drome caused by germline mutations in MMR genes and
UTUC9–11. However, the vast majority of UTUCs arise spor-
adically (in non-Lynch syndrome patients). Our analysis aimed to
define whether sporadic UTUC patients had MSI or a higher
TMB, which are independent predictors of response to immune
checkpoint inhibition20,21. Our study revealed a lower TMB in
non-Lynch syndrome UTUC compared to UCB. We found that
the lower expression of canonical MMR mRNA and proteins in
non-Lynch UTUC was insufficient to produce significant MSI or
a higher TMB compared to UCB. Unlike the complete absence of
MSH2, MLH1, MSH6, or PMS2 or MLH1 protein expression
observed in Lynch syndrome patients caused by loss-of-function
germline mutations, the incomplete loss of these proteins
observed in sporadic UTUC is not sufficient to cause MSI22. Even
low MMR protein expression is adequate for maintaining func-
tional MMR and preserving microsatellite stability23. These
results are also consistent with a recent study showing MSI sensor
scores < 3.5 in the majority of non-Lynch syndrome UTUC
patients24. Taken together, our findings suggest that, contrary to
the prevalent notion, sporadic UTUC is not hypermutated. This
is especially important when considered in conjunction with our
data showing that the majority of sporadic UTUCs are also
consistently luminal-papillary and T-cell depleted. This new
understanding of the mutational landscape and immune con-
texture in non-Lynch syndrome UTUCs (which constitute the
majority of cases) further explains the lack of higher response
rates of UTUC compared to UCB in clinical trials of immune
checkpoint inhibitors (ICIs)20,21. In a prospective phase 2 study

of advanced, post-platinum UC patients (including UTUC),
atezolizumab demonstrated the lowest response rates in the
luminal-papillary (cluster I) subtype compared to other sub-
types20. In a different trial, response to nivolumab was lower in
the luminal 1 (cluster I) UC tumors with low expression of IFNG
signature genes15.

We identified a putative role for upregulated FGFR3 in UTUC
in shaping the immune contexture of T-cell-depleted UTUC
tumors. This observation is consistent with the previously
described enrichment of the FGFR3 gene signature in luminal
UCB tumors2–6,25 and the association of FGFR upregulation with
T-cell depletion in tumors of pancreatic and breast origin14. We
observed a consistent increase in BST2 following pharmacologic
FGFR3 inhibition in three different UC cell lines that harbor
activating FGFR3 fusions. BST2 is a viral restriction factor which
is canonically induced by interferon26.This is also consistent with
the role of FGFR3 in blocking the Y701 tyrosine phosphorylation
required for STAT1 activation27. Taken together, these findings
provide putative mechanistic links between FGFR3 and IFNG
signaling and suggest that FGFR3 inhibition potentially remodels
the immune contexture of UTUC by upregulating interferon
response genes to reverse its T-cell-depleted phenotype.

Our observations also provide a rationale for combining
FGFR3 inhibitors with PD-1/PD-L1 inhibitors as a targeted
therapeutic strategy to modulate the T-cell-depleted phenotype of
UTUC. Preliminary clinical trial results using two pan-FGFR
inhibitors, erdafitinib, and BGJ398 in several cancers enriched for
FGFR genomic alterations including urothelial carcinoma, are
encouraging28,29. Erdafitinib was granted accelerated approval by
the FDA in relapsed/refractory metastatic bladder cancer on
the basis of phase 2 trial results showing a response rate of 32.2%
in 87 patients with tumors that harbored actionable FGFR
alterations30. Our findings suggest that clinical trials of FGFR3
inhibitors as single agents or in combination with immune
checkpoint blockade as a UTUC-targeted therapeutic strategy is
warranted. This strategy is also potentially applicable to other
tumor types harboring FGFR3-activating molecular alterations.

Our study has multiple strengths. We used different approa-
ches to confirm that the predominantly luminal-papillary phe-
notype of UTUC is a consistent biological feature. In a previous
study, unsupervised clustering of RNAseq data from both high-
grade and low-grade UTUC was used to divide UTUC into four
molecular subtypes31. Here, we used an alternative approach to
position high-grade UTUC within the continuum of UC biology.

Fig. 4 FGFR3 plays an important role in the T-cell-depleted immune contexture of UTUC. a UTUC is T-cell depleted. Supervised consensus clustering of
WCM UTUC, BCM-MDA UTUC, and TCGA UCB tumors according to a 170-immune gene signature classifies tumors into T-cell depleted (with lower
expression of classifier genes), and T-cell inflamed (with higher expression of classifier genes) clusters (Fisher’s exact test P= 9 × 10-5). b FGFR3 is an
expression outlier in UTUC tumors. WCM UTUC and BCM-MDA UTUC tumors are represented on the x-axis, and normalized z-scores of gene’s expression
represented on the y-axis. c Boxplots of mean expression of FGFR3 and PPARG genes [in Fragments Per Kilobase of transcript per Million mapped
reads (FPKM)] within the T-cell-depleted versus T-cell inflamed clusters (FGFR3: Wilcoxon test P= 1.3 × 10−6; PPARG: Wilcoxon test P= 1.1 × 10−5). The
horizontal lines within the boxplots indicate the mean, boundaries of the boxes indicate the 25th-percentile and 75th-percentile, and the whiskers indicate
the highest and lowest values of the results. d Interferon gamma (IFNG)-response genes are upregulated in response to FGFR3 knockdown. Volcano plot of
differential fold expression of genes (logFC < 0 vs. logFC > 0; t-test adjusted P < 0.05) in FGFR3 shRNA+Doxycycline compared to control+Doxycycline
UCB RT-112 cells (BST2: P < 0.001; GBP2: P= 0.038; IRF9: P= 0.005; MX2: P= 0.003). e Enrichment map of cancer-related pathways with significant
positive and negative enrichment in FGFR3 shRNA UCB RT-112 cells. Node size corresponds to the number of genes within each gene set. The up-regulated
nodes were represented in red while the down-regulated clusters were represented in blue. Overall, 476/3534 gene sets were upregulated, and 651/3534
gene sets were downregulated (t-test P < 0.05; false discovery rate (FDR) < 0.25). Several IFNG response gene sets were enriched after FGFR3 blockade
(t-test P < 0.001; FDR= 0.062). f Pharmacologic inhibition of FGFR3 upregulates IFNG-response gene BST2 using two different primer pairs (BST2 #1, BST2
#2). Barplots showing relative fold increase (mean ± SD) of mRNA levels of BST2 (BST2 #1 and BST2 #2) after treatment with erdafitinib at 1 and 5 nM
compared to DMSO vehicle in RT-112, RT-4, and SW780 cells. No statistically significant differences were observed in the expression of BST2 between the 1
and 5 nM erdafitinib conditions in any of the tested cell lines (statistical significance level is denoted by asterisks *t-test P < 0.05, **P < 0.01, ***P < 0.001, n.s:
non-significant). Error bars show standard deviation (S.D.) for each condition
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Our study also has several limitations. Even though we included
patients from three major academic institutions, our cohort is still
limited by sample size due to the relative rarity of this tumor type.
Further confirmation of our findings in larger UTUC cohorts is
warranted. Future studies also need to examine the stability of the
molecular profiles we identified across matched primary and
metastatic UTUC tumors.

In summary, our findings lay the foundation for a deeper
understanding of the key features of the biology of UTUC. Based
on this knowledge, we provide a roadmap for the rational clinical
development of targeted and immunotherapeutic strategies that
are specific to UTUC but also potentially applicable to other
tumor types harboring FGFR3-activating molecular alterations.

Methods
Patient enrollment and tissue acquisition. The study was approved by our
Institutional Review Boards (Weill Cornell Medicine (WCM)/New York-
Presbyterian (NYP) IRB protocols for Tumor Biobanking—0201005295, GU tumor
Biobanking—1008011210, Urothelial Cancer Sequencing—1011011386, Compre-
hensive Cancer Characterization by Genomic and Transcriptomic Profiling—
1007011157 and Precision Medicine—1305013903). Banked excess tissue was
collected from nephroureterectomy specimens of patients with a diagnosis of high-
grade UTUC. UTUC high-grade samples were obtained from patients under
protocols approved by institutional review boards using endoscopic biopsy or
surgical resection at BCM and MDACC31. All tumor samples consisted of con-
ventional UC. Samples were selected based on pathologic diagnosis according to
standard guidelines for UTUC1,32. All pathology specimens were reviewed and
reported by board-certified genitourinary pathologists in the Department of
Pathology at WCM/NYP, BCM and MDA. Clinical charts were reviewed by the
authors (P.J.V., T.J.M., S.F.M., S.P.L., B.M.F.) to record patient demographics,
tobacco use, treatment history, anatomic site, the presence of concurrent bladder
cancer, pathologic grade and stage using tumor, node, metastasis (TNM) system.
DNA for WES was extracted from tumors and matched normal tissues and RNA
was purified from tumors for RNAseq.

DNA extraction and WES. For WCM UTUC samples, we used our established
WES protocol33,34. After macrodissection of target lesions, tumor DNA was
extracted from formalin-fixed, paraffin-embedded (FFPE) or cored OCT-
cryopreserved tumors using the Promega Maxwell 16 MDx (Promega, Madison,
WI, USA). Germline DNA was extracted from normal kidney tissue adjacent to the
tumor, using the same method. Pathological review by one of the study pathologists
(B.D.R., J.M.M., M.A.R.) confirmed the diagnosis and determined tumor content.
A minimum of 200 ng of DNA was used for WES. DNA quality was determined by
TapeStation Instrument (Agilent Technologies, Santa Clara, CA) and was con-
firmed by real-time PCR before sequencing. Sequencing was performed using
Illumina HiSeq 2500 (2 × 100 bp). A total of 21,522 genes were analyzed with an
average coverage of 85× using Agilent HaloPlex Exome (Agilent Technologies,
Santa Clara, CA). For BCM-MDA samples, DNA was purified from tumor and
matched normal tissues and used for WES31.

WES data processing pipeline. All the WCM samples data were processed
through the computational analysis pipeline of the Institute for Precision Medicine
at Weill Cornell, New York Presbyterian Hospital (IPM-Exome-pipeline)32. Raw
reads quality was assessed with FASTQC33. Pipeline output includes segment DNA
copy number data, somatic copy-number aberrations (CNAs) and putative somatic
single-nucleotide variants (SNVs). Bioinformatic analysis of BCM-MDA samples
data was performed31.

Single nucleotide variants. We developed a consensus somatic SNVs calling
pipeline to enhance the accuracy of these calls for WCM samples. SNVs were
identified in the paired tumor–normal samples using MuTect2, Strelka, VarScan,
and SomaticSniper, and only the SNVs identified by at least two mutation callers
were retained. Indels (insertions or deletions) were identified using Strelka and
VarScan and only those identified by both tools were retained. The identified
somatic alterations were further filtered using the following criteria: (a) read depth
for both tumor and matched normal samples was ≥ 10 reads, (b) the variant allele
frequency (VAF) in tumor samples was ≥ 5% and >3 reads harboring the mutated
allele, (c) the VAF of matched normal was ≤ 1% or there was just one read with
mutated allele. The variants were annotated using Oncotator (version 1.9); the
dbSNPs amongst the mutation calls, unless also found in the COSMIC database,
were filtered out. For the IPMs samples, the promiscuous mutation calls, previously
identified internally as artifacts for Haloplex were also excluded from the final list
of mutations. Tumor mutation burden (TMB) was calculated for each sample as
the number of mutations divided by the number of bases in the coverage space per
million. Somatic mutations were called via a standard cancer analysis pipeline at

the BCM Human Genome Sequencing Center and by using VARSCAN2 for BCM-
MDA samples31.

Mutational signature analysis. Somatic alterations identified from the WES
analysis pipeline were used to identify underlying patterns of mutational sig-
natures. The nonsynonymous SNVs were classified into the six base substitution
classes and the bases immediately to the 5′ and 3′ of the mutated base gave 16
different mutational contexts; hence there were 96 different base substitution
patterns in total. All base substitutions were reported in context of pyrimidines and
in 5′ to 3′ direction. The signatures were identified using the counts of 96 base
substitutions for each sample, based on the Bayesian NMF8. The signatures dis-
covered in the WCM UTUC, BCM-MDA UTUC and TCGA UCB cohorts were
compared to the 30 COSMIC signatures using hierarchal clustering of cosine
similarity amongst these signatures with ‘ward.D2’ linkage.

MMR histochemical expression and H-score calculation. Expression of MMR
proteins was assessed in 16 WCM UTUC tumors and 14 matched archival WCM
UCB. IHC was performed on 4-μm-thick formalin-fixed paraffin-embedded tissue
sections using a Leica Bond III automated stainer. Mouse antibodies against MLH1
(G168-728, 1:25 dilution, BD Biosciences), PMS2 (A16-4, 1:100 dilution, BD Bios-
ciences), MSH2 (FE11, 1:200, EMD Millipore), and MSH6 (44/MSH6, 1:200, BD
Biosciences) were used. IHC slides were scanned at ×200 total magnification using a
single z-plane via an Aperio AT2 whole slide scanner (Leica Biosystems, San Diego,
CA, USA). The scanned images were loaded onto the HALOTM imaging analysis
platform (Indica Labs, Corrales, New Mexico, USA). Study pathologists manually
selected tumor areas for automated image scoring, and the HALOTM analysis
software determined the staining intensity of each tumor cell (0, 1+, 2+, 3+) and
percentage of tumor cells for each intensity level. H-scores were then calculated using
the formula [1×(% of cells with intensity of 1+)+2×(% cells 2+)+3×(% cells 3+)]
with possible scores thus ranging from 0 to 300.

Computational detection of MSI. MSI in WCM UTUC and TCGA UCB samples
was detected by MSI sensor. MSI sensor is a software tool that quantifies MSI in
paired tumor–normal genome sequencing data and reports the somatic status of
corresponding microsatellite sites in the human genome12. MSIsensor score was
calculated by dividing the number of microsatellite unstable by the total number of
microsatellite stable (MS) sites detected. The cut-off for defining MSI-high (MSI-
H) versus MS stable (MSS) samples was 3.5 (MSI-H > 3.5, MSS < 3.5)12.

Germline variant calling pipeline. Germline samples used in this study were
normal tissue from fresh frozen or formalin-fixed paraffin-embedded tissue from
nephroureterectomy archival specimens of patients with a diagnosis of UTUC at
WCM35. We applied a germline variant calling pipeline based on the
Burrows–Wheeler Aligner (BWA), and the Genome Analysis Toolkit (GATK), for
base recalibration, realignment around indels and variant calling. We devised a
variant filtering strategy to narrow down the most important and likely clinically
relevant variants. For each variant, we collected annotations from databases
including ClinVar and Exome Aggregation Consortium (ExAC, http://exac.
broadinstitute.org)36. Following the ACMG Standards and Guidelines regarding
classification and interpretation of sequence variants37, the variants were classified
into five categories: Pathogenic Likely Pathogenic, Likely Benign, Benign and
variants of unknown significance. Germline samples from the BCM-MDA cohort
were previously analyzed31. None of the included BCM-MDA UTUC patients had
a diagnosis of Lynch syndrome31.

RNA extraction, RNAseq, and data analysis. RNA was extracted from frozen
material for RNA-sequencing (RNA-seq) using Promega Maxwell 16 MDx
instrument, (Maxwell 16 LEV simplyRNA Tissue Kit (cat. # AS1280)) from WCM
UTUC tumors. Specimens were prepared for RNAseq using TruSeq RNA Library
Preparation Kit v2 or riboZero. RNA integrity was verified using the Agilent
Bioanalyzer 2100 (Agilent Technologies). cDNA was synthesized from total RNA
using Superscript III (Invitrogen). Sequencing was then performed on GAII, HiSeq
2000, or HiSeq 2500. All reads were independently aligned with STAR_2.4.0f138 for
sequence alignment against the human genome sequence build hg19, downloaded
via the UCSC genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
bigZips/), and SAMTOOLS v0.1.1939 for sorting and indexing reads. Cufflinks
(2.0.2)40 was used to estimate the expression values (FPKMS), and GENCODE
v2341 GTF file for annotation. Rstudio (1.0.136) with R (v3.3.2) and ggplot2 (2.2.1)
were used for the statistical analysis and the generation of figures. For fusion
analysis, we used STAR-fusion (STAR-Fusion_v0.5.1)42,43. Fusions with significant
support of junction reads and spanning pairs are then selected and manually
reviewed. RNA was purified from BCM-MDA UTUC tumors and mRNA
expression was computed for all genes from RNAseq data31. Gene fusions were
detected in the RNAseq data using deFuse and SOAPfuse31.

RNAseq data quantification, integration, and expression analysis. The mRNA
gene expression for high-grade WCM UTUC and TCGA UCB tumors was
quantified as Reads Per Kilobase of transcript per Million mapped reads (RPKMs).
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Similarly, RPKMs for high-grade tumors from a previously published UTUC
cohort at BCM and MDACC were calculated31. The RPKMs from these three
institutions were combined and quantile normalized to reduce any batch effects
among the samples while maintaining their individual biological variability. The
quantile normalized data were log transformed for further analyses. To rule out
batch effects, we examined the normalized expression values for a set of 40
housekeeping genes expected to have comparable expression value distributions
among the three datasets (WCM UTUC, BCM-MDA UTUC, TCGA UCB)
(Supplementary Fig. 1). Differential gene expression (DGE) between UTUC and
UCB cohorts was performed on the counts data using the Bioconductor package
DESeq2. The threshold to select differentially regulated genes was determined at a
fold change of >1 for upregulated and <−1 for downregulated genes and results
were deemed significant at an adjusted p-value of 0.05 (Benjamini–Hochberg
correction).

Hierarchical clustering to infer UTUC subtypes. The subtypes in the UTUC
cohorts, namely WCM and BCM-MDA, were inferred using previously published
subtype-specific gene signatures together with previously reported2 subtype clas-
sifications for TCGA UCB samples. To this end, first, the normalized expression
values corresponding to the BASE47-signature, MDACC-signature, and TCGA-
signature genes were extracted from the three integrated data sets (namely WCM
UTUC, BCM-MDA UTUC, and TCGA UCB). For each signature gene set, the
subtype for each of the WCM UTUC and BCM-MDA UTUC samples was inferred
as follows: (1) The samples were clustered based on Pearson correlation and
average linkage, and the cophenetic distances among them were calculated, (2)
TCGA samples with minimum cophenetic distances to each UTUC sample were
identified, and corresponding TCGA subtype labels were assigned to the specific
UTUC samples. Subsequently, the results corresponding to each signature gene set
were visualized in heatmaps, scaled across signature genes, and grouped based on
inferred subtypes.

Unsupervised NMF. Unsupervised NMF was applied to the FPKM expression
matrix for TCGA and UTUC samples. The input expression matrix was first
filtered to retain only the top 25% of the genes with the highest expression
variability. The optimal number of ranks was estimated to three based on 30
randomly initialized instances using the NMF R package. The NMF was then run
with a rank k= 3 over 100 iterations, to obtain the final deconvolution into three
resulting components. Amongst other genes, component 1 contained ECM/EMT
markers (C7, COMP, DES, PGM5, SFRP4, CLDN3, TWIST1), component 2
contained luminal/papillary markers (CIS.Down (CRTAC1, CTSE), luminal
(FGFR3, KRT20, SNX31, UPK1A, UPK2), and Sonic Hedgehog (SHH)), and
component 3 contained basal/squamous markers (basal (KRT5, KRT14, KRT6A),
immune (CXCL11, SAA1), and squamous (DSC3, GSDMC, PI3, TGM1). PCA was
then performed on the coefficients obtained from NMF to visualize the separation
of the three components.

Outlier analysis. Genes expression outliers Z-scores were calculated for a list 74
cancer-related genes generated from the intersection of Sanger database and
Drugbank (https://www.drugbank.ca/

https://www.sanger.ac.uk/science/tools/gdsc-genomics-drug-sensitivity-cancer).
Z-scores were calculated across the WCM UTUC and BCM-MDA UTUC cohorts
for these 74 cancer-related genes. For each sample, the quantiles were calculated
and then used to compute the lower and upper bound to define an outlier. A cut-
off of Z-score > 1 and FPKMS > 50 was reported for the UTUC outlier genes after
comparison with TCGA UCB samples.

Identification of T-cell-inflamed and T-cell-depleted subtypes. The top 5000
genes with the most variable normalized expression levels across TCGA UCB and
UTUC samples (WCM and BCM-MDA) were selected based on their median
absolute deviations. These genes data were then median centered and used as an
input for hierarchal clustering and Euclidean distance (linkage=ward.D2, k= 20).
A 170-gene cluster containing CD8A and other key immune genes was identified.
A k-means consensus clustering of these 170 genes across both UTUC and UCB
cohorts revealed the presence of two prominent subclusters that we labeled as T-
cell inflamed (with higher expression of cluster genes) and T-cell depleted (with
lower expression of cluster genes).

Differential expression analysis of FGFR3 shRNA dataset. To study the role of
FGFR3 in up-regulation of the interferon response, we obtained the publicly
available Affymetrix microarray dataset from the RT-112 bladder cancer cell
line, with or without shRNA-mediated knockdown of FGFR317,18. The dataset
comprised of 12 samples transduced with doxycycline-inducible shRNAs,
which were either a shRNA-targeting EGFP (control) or one of three distinct
shRNAs-targeting FGFR3 (FGFR3-shRNA); each condition had three biological
replicates. This data was downloaded as raw signal intensity values for 54,675
probesets (Affymetrix Human Genome U133 Plus 2.0 Array). We used robust
multiarray average (RMA) for background correction, normalization, and probe
level intensity calculation from Affy Bioconductor Package (Version 1.52), in R
statistical environment44. The normalized expression profiles were then used to

identify differentially expressed probes between FGFR3-shRNA versus control
samples using the limma package (version 3.30.13)45. Probes were collapsed to
gene level after taking the median fold change of the probes, utilizing hgu133-
plus2 annotation data46. Genes that were differentially expressed after doxycy-
cline induction in all three FGFR3-depleted cell lines but not in the control cell
line were considered putative FGFR3-regulated genes. We identified 58 up-
regulated genes (log-fold change > 1 and adjusted P-value < 0.05) and 45
downregulated genes. The log-fold change values of >1 or <−1 were used as
thresholds to select for up-regulated or down-regulated genes, respectively
(adjusted P-value < 0.05).

Gene set enrichment analysis. A pre-ranked gene set enrichment analysis
(GSEA) was applied to the differentially expressed genes, ordered based on their
log-fold change values, to identify the cellular pathways significantly altered after
shRNA-mediated knockdown of FGFR347. Gene sets available through the Gene
Ontology Biological Pathways collection in the Molecular Signatures Database48

were used for the GSEA analysis.

Network analysis. Gene sets found to have a statistically significant enrichment
using GSEA were visualized using network-based enrichment maps in Cytoscape49,
where each node in the network was representative of an individual gene set50. In
addition, the enrichment map also grouped redundant gene sets into distinct
clusters enabling the identification of broader functional categories. The clusters
from the enrichment maps were further refined and labeled using AutoAnnotate51.
We only focused on cancer-related and immune-related pathways in the network.

Real-time PCR. RT-4 and SW780 were purchased from ATCC (HTB-2 and
CRL-2169) and RT-112 was purchased from Sigma (85061106). RT-4, SW780
and RT-112 were cultured in McCoy’s 5A (modified) medium (Thermo Fisher
Scientific, 16600108), DMEM (Thermo Fisher Scientific, 11965118), and EMEM
(ATCC, 302003) with 10% FBS, respectively. All the cell lines were mycoplasma
negative and validated by STR testing. RT-112, RT4, and SW780 cells were
treated with DMSO, Erdafitinib 1 μM, and Erdafitinib 5 μM for 48 hours,
respectively. Total RNA was isolated with the RNeasy Plus Mini Kit (Qiagen
#74134) according to the manufacturer’s protocol. Total RNA concentration was
measured by NanoDrop (Thermo Fisher Scientific). cDNA was synthesized
using SuperScriptTM III First-Strand Synthesis system (Invitrogen #18080051).
Real-time PCR was performed by LightCycler 480 (Roche) using Power SYBR
Green Master Mix (Applied Biosystems #4367659). All calculations were col-
lected and analyzed with LightCycer 480 software (Roche) using the delta–delta
Ct method. The reaction components, conditions, and primers used are listed in
Supplementary Table 4. All data were normalized to the expression of the
housekeeping gene beta-actin (β-actin) and then compared to the expression in
the DMSO-treated group. Two independent experiments were performed, each
with two technical replicates. The data were presented by mean ± SD. P-values
were calculated using the t-test and corrected for multiple comparisons using the
Holm–Sidak method. All analyses were performed using GraphPad Prism sta-
tistical software.

Statistical analyses. For statistical tests, two-sided Mann–Whitney–Wilcoxon test
was used to check for significant differences between two distributions. The two-
sided Fisher’s exact test was applied to determine whether the deviations between
the observed and the expected counts were significant. When appropriate, P-values
were adjusted for multiple hypotheses testing with Benjamini–Hochberg proce-
dure. Boxplot statistics were computed with the function “boxplot” of R pro-
gramming language.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The genomic data that support the findings of this study are available in the database of
Genotypes and Phenotypes (dbGaP) and on cBioPortal for Cancer Genomics with the
identifier https://www.cbioportal.org/study?id=utuc_cornell_baylor_mdacc_2019. The
source data underlying Figs. 1a–d, 2a–e, 3a, b, and 4a–f and Supplementary Figs. 1, 2, 3
and 4 are provided as a Source Data file.

Received: 18 April 2018 Accepted: 4 June 2019

References
1. Rouprêt, M. et al. European Association of Urology guidelines on upper

urinary tract urothelial carcinoma: 2017 update. Eur. Urol. 73, 111–122
(2018).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10873-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2977 | https://doi.org/10.1038/s41467-019-10873-y | www.nature.com/naturecommunications 9

https://www.drugbank.ca/
https://www.sanger.ac.uk/science/tools/gdsc-genomics-drug-sensitivity-cancer
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001087.v2.p1
https://www.cbioportal.org/study?id=utuc_cornell_baylor_mdacc_2019
www.nature.com/naturecommunications
www.nature.com/naturecommunications


2. Robertson, A.G. et al. Comprehensive molecular characterization of muscle-
invasive bladder cancer. Cell 171, 540–556.e25 (2017).

3. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the
hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115
(2014).

4. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-
invasive bladder cancer with different sensitivities to frontline chemotherapy.
Cancer Cell 25, 152–165 (2014).

5. Cancer Genome Research Atlas Network. Comprehensive molecular
characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

6. Sjödahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer
Res. 18, 3377–3386 (2012).

7. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.
Nature 500, 415–421 (2013).

8. Kim, J. et al. Somatic ERCC2 mutations are associated with a distinct genomic
signature in urothelial tumors. Nat. Genet. 48, 600–606 (2016).

9. Harper, H. L. et al. Upper tract urothelial carcinomas: frequency of association
with mismatch repair protein loss and lynch syndrome. Mod. Pathol. 30,
146–156 (2017).

10. Iyer, G. et al. Mismatch repair (MMR) detection in urothelial carcinoma (UC)
and correlation with immune checkpoint blockade (ICB) response. J. Clin.
Oncol. 35, 4511–4511 (2017).

11. Donahue, T.F. et al. Genomic characterization of upper-tract urothelial
carcinoma in patients with Lynch syndrome. JCO Precis. Oncol. https://doi.
org/10.1200/PO.17.00143 (2018).

12. Niu, B. et al. MSIsensor: microsatellite instability detection using paired
tumor-normal sequence data. Bioinformatics 30, 1015–6 (2014).

13. Jia, Z. et al. Gene ranking of RNA-Seq data via discriminant non-negative
matrix factorization. PLoS One 10, e0137782 (2015).

14. Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms
shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

15. Sweis, R. F. et al. Molecular drivers of the non-T-cell-Inflamed tumor
microenvironment in urothelial bladder cancer. Cancer Immunol. Res. 4,
563–568 (2016).

16. Sharma, P. et al. Nivolumab in metastatic urothelial carcinoma after platinum
therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet
Oncol. 18, 312–322 (2017).

17. Cao, W., Ma, E., Zhou, L., Yuan, T. & Zhang, C. Exploring the FGFR3-related
oncogenic mechanism in bladder cancer using bioinformatics strategy. World
J. Surg. Oncol. 15, 66 (2017).

18. Du, X. et al. FGFR3 stimulates stearoyl CoA desaturase 1 activity to promote
bladder tumor growth. Cancer Res. 72, 5843–5855 (2012).

19. Williams, S. V. et al. Oncogenic FGFR3 gene fusions in bladder cancer. Hum.
Mol. Genet. 22, 795–803 (2013).

20. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and
metastatic urothelial carcinoma who have progressed following treatment with
platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet
387, 1909–1920 (2016).

21. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible
patients with locally advanced and metastatic urothelial carcinoma: a single-
arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

22. Catto, J. W., Xinarianos, G., Burton, J. L., Meuth, M. & Hamdy, F. C.
Differential expression of hMLH1 and hMSH2 is related to bladder cancer
grade, stage and prognosis but not microsatellite instability. Int. J. Cancer 105,
484–490 (2003).

23. Shin, K. H. & Park, J. G. Microsatellite instability is associated with genetic
alteration but not with low levels of expression of the human mismatch repair
proteins hMSH2 and hMLH1. Eur. J. Cancer 36, 925–931 (2000).

24. Audenet, F. et al. Clonal relatedness and mutational differences between upper
tract and bladder urothelial carcinoma. Clin. Cancer Res. https://doi.org/
10.1158/1078-0432.CCR-18-2039 (2018).

25. Marzouka, N. A. et al. A validation and extended description of the Lund
taxonomy for urothelial carcinoma using the TCGA cohort. Sci. Rep. 8, 3737
(2018).

26. Tokarev, A. et al. Antiviral activity of the interferon-induced cellular protein
BST-2/tetherin. AIDS Res. Hum. Retrovir. 25, 1197–210 (2009).

27. Krejci, P. et al. Fibroblast growth factor inhibits interferon gamma-STAT1 and
interleukin 6-STAT3 signaling in chondrocytes. Cell. Signal. 21, 151–160
(2009).

28. Karkera, J. D. et al. Oncogenic characterization and pharmacologic sensitivity
of activating fibroblast growth factor receptor (FGFR) genetic alterations to
the selective FGFR inhibitor erdafitinib. Mol. Cancer Ther. 16, 1717–1726
(2017).

29. Nogova, L. et al. Evaluation of BGJ398, a fibroblast growth factor receptor
1–3 kinase inhibitor, in patients with advanced solid tumors harboring
genetic alterations in fibroblast growth factor receptors: results of a global
phase i, dose-escalation and dose-expansion study. J. Clin. Oncol. 35,
157–165 (2017).

30. FDA Drugs. FDA Grants Accelerated Approval To Erdafitinib for Metastatic
Urothelial Carcinoma. https://www.fda.gov/Drugs/InformationOnDrugs/
ApprovedDrugs/ucm635910.htm (2019).

31. Moss, T. J. et al. Comprehensive genomic characterization of upper tract
urothelial carcinoma. Eur. Urol. 72, 641–649 (2017).

32. Humphrey, P. A., Moch, H., Cubilla, A. L., Ulbright, T. M. & Reuter, V. E.
The 2016 WHO Classification of Tumours of the Urinary System and Male
Genital Organs-Part B: prostate and bladder tumours. Eur. Urol. 70, 106–119
(2016).

33. Rennert, H. et al. Development and validation of a whole-exome sequencing
test for simultaneous detection of point mutations, indels and copy-number
alterations for precision cancer care. NPJ Genom. Med. 1, 16019–16030
(2016).

34. Beltran, H. et al. Whole-exome sequencing of metastatic cancer and
biomarkers of treatment response. JAMA Oncol. 1, 466–474 (2015).

35. Zhang, T. et al. Discovery and reporting of clinically-relevant germline
variants in advanced cancer patients assessed using whole-exome sequencing.
bioRxiv 112672, https://doi.org/10.1101/112672 (2017).

36. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285–291 (2016).

37. Richards, S. et al. Standards and guidelines for the interpretation of sequence
variants: a joint consensus recommendation of the American College of
Medical Genetics and Genomics and the Association for Molecular Pathology.
Genet. Med. 17, 405–424 (2015).

38. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15–21 (2013).

39. Li, H. et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

40. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-
seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

41. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs:
analysis of their gene structure, evolution, and expression. Genome Res. 22,
1775–1789 (2012).

42. Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape
of kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).

43. STAR-Fusion/STAR-Fusion, https://github.com/STAR-Fusion/STAR-Fusion
(2016).

44. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy–analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

45. Diboun, I., Wernisch, L., Orengo, C. A. & Koltzenburg, M. Microarray
analysis after RNA amplification can detect pronounced differences in gene
expression using limma. BMC Genom. 7, 252 (2006).

46. Carlson, M. hgu133plus2.db: Affymetrix Human Genome U133 Plus 2.0 Array
annotation data (chip hgu133plus2). (R package version 3.2.3., 2016).

47. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

48. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics
27, 1739–1740 (2011).

49. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

50. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map:
a network-based method for gene-set enrichment visualization and
interpretation. PLoS ONE 5, e13984 (2010).

51. Kucera, M., Isserlin, R., Arkhangorodsky, A. & Bader, G. D. AutoAnnotate: a
Cytoscape app for summarizing networks with semantic annotations.
F1000Res 5, 1717 (2016).

Acknowledgements
The work conducted at WCM was supported by the Conquer Cancer Foundation and the
John and Elizabeth Leonard Family Foundation Young Investigator Award (B.M.F.). This
work was also supported by a Charles, Lilian and Betty Neuwirth Foundation Fellowship
in Oncology Award (P.J.V.), by the Translational Research Program at WCM Depart-
ment of Pathology and Laboratory Medicine (B.D.R., J.M.M.) and by the Englander
Institute for Precision Medicine at WCM (O.E., M.A.R.). The part of this work that was
conducted at BCM-MDA was funded in part by the Robert J. Kleberg Jr. and Helen
C. Kleberg Foundation, the Khalifa Bin Zayed Al Nahyan Foundation, and the Eleanor
and Scott Petty Fund for UTUC Research, University of Texas MD Anderson Cancer
Center. This work was also funded in part by the Partnership for Bladder Cancer
Research, Scott Department of Urology, Dan L. Duncan Cancer Center Baylor College of
Medicine.

Author contributions
Initiation and design of the study: B.D.R., P.J.V., O.E. and B.M.F. Subject enrollment,
sample, and clinical data collection: P.J.V., B.D.R., K.P., P.T., J.C., S.T.T., D.M.N., H.B.,
A.M.M., F.K., J.M.M., E.X., S.F.S., D.S.S., M.A.R., S.P.L., S.F.M. and B.M.F. Lab data

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10873-y

10 NATURE COMMUNICATIONS |         (2019) 10:2977 | https://doi.org/10.1038/s41467-019-10873-y | www.nature.com/naturecommunications

https://doi.org/10.1200/PO.17.00143
https://doi.org/10.1200/PO.17.00143
https://doi.org/10.1158/1078-0432.CCR-18-2039
https://doi.org/10.1158/1078-0432.CCR-18-2039
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm635910.htm
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm635910.htm
https://doi.org/10.1101/112672
https://github.com/STAR-Fusion/STAR-Fusion
www.nature.com/naturecommunications


collection and analysis: W.L., K.L. and B.M.F. Statistical and bioinformatic analyses:
P.J.V., B.B., R.B., T.J.M. and O.E. Supervision of research: O.E. and B.M.F. Writing of the
first draft of the manuscript: B.D.R., P.J.V., O.E. and B.M.F. All authors contributed to
the writing and editing of the revised manuscript and approved the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-10873-y.

Competing interests: B.D.R. has received consulting fees from BMS, S.T.T. received
honoraria from Janssen. D.M.N. served on the data safety monitoring board for
Genentech and Roche. H.B. has received research funding from Janssen, Abbvie/
Stemcentryx, Astellas, Eli Lilly, Millennium and has served as advisor/consultant for
Janssen, Astellas, Amgen, Astra Zeneca, Sanofi Genzyme. S.T.T., D.M.N., A.M.M., and B.
M.F. has received research funding from Janssen for Weill Cornell Medicine for clinical
trials. E.X. is a consultant for Janssen. S.F.S. has received honoraria, consulted or served
on advisory boards for Astellas, Astra Zeneca, Bayer, BMS, Cepheid, Ferring, Ipsen,
Janssen, Lilly, MSD, Olympus, Pfizer, Pierre Fabre, Richard Wolf Roche, Sanochemia,
Sanofi, Takeda, Urogen. S.P.L. research funding for clinical trials from Endo, FKD, JBL
(SWOG), Roche/Genentech (SWOG), UroGen, Viventia and is consultant for Archiano
Therapeutics, UroGen, Vaxiion. S.P.L. is on the advisory board of Archiano
Therapeutics, Ferring, miR Scientific, QED Therapeutics, UroGen. S.F.M. is a consultant
for QED Therapeutics. B.M.F. has received research support for Weill Cornell from Eli
Lilly. The remaining authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks John Sfakianos and other
anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10873-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2977 | https://doi.org/10.1038/s41467-019-10873-y | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-019-10873-y
https://doi.org/10.1038/s41467-019-10873-y
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Upper tract urothelial carcinoma has a luminal-papillary T-cell depleted contexture and activated FGFR3�signaling
	Results
	UTUC and UCB mutational profiles
	Somatic downregulation of DNA damage repair (DDR) genes in UTUC
	UTUCs are predominantly luminal-papillary
	UTUC has a T-cell depleted immune contexture
	FGFR3 is a putative driver of UTUC’s immune-depleted contexture

	Discussion
	Methods
	Patient enrollment and tissue acquisition
	DNA extraction and WES
	WES data processing pipeline
	Single nucleotide variants
	Mutational signature analysis
	MMR histochemical expression and H-score calculation
	Computational detection of MSI
	Germline variant calling pipeline
	RNA extraction, RNAseq, and data analysis
	RNAseq data quantification, integration, and expression analysis
	Hierarchical clustering to infer UTUC subtypes
	Unsupervised NMF
	Outlier analysis
	Identification of T-cell-inflamed and T-cell-depleted subtypes
	Differential expression analysis of FGFR3�shRNA dataset
	Gene set enrichment analysis
	Network analysis
	Real-time PCR
	Statistical analyses
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS




