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Abstract: This paper investigated the hardness property of the fused deposition modeling (FDM)-
printed PLA samples via different process parameters of printing and raster angles. The hardness
data were sampled from the flat and edge surfaces of the samples. In addition, the effect of hardness
characters after the ultraviolet (UV) curing process was analyzed. Furthermore, this research found
that the printing and raster angles significantly affected the hardness value of the PLA part, which
slightly increased after the UV irradiation. Moreover, the results of this study will provide a reference
for the field of FDM application.

Keywords: 3D printing; fused deposition modeling; PLA; UV curing; hardness; printing angle;
raster angle

1. Introduction

Fused deposition modeling (FDM) is one of the most popular and used technique
in additive manufacturing (AM) due to its simple operation, low cost, and variety of ma-
terials [1–4]. The FDM method is popular due to its highly flexibility and process speed,
but the durability of the printed material is the major concern, especially for products
applicated in an outdoor environment [5]. The popular materials used in the FDM method
include polylactic acid (PLA) [6], acrylonitrile butadiene styrene (ABS) [7,8], polyethylene
terephthalate (PET) [9], polyethylene terephthalate glycol (PETG) [10,11], and others com-
posite fibers [12–14]. The digital prototype of the part is usually created by CAD software
and exported as an STL file. Then, the slicing software will slice the file and transfer it into
a G-code format, which allows the FDM printer to read and manufacture the part. After
the printer constructs the part completely, a certain part will be irradiated by UV light via
a UV curing machine, a post-processing step commonly used in composite fiber material
for stronger polymer chains and physical entanglements [15]. A large number of studies
have been conducted to explore the processing parameters to optimize the manufacturing
efficiency and the product mechanical properties (e.g., tensile, compressive, bending, and
hardness) of the FDM process. Rajpurohit et al. [16] used different angles, layer thickness,
and raster widths to explore the tensile properties of PLA printed parts. The results found
that the 0◦ raster angle has the highest tensile strength. In addition, Liu et al. [17] analyzed
the tensile and flexural behaviors of multiple PLA composite parts printed in different
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orientation and raster angles. The results indicated that the PLA part printed in an on-edge
orientation with +45◦/−45◦ raster angle has the highest tensile strength and modulus.
Furthermore, Ding et al. [18] used the finite element simulation to explore the stiffness
and strength of the specimens. The results showed that it is feasible to predict the stiffness
and strength of FDM specimens using classical laminated plate theory and the Tsai–Wu
failure criterion and that the 45◦ printing angle leads to specimens with maximized tensile
properties. Numerical simulations show that changing the printing angle highly impacts
the mechanical characteristic of the PLA part. Kumar et al. [19] investigated the mechanical
properties of the PLA composite matrix and observed that the printing angle of 45◦ has the
best condition on mechanical properties (flexural and pull out), which are dependent upon
the hardness, surface porosity and surface roughness. On the other hand, Butt et al. [20]
used the Hybrid Fused Deposition Modelling (H.F.D.M.) process to explore the mechanical
characteristic of Cu/PLA composite. The experimental results indicated that the hardness
value is greatly affected by surface roughness. Vicente et al. [21] used ABS material to
analyze the effect of different nozzle diameters, layer thicknesses, infill densities, and raster
angles on the mechanical properties. The results found that the nozzle diameter mostly
affects the tensile strength and stiffness. In particular, a higher nozzle diameter increases
the value of stiffness and tensile strength. Bedi et al. [22] reported the mechanical properties
of the printed part for in-house prepared feedstock filament comprising of SiC/Al2O3
reinforced in recycled low-density polyethylene (LDPE) matrix with different particle sizes.
The results showed that the raster angle has the maximum impact on the dimension ac-
curacy and hardness of the printed part. Meanwhile, Harven et al. [23] investigated the
effect of three different building thicknesses and two different layer orientations of PLA
material on FDM printed samples. The Shore D test results found that the sample printed
in horizontal orientation has higher hardness values and that the building orientation has a
significant effect on the hardness of the printed material. Chohan et al. [24] used the process
parameters of the combined FDM and vapor smoothing (VS) process to optimize ABS
replicas for sustainability in biomedical applications. The ABS parts were put into a cooling
chamber for pre-cooling process. The results showed that the hardness of the replica had
been slightly increased by the maximum impact of the orientation angle and post-cooling
time of ABS replicas. Valerga et al. [25] studied the effects of mechanical properties via dif-
ferent post-treatments of PLA printed samples. The results obtained obvious changes in the
maximum stress (from 55 to 20 MPa), in elongation (from 3% to 260%), and in the hardness
scale (Shore D to A). Felices et al. [26] investigated the effect of the addition of epoxysilane-
treated wollastonite (ETW) to the mechanical and thermal properties of 3D-printed ABS
via FDM; their hardness test results indicated that the addition of ETW increases the tensile
strength, elastic modulus, and elongation at break of ABS by up to 46.6, 56.2, and 53.7%,
respectively. The Shore D hardness increases with increasing ETW. Vishal et al. [27] used
the FDM process to extrude silicon filled PLA biocomposite filaments with various weight
percentages of sub-micrometric silicon particles (0, 1, 3, 5, and 7%) filled to improve the
PLA performance. The results found that the interaction of silicon filler in the PLA matrix
has a good load-carrying ability, and the PLA with 7% silicon biocomposite has the highest
Shore D hardness, attributable to the silicon filler’s load-bearing capacity. Some researchers
improve polymer via UV curing or irradiation process, which was considered as a method
to increase the long-term stability of polymer [28]. Lyu et al. [15] added phosphine oxide
(XBPO) in the PLA matrix, the results found that the maximum tensile strength of 3D
printing specimens increased by 82.5% after UV process.

According to the past published studies, the effect of multiple process parameters on
mechanical properties was widely discussed. We discussed the effects of different raster
and printing angles, infill density and the UV process on tensile properties before [29,30].
However, since there is a lack of research exploring the impact of building direction on
the hardness of the material, this research will follow with former research and further
exploring the surface hardness properties from different printing angles of three different
types (with X, Y, and Z axes) and three different raster angles of flat orientation specimens
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under low infill density conditions. In addition, the hardness properties of the front and
the side surface will be investigated. Furthermore, the difference in the surface hardness
before and after the UV curing process of the PLA printed part will be further analyzed as a
simulation for the PLA part expose in an outdoor environment. Ultimately, the findings of
this research could be a reference for the engineering application in the FDM process area.

2. Experimental Campaign

The FDM printer used in this paper is the X1E 3D printer (Infinity3DP, Kaohsiung,
Taiwan), and a 0.4 mm diameter nozzle was selected. The process temperature and speed
were set as 205 ◦C and 35 mm/s, respectively. Since most commercial product requires high
production efficiency and short cycle time, the infill density of 10% and the layer thickness
of 0.2 mm were thus chosen for shorter processing time. The fixed and controlling factors
of the FDM process for fabricating the samples are shown in Table 1. The PLA filaments of
Snow-White color (MIN-YAU, Taipei, Taiwan) are 1.75 mm in diameter. The digital model
of the test samples was drawn by the Inventor software, and the output was exported in
S.T.L. format. The KISSlicer and Cura software were used to set the process parameters
of the samples and transform them into a G-code format for the printer to construct the
samples. The purpose of this research is to analyze the hardness properties of PLA samples
printed in two different types. One type is printed in certain angles (0◦, 30◦, 60◦, and 90◦)
of three different axes (X, Y, and Z axes), are named as X-type, Y-type, and Z-type samples,
respectively. These three types of samples are printed with 45◦ of raster angles. The other
type is the sample that lies on the platform (X0/Y0 orientation) with three different raster
angles (0◦/90◦, 30◦/−60◦, 45◦/−45◦), which are called the R-type samples. The schematic
diagram of each sample is shown in Table 2; it should be noted that the specimens of
X90/Z90 and Y0/Z0 were totally identical in the printing process, and therefore, they were
tested with the same specimens. A total of two sets of identical samples were printed, of
which one was irradiated by UV light to explore the effect of the UV curing process. After
the FDM printer fabricated the samples completely, the samples with the UV curing process
will be immediately sent to the UV curing machine for UV irradiation. The MultiCure
180 UV curing machine (XYZ Printing, New Taipei, Taiwan) was used with a wavelength
of 365 nm and power intensity of 60%. The detailed specification of the curing machine are
listed in Table 3. The rotational speed of the turntable was one revolution per minute. Then,
the specimens were placed in a humidity-controlled box with 23 ◦C of room temperature
to keep them dry and to prepare for the test. Each set of samples were irradiated by the
curing machine for one hour.

Table 1. The fixed and controlling factor of FDM printer.

Fixed Factor Value

Nozzle temperature 205 ◦C
Nozzle diameters 0.4 mm

Printing speed 35 mm/s
Infill density 10%

Platform temperature 60 ◦C
Layer thickness 0.2 mm

Filament diameters 1.75 mm

Controlling factor Value

Printing axis X, Y, Z
Printing angle 0◦, 30◦, 60◦, 90◦

Raster angle 0◦/90◦, 30◦/−60◦, 45◦/−45◦
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Table 2. The schematic diagram and definition of the test sample.

Type Name Schematic Diagram

X−type

X0 (Y0)
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Table 3. The fixed and controlling factors of UV curing machine.

Parameter Value

Wavelength 365 nm
Rotation speed 1 rpm

Operating temperature 23 ◦C
Curing time 60 min

A digital Shore D (HD) durometer (S.E.A.T Industry Technology, Kaohsiung, Taiwan)
was used for the hardness test with the indentation needle of 0.1 mm diameter. According
to the specification, the thickness of the tested sample should not be less than 6 mm. The
hardness values were taken from the flat and the edge surfaces of the samples. Top/bottom
layers are printed for three layers (0.6 mm), the perimeters are printed for three layers, i.e.,
1.2 mm. The sample thickness of two different testing directions are 6 mm (flat-surface)
and 13 mm (edge-surface), respectively. Figure 1a illustrates the definition of tested surface,
the position of tested point and the load direction of durometer. The tested specimens
were according to the Type I sample of ASTM D638 standard. The specification of the test
samples is shown in Figure 2. For each type of sample, 5 identical specimens were printed,
and the average value was picked. Then, 10 points from central axis of tested surface of
each sample were tested, each point was tested 5 times and the extreme value was excluded.
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The change rate of Shore D hardness measurements of each surface before and after UV
curing are analyzed and calculated by the following formula:

Change rate =
HDUV − HDOriginal

HDOriginal
× 100% (1)

where HDUV and HDOriginal represent the hardness value of the material with and without
UV curing process, respectively.
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3. Results

The hardness measurements and the change rate after the UV curing process of the flat
surface are shown in Figure 3, and the standard deviation of the change rate is indicated by
the red line. The mean values and standard deviations of the original PLA and material
after UV curing are shown in Table 4, respectively. For X-type samples, the flat-surface of
X0◦ is the top layer, and the rest of the X-type samples are perimeter layers. Though the
X0◦ sample has the thinnest layer thickness for the tested direction, there was no obvious
trend for X-type samples before UV curing, but it could be observed that the hardness is
slightly enhanced after the UV curing process. This is probably because the specimens are
printed under low infill ratio, and the thickness of the printed specimens did not totally
follow the specification of test standard; therefore, the measured hardness value did not
show significant difference. The hardness trend of Y-type samples was decreased with
the increase in the printing angle. The reason for the trend is probably because of the
processing time of the sample surface. The Y90◦ samples took the longest processing time
of the printer to fabricate the tested surface layer by layer because of its built direction.
Meanwhile, the tested surface of the Y0◦ samples took the shortest processing time just for
one layer, which promoted a better combination between fibers and resulted in a smoother
surface. Additionally, it could also be seen, though, that the tested surface of the Y0◦ sample
is the top layer of the printing process; otherwise, the tested surface of the Y90◦ sample
is the perimeter layer, which has a thicker shell, but the longer fabrication time results
in a rough surface and lower hardness value. To summarize, during the process of the
Y30◦, Y60◦, and Y90◦ samples, the former layer was exposed in the air for a longer time
after extrusion until the next layer overlap, which caused a poor combination between
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layers and led to a rough surface on the samples. Therefore, the tested surface has intensive
valleys and peaks. When the indenter meets a valley, the obtained hardness value will be
overestimated [20,31]. The above reason could be used to explain the Z-type samples, in
which the hardness values were increased with the increasing printing angle, as shown in
Figure 3c. Additionally, the tested surfaces of Z-type samples are all the perimeter layer,
and the samples are basically tested with the same thickness, so the hardness property
basically follows a linear relationship. Figure 3d shows the hardness measurements of the
flat orientation samples with different raster angles. It can be seen that the raster angle has
no significant impact on the hardness value of the flat samples. This is because changing
the raster angles of the samples that lay down on the printing platform did not influence the
roughness and the density of fibers of the tested surfaces much. Furthermore, the surface
filaments were basically printed in the same width, and the hardness are all measured from
the top layer with the same thickness; thus, the deviation of the hardness values fluctuates
within ±1%.
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Figure 4 demonstrates the hardness value and the change rate after the UV curing
process of the edge surface. The mean values and standard deviations of hardness value of
original PLA and material after UV curing on edge surface are shown in Table 5, respectively.
A slightly increasing trend in the X-type sample was recorded when the printing angle was
over 0◦. This phenomenon is possibly caused by the process orientation of the samples;
when the printing angle is at 0◦, the layers of the tested surface were vertical with the
indentation needle. Thus, the first and last layer of the samples would be easily bulged,
which was caused by different cooling times, as shown in Figure 5, resulting in the concave
condition at the edge of the surface. In addition, the convex layers block the indentation
needle, and it could not penetrate the tested surface deeply. Therefore, the hardness value
is easily underestimated. The lower trend of the hardness value on the edge surface of the
R-type samples can be explained similarly, despite the thicker perimeter shell for the test
direction; this type of specimen lays on the platform during the printing process, and the
concave surface also led the underestimation of the hardness measurement. The rest of the
X-type samples did not show such a concave condition because their tested surfaces were
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built in a shorter time and did not totally paste on the platform. The smoother surface of the
samples could better respond to the hardness properties of the original material. The same
circumstances were also observed on the Y-type samples; the Y0◦ samples demonstrated
the lowest hardness value, which is also because the thinnest tested surface of Y0◦ is in the
Y-type samples; the rest of samples are all tested with the thicker perimeter layer. For the
Z-type samples, the hardness measurements are all taken from the perimeter layer of the
specimens, and it can be seen that the hardness values increased with the increase in the
printing angle, due to the different printing directions. With the printing angle of 0◦ in the
Z-axis, the layers with similar shapes were vertical to the indentation needle. Further, when
the printing angle increased, the layer directions were more parallel to the press direction,
which affected the result of the hardness value [32]. The hardness measurements of all
sample types show a slight enhancement after the UV curing process, which may be due
to the longer molecular chain after the UV irradiation enhanced the cross-linking point
of the PLA materials [33]. In addition, the results shows that the anisotropy change rate
in different printing orientations did not follow a linear relationship, which is because of
the material with different process parameters. The dissimilar infill structure inside the
samples led to a different UV absorption rate of the material, which resulted in inconsistent
metallographic structures and an irregular change rate of each sample type.

Table 4. The hardness (Shore D) measurement results on the flat surface.

Type of Specimens Hardness (Original) Hardness (UV)

X0 82.6 ± 0.7 83.8 ± 0.5
X30 80.7 ± 0.8 82.0 ± 0.2
X60 81.5 ± 1.6 82.5 ± 0.5
X90 82.2 ± 1.5 84.0 ± 0.5
Y0 82.6 ± 0.7 83.8 ± 0.5
Y30 80.0 ± 1.8 81.1 ± 0.2
Y60 77.3 ± 1.0 80.8 ± 0.5
Y90 77.3 ± 1.7 80.3 ± 0.2
Z0 77.3 ± 1.7 80.3 ± 1.0
Z30 80.8 ± 0.3 82.0 ± 0.5
Z60 81.5 ± 1.4 82.5 ± 1.3
Z90 82.2 ± 1.5 84.0 ± 0.5

0◦/90◦ 82.1 ± 0.9 82.7 ± 0.7
30◦/−60◦ 82.0 ± 1.0 82.4 ± 1.0
−45◦/45◦ 82.6 ± 0.7 83.8 ± 0.5

Table 5. The hardness (Shore D) measurement results on the edge surface.

Type of Specimens Hardness (Original) Hardness (UV)

X0 77.6 ± 0.2 79.7 ± 0.7
X30 81.6 ± 1.6 79.6 ± 1.1
X60 83.1 ± 1.7 82.2 ± 0.4
X90 84.1 ± 1.0 84.5 ± 0.5
Y0 77.6 ± 0.2 79.7 ± 0.7

Y30 80.7 ± 0.2 81.7 ± 0.2
Y60 81.0 ± 0.2 81.3 ± 1.2
Y90 80.8 ± 0.5 82.4 ± 0.8
Z0 80.8 ± 0.5 82.4 ± 0.8

Z30 82.5 ± 0.5 83.0 ± 0.5
Z60 83.2 ± 0.2 83.5 ± 0.4
Z90 84.1 ± 1.0 84.5 ± 0.5

0◦/90◦ 76.6 ± 0.5 79.8 ± 0.5
30◦/−60◦ 78.8 ± 0.5 80.3 ± 1.0
−45◦/45◦ 77.6 ± 0.2 79.7 ± 0.7
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4. Conclusions

In this research, the samples with two different process parameters were printed to
explore their effect on the hardness property of the PLA material, including four differ-
ent printing angles used on X, Y, and Z axes and five different raster angles used on flat
orientation. The hardness values from two different surfaces of samples were tested and an-
alyzed. The change in the hardness values before and after the UV curing process was also
investigated. According to the experimental result, this study has the following findings:

1. Changing the printing angle affected the hardness property of the PLA material
significantly. Most of the hardness trend of the flat surface basically followed the
linear relationship with the printing angle except for the X-type samples. The flat
surface of R type 90/0 samples demonstrated the highest hardness value of 83.3; on
the contrary, the lowest value of the flat surface of 77.3 appears on Y60, Y90 and
Z0 samples.

2. The hardness property of the edge surface increased with the printing angle, but the
concave surface of the X0◦ and Y0◦ samples caused a lower hardness value due to
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their built orientation. The same situation was also replicated on flat-type samples,
for which the 0/−90 sample has the lowest value of 77.3.

3. The hardness value collected from the flat surface did not show significant impact via
the change in the raster angle.

4. The UV curing process enhanced the hardness property of the PLA material, while
the extent of the change rate depended on the printing method of the tested sample.

5. The tested samples printed with a low infill ratio probably demonstrated an irregular
trend on the hardness measurements results because of the empty inner structure, and
a higher infill ratio should be used in future study for better stability in the experiment.
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