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Abstract: Age at depressive onset (AAO) corresponds to unique symptomatology and clinical
outcomes. Integration of genome-wide association study (GWAS) results with additional “omic”
measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility
and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics
with metabolomics using data-driven network analysis to characterize and differentiate MDD based
on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults
from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study
(PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Out-
comes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites
to establish multi-omics network characterizations of early (<age 18) and adult-onset depression.
The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional
annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and
during embryonic development. Network analysis identified differential associations between four
variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines,
carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics
integration identified differential biosignatures of early- and adult-onset MDD. These biosigna-
tures call for future studies to follow participants from childhood through adulthood and collect
repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of
susceptibility and/or resistance to MDD development.
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1. Introduction

Major depressive disorder (MDD) etiology and prognosis vary by the age at depres-
sive onset. Early onset is characterized by poorer quality of life, greater psychiatric and
medical comorbidity, higher heritability, and increased suicidality [1–5]. This suggests that
individuals with early-onset MDD may benefit from a tailored pharmacologic treatment
approach [6–10]. However, psychotherapy and pharmacotherapy remain largely consistent
across the age spectrum [11]. Before pharmacotherapy can be individualized according to
the age at MDD onset, deeper characterizations of the biological differences between early
and later-onset presentations are necessary.

Several genome-wide association studies (GWAS) and one exome-wide association
study have been performed to understand the genomics of MDD specific to age at on-
set [8,12–15]. Collectively, and in conjunction with polygenic risk analyses, these studies
suggest that earlier-onset MDD may share greater genetic overlap with schizophrenia,
bipolar disorders, and attention deficit/hyperactivity disorder (ADHD) than later on-
set [8,12,16,17]. Two GWAS investigating the age at depressive onset (N = 2746 [14])
and (N = 9238 [13]) did not identify overlapping top signals (p < 1 × 10−5), highlighting
phenotypic heterogeneity that may require additional biological measures to understand.
Circulating metabolite concentrations are highly heritable (up to 62%) [18,19] and are
differentially perturbed in MDD according to age [10], yet the genetic factors associated
with these differences have not yet been investigated. To our knowledge, no integra-
tive genomic and metabolomic approaches have been undertaken to identify multi-omics
signatures which best characterize and differentiate patients with early- and late-onset
depression. Such an analysis may yield insights into heritable (genomic) and downstream
(metabolomic) differences between age groups.

Multi-omics strategies are amongst the approaches at the forefront of individualized
medicine in psychiatry and are grounded in the understanding that complex traits (e.g.,
onset of depression) cannot be fully characterized by isolate biomeasures [20–28]. Rather,
interactions between genes, transcripts, proteins, metabolites, and the environment deter-
mine the development and trajectory of complex diseases [29]. Multi-omics strategies can
aide in biomarker selection for future experimental validation by identifying the features
which best characterize conditions of interest (e.g., early- vs. adult-onset MDD) [30]. This
is imperative in this context given the breadth of the metabolomic and genomic platforms.
The objectives of this study were therefore to (1) identify risk and protective single nu-
cleotide variants (SNVs) associated with age at onset of MDD using a GWAS approach, and
(2) integrate genomic findings with plasma metabolites to identify multi-omics differences
between individuals with early- (<age 18) versus adult-onset MDD. We hypothesized that
this multi-omics approach would derive distinct molecular signatures of early- versus
adult-onset MDD.

2. Materials and Methods
2.1. Data Sources

This was a cross-sectional, secondary analysis of Caucasian adults with MDD from
the PGRN-AMPS (N = 486 with genomics; N = 245 with multiple omics) and CO-MED
(N = 295 with genomics; N = 76 with multiple omics) studies (Table 1; see Supplementary
Figures S1 and S2 for sample inclusion). The PGRN-AMPS (NCT00613470) and CO-MED
(NCT00590863) trials enrolled outpatients with moderate to severe nonpsychotic MDD.
These trials have been characterized in detail in prior publications [31,32]. The CO-MED
study included patients who met DSM-IV-TR criteria for recurrent or chronic MDD (current
episode lasting ≥ 2 years), while PGRN-AMPS included patients with DSM-IV diagnosed
MDD, without the requirement of recurrent or chronic presentation. The CO-MED cohort
also represents a more regionally diverse population—the trial was conducted across six
primary and nine psychiatric care sites (compared to the single-site PGRN-AMPS trial).
The inclusion and exclusion criteria were otherwise similar between studies. Both studies
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were conducted in accordance with the approval of their respective Institutional Review
Boards. Informed consent was obtained from all participants.

Table 1. Demographics and patient characteristics.

Genomics Analyses Multi-Omics Analyses

CO-MED PGRN-AMPS Early Onset
(<18 Years of Age)

Adult Onset
(≥18 Years of Age)

Total (N) 295 486 130 191
PGRN-AMPS (N) - 486 100 145

CO-MED (N) 295 - 30 46
Age [mean (SD)] 43.2 (12.9) * 39.9 (13.7) * 37.3 (12.7) * 43.8 (12.8) *

Ethnicity (% Hispanic) 20% * 2.1% †* 4.8% † 9.2% †
Sex (% Women) 68% 62% 71% 62%

Age at depressive onset
(Median [min, max]) 18 [0, 60] 20 [4, 83] 14 [4, 17] * 33 [18, 83] *

Baseline depressive
severity [mean (SD)] 15.7 (3.4) 15.1 (3.5) 15.3 (3.6) 14.8 (3.0)

* Significantly different (p < 0.05) by Fisher’s Exact test or independent-samples t-test (calculated for all variables
excluding study Ns). † Ethnicity characterizations calculated from a smaller subset of samples based upon
data availability (117 individuals with early depressive onset; 177 individuals with adult depressive onset;
338 PGRN-AMPS individuals).

2.2. Measures and Outcomes

Age at depressive onset was self-reported with a baseline case report form in PGRN-
AMPS and with the Mini-International Neuropsychiatric Interview (MINI) [7] in CO-
MED. Baseline depression severity was assessed with the 16-item Quick Inventory of
Depressive Symptomatology—Clinician-Rated (QIDS-C) [33]. Race and ethnicity were self-
reported and validated through genomic techniques (described in Genotyping, Genome-
Wide Imputation, and Quality Control).

2.3. Genotyping, Genome-Wide Imputation, and Quality Control

PGRN-AMPS: Genotyping was performed at the RIKEN Center for Genomic Medicine
(Yokohama, Japan) using Illumina human 610-Quad BeadChips (Illumina, San Diego, CA,
USA), with quality control procedures and imputation as previously described [26,31,34].
Following genotyping, quality control, and imputation, 7,017,931 variants meeting a minor
allele frequency threshold of 0.01 and an imputation R2 > 0.3 in 486 Caucasian individuals
were retained for statistical analysis.

CO-MED: Genotyping was performed using Illumina Quad, Human Omni 2.5 bead
chips, as previously described [35]. During quality control, samples were removed if
self-reported sex was incongruent with X-chromosome estimated sex, call rate was <98%,
or heterozygosity ratio was outside the mean (≤0.7 on any chromosome). One individual
from each pair determined to have kinship > 0.08 by the King-Robust test was removed.
Concordance between intended duplicates was assessed. Variants were removed if un-
mapped, duplicated, achieved call rate < 95% or achieved Hardy Weinberg equilibrium
p < 1 × 10−10. These criteria resulted in 2,356,856 variants from 464 individuals available
for phasing and imputation. Imputation was performed using the Michigan Imputation
Server [36] with EAGLE2 and the Haplotype Reference Consortium (HRC) reference panel
(version r1.1 2016) for phasing [37]. Data were aligned to the human reference genome
GRCh37. Following quality control and imputation, 8,286,413 variants meeting a minor
allele frequency threshold of 0.01 and an imputation R2 > 0.3 in 295 Caucasian individuals
were retained for statistical analysis. Race was self-reported and concordant with genetic
clustering based upon multidimensional scaling [38].
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2.4. Genome-Wide Association Study Statistical Analyses

GWAS for age at depressive onset as a continuous trait was performed with univariate
linear regression under an additive genetic model [39]. GWAS was performed separately
in the PGRN-AMPS and CO-MED cohorts to assess the replicability of signals across
independent cohorts. Prior to analysis, age at depressive onset was log2 transformed to
meet the assumption of normality. Analyses were adjusted for sex, and the first ten principal
components of ancestry and filtered for minor allele frequency >5%. Quantile-quantile
plots of expected vs. observed p-values were constructed to assess for statistical inflation
(Supplemental Figure S3). Given that the purpose of GWAS was to identify candidates
for subsequent multi-omics integration analyses, index variants associated with age at
depressive onset p < 1 × 10−5 were retained. Index variants were defined as the variant
with the lowest p-value amongst all associated variants (r2 > 0.8) in each signal. Sensitivity
analyses were conducted excluding individuals with self-reported depressive onset prior
to age three, as evidence suggests that clinically significant depression can arise as early
as age three [40–43]. Analysis was performed in PLINK version 2.0 (Mountain View, CA,
USA) [44], and Manhattan plots were created with LocusZoom.org [45].

2.5. Variant Annotation

All variants meeting suggestive significance were annotated with the nearest gene,
location to nearest gene, and consequences (e.g., non-synonymous, missense, synonymous
variant). Next, these variants and variants in linkage disequilibrium (r2 > 0.8) were assessed
for known cis- and trans- expression quantitative trait loci (eQTL) gene labels. Gene
annotation was done with the HaploReg database [46], implemented in R studio with
haploR [47]. Following variant annotation, the nearest genes and eQTL genes for the
36 index SNVs were input into the Database for Annotation, Visualization and Integrated
Discovery (DAVID) [48] v6.8 (Frederick, MD, USA) for tissue-specific expression analysis,
tissue-associated protein enrichment, and pathway and disease over-representation.

2.6. Metabolomics

Plasma metabolites were assayed in a subset of PGRN-AMPS and CO-MED patients
using the AbsoluteIDQ p180 platform [49]. This targeted assay utilizes triple quadrupole
tandem mass spectrometry to detect metabolites from five analyte classes (acylcarnitines,
amino acids, biogenic amines, glycerophospholipids and sphingolipids). This assay is
not exhaustive of all potential metabolite correlates of early onset depression, and it does
not measure several metabolites which are well-studied in psychiatry (i.e., dopamine,
GABA). However, these analytes have enhanced our understanding of the biology of
MDD [20,50–52], schizophrenia [53], and psychosis [54,55], warranting their investiga-
tion in the context of early-onset MDD. Metabolomic profiling and quality control were
conducted separately for the PGRN-AMPS and CO-MED cohorts, as described in previ-
ous publications [51,52,56]. Metabolites with ≥10% missingness were excluded from the
current analysis, leaving 153 metabolites available for analysis (Supplementary Table S1).
All metabolites meeting quality control criteria were included in the current integration
analysis to identify which may be candidates for future, targeted studies.

2.7. Multi-Omics Integration Network Analysis

The purpose of the current multi-omics integration network analysis is to (a) compare
differences in individuals with early (<age 18) vs. adult onset MDD and (b) identify
biomarkers capable of characterizing such phenotypes.

Inputs to the analysis included the 36 index SNVs from GWAS signals with suggestive
association with age at depressive onset (p < 1 × 10−5 in either cohort) and 153 p180-assayed
metabolites meeting quality control criteria. The threshold of suggestive significance was
defined in accordance with several GWAS studies and the GWAS catalog [57]. These
metabolites represent five classes (glycerophospholipids, amino acids, biogenic amines,
acylcarnitines, and sphingolipids), and are synthesized and metabolized by enzymes
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encoded in the host genome. These metabolic classes are amongst those which are essential
for growth, development, and many key physiological functions [58].

The analysis utilizes a sparse partial least squares discriminant approach [59] to
identify significant correlations between SNVs and metabolites (p < 0.05; |r| > 0.1) in
individuals with early and adult onset MDD. Furthermore, the analysis includes a multi-
level community detection step [60] to identify communities (sub-networks) of SNVs and
metabolites which are strongly associated within their community and less associated
outside of the community. Community detection accounts for the correlation structure
amongst metabolites when assessing metabolite-variant associations. The assumption
underlying community detection is that communities are comprised of functionally related
biomolecules [30].

The analysis was performed using xMWAS (Atlanta, GA, USA) [30] as implemented
in R v4.0.3 (Vienna, Austria) [61] with RStudio version 1.3 (Vienna, Austria) [62]. Results
were visualized using Cytoscape (Bethesda, MD, USA) [63].

3. Results
3.1. Sample Characteristics

Table 1 provides the demographic characteristics for the samples. Generally, the
sample characteristics for the two studies were similar, although the CO-MED sample had a
higher ratio of Hispanic participants than PGRN-AMPS. Mean age at baseline was younger
in those with early onset than adult onset (37.3 ± 12.7 vs. 43.8 ± 12.8; p < 0.05); all other
baseline characteristics were similar between early- and adult-onset groups.

3.2. Genome-Wide Association Study Statistical Analyses

GWAS for age at depressive onset was performed in the PGRN-AMPS and in CO-MED
cohorts (Manhattan plots illustrated in Figure 1). No SNVs met genome-wide statistical
significance after accounting for multiple comparisons (p < 5 × 10−8) in either cohort.
However, a signal of three SNVs in tight linkage-disequilibrium (LD) in an intron of
the Sterile Alpha Motif Domain Containing 3 (SAMD3) gene (chromosome 6) achieved
near statistical significance in the CO-MED cohort, with the tag SNV (rs870816) reaching
p = 8.8 × 10−8 (t = −4.49). The negative direction of the t-statistic effect size for rs870816
signifies that the minor allele associates with earlier MDD onset. There was no overlap
between cohorts in the signals which achieved suggestive significance (p < 1 × 10−5).
Fifty-five SNVs met suggestive significance (p < 1 × 10−5) in PGRN, and 79 SNVs met
suggestive significance in CO-MED (Supplementary Tables S2 and S3A). One individual
in the CO-MED study reported depressive onset prior to three years of age (self-reported
age = 0) and was excluded in a subsequent GWAS sensitivity analysis. The top signals
found in the sensitivity analysis remain consistent with the analysis which includes this
individual (Supplementary Table S3B). Of these total 134 SNVs with suggestive significance,
minor alleles for 91 of them associated with earlier MDD onset (negative effect size), while
54 associated with later onset (positive effect size). The 36 index SNVs for these signals are
shown in Table 2. Genomic control λ values were within 1 ± 0.05 for each analysis.

3.3. Variant Annotation

Twenty of the 36 index SNVs localized to introns; the remaining SNVs localized outside
of the open reading frames. Given that no SNVs localized within coding regions, there were
no non-synonymous or missense variant candidates. Eleven variants are known eQTLs
for one or more genes in one or more tissues (Table 2). Functional annotation of the genes
using DAVID [48] at a nominal p-value (p < 0.05) demonstrated that the tissue-associated
protein enrichment for these genes was greatest in the brain (“UP_TISSUE” annotation).
Furthermore, the tissue-specific expression analysis (“UNIGENE EST QUARTILE” anno-
tation) most strongly highlighted tissues involved in embryonic development. Multiple
psychiatric traits are also represented at p < 0.05, including tobacco use disorder and alcohol
use disorder (Supplementary Table S4).
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3.4. Multi-Omics Integration Network Analysis

Integration analysis identified two communities of correlated (p < 0.05; |r| > 0.1)
SNVs and metabolites in individuals with early (<age 18) onset MDD (Figure 2A), and
three communities in individuals with adult onset MDD (Figure 2B). Four SNVs in total
were represented (locus zoom plots, see Supplementary Figure S4). Notably, the SNV
nearest INTU correlated with four phosphatidylcholine diacyl species (34:1, 36:4, 36:5, 36:6)
in individuals with early-onset MDD, and 11 phosphatidylcholine species, (nine of which
are acyl-alkyl species), in individuals with adult-onset (Figure 2). Early onset was also char-
acterized by a strong positive correlation between glutamine and rs2793779 near TM9SF2,
which is absent from the adult-onset network. Individuals with adult onset MDD demon-
strate unique correlations between the (FAT1) intronic SNV and phosphatidylcholines,
spermidine, histidine, tryptophan, and three lysophosphatidylcholine metabolites. Finally,
several carnitines correlated with the SNV closest to CNTN6 in individuals with adult onset
MDD but not in individuals with early-onset MDD (Figure 2). Pearson correlations for
all SNVs and metabolites represented in these networks can be found in Supplementary
Table S5.
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Table 2. Index variants by study.

A. PGRN-AMPS GWAS Index Variants

Variant ID SNV Minor
Allele

Nearest
Gene

Distance to
Nearest

Gene
Location eQTL

Minor
Allele

Frequency
Beta Standard

Error
T-

Statistic p-Value

1-90283515-A-G rs7545243 G LRRC8D 3056

RP5-943J3.1 (subcutaneous
adipose, whole blood, lung),

LRRC8B, LRRC8C,
LRRC8D (whole blood)

0.29 −0.25 0.06 −4.54 7.16 × 10−6

2-71442773-G-C rs59432780 C PAIP2B 0 Intron PAIP2B (skin) 0.12 −0.38 0.08 −4.81 2.01 × 10−6

2-71456834-T-C rs56796378 C PAIP2B 0 Intron MPHOSPH10 (whole
blood) 0.10 −0.40 0.09 −4.53 7.48 × 10−6

2-144491308-G-A rs10928197 A ARHGAP15 17,222 0.43 −0.23 0.05 −4.49 8.8 × 10−6

2-144477195-G-A rs12465492 A ARHGAP15 3681 0.38 −0.24 0.05 −4.48 9.43 × 10−6

3-36755107-G-A rs35721771 A DCLK3 610,866 0.35 0.28 0.06 5.09 5.16 × 10−7

3-1006912-A-G rs10510204 A CNTN6 613,027 0.40 0.24 0.05 4.55 6.75 × 10−6

4-150429619-G-A rs6853045 G DCLK2 569,805 Intron 0.46 −0.24 0.05 −4.56 6.67 × 10−6

6-5389403-C-A rs73350538 A FARS2 0 Intron 0.06 0.51 0.11 4.49 8.79 × 10−6

8-14827133-A-C rs76522180 C SGCZ 0 Intron 0.06 −0.57 0.11 −4.99 8.43 × 10−7

12-9058993-A-T rs7299653 T PHC1 8321

KLRG1 (subcutaneous and
visceral omentum adipose,
aorta and tibial artery, brain
(cortex), mammary tissue,

fibroblasts, esophagus,
atrial appendage, tibial
nerve, pancreas), PHC1

(esophagus), RP11-436I9.6
(lung), RP11-705C15.3

(skeletal muscle),
LINC00987 (subcutaneous

adipose, whole blood),
RP11-118B22.4 (whole
blood), M6PR (whole

blood), A2MP1 (whole
blood)

0.48 −0.24 0.05 −4.55 6.76 × 10−6

16-80882476-T-C rs9926993 C CDYL2 44,300 0.07 −0.51 0.10 −5.04 6.72 × 10−7

16-80842302-A-T rs62052150 T CDYL2 4126 0.08 −0.46 0.10 −4.48 9.57 × 10−6
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Table 2. Cont.

B. CO-MED GWAS Index Variants

Variant ID SNV Minor
Allele

Nearest
Gene

Distance to
Nearest

Gene
Location eQTL

Minor
Allele

Frequency
Beta Standard

Error
T-

Statistic p-Value

3-93956553-T-A rs143801763 A NSUN3 110,922 0.08 0.63 0.14 4.54 8.27 × 10−6

3-104317729-G-A rs4450851 A MIR548A3 371,623 0.44 −0.34 0.07 −4.55 8.10 × 10−6

4-187604429-T-C rs162181 C FAT1 0 Intron 0.20 −0.48 0.09 −5.25 2.96 × 10−7

4-187592223-T-A rs11723473 A FAT1 0 Intron 0.16 −0.45 0.09 −4.78 2.83 × 10−6

4-128523964-T-C rs1399212 C INTU 30,121 0.06 −0.71 0.15 −4.59 6.64 × 10−6

6-130472920-C-T rs870816 T SAMD3 0 Intron L3MBTL3, SAMD3 (whole
blood) 0.34 −0.40 0.07 −5.49 8.77 × 10−8

6-130474597-T-G rs1932106 G SAMD3 0 Intron SAMD3 (whole blood) 0.45 0.38 0.07 5.08 6.94 × 10−7

6-166957334-T-C rs6456092 C RPS6KA2 0 Intron 0.37 0.37 0.07 4.95 1.32 × 10−6

6-5367273-G-A rs797147 A FARS2 0 Intron 0.11 −0.55 0.11 −4.83 2.21 × 10−6

6-21867547-A-G rs6940645 G FLJ22536 0 Intron 0.38 −0.36 0.08 −4.78 2.86 × 10−6

6-89987882-G-T rs12213221 T GABRR2 0 Intron 0.47 −0.34 0.07 −4.57 7.45 × 10−6

6-130499476-C-T rs1034263 T SAMD3 0 Intron SAMD3 (whole blood) 0.07 −0.67 0.15 −4.55 7.82 × 10−6

7-132382054-C-T rs10233511 T PLXNA4 48,606 Intron 0.29 −0.40 0.08 −4.92 1.45 × 10−6

7-26421269-T-G rs74409431 G SNX10 7319 AC004540.4, SNX10
(subcutaneous adipose) 0.13 0.51 0.11 4.66 4.80 × 10−6

9-114014832-T-C rs112014566 C OR2K2 74,929 0.11 −0.59 0.12 −4.84 2.19 × 10−6

10-105498155-T-A rs7085238 A SH3PXD2A 0 Intron SH3PXD2A (whole blood) 0.22 −0.44 0.09 −5.03 8.86 × 10−7

11-134403616-C-A rs12287910 A LOC283177 28,060 GLB1L2|B3GAT1 (whole
blood) 0.42 0.36 0.07 4.92 1.48 × 10−6

12-13883111-C-T rs11609779 T GRIN2B 0 Intron 0.18 0.50 0.10 5.12 5.61 × 10−7

12-13880168-G-C rs10845837 C GRIN2B 0 Intron 0.30 0.39 0.08 4.83 2.24 × 10−6

13-100223130-G-A rs4297561 A TM9SF2 7853 0.33 0.39 0.08 4.90 1.61 × 10−6

13-100224460-G-A rs2793779 A TM9SF2 9183 0.33 0.38 0.08 4.77 2.97 × 10−6

18-55933912-C-T rs62094545 T NEDD4L 0 Intron 0.17 0.44 0.10 4.55 7.86 × 10−6

21-40135684-T-A rs8127960 A NCRNA00114 0 Intron LINC00114 (tibial artery) 0.25 0.43 0.09 4.93 1.44 × 10−6
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Figure 2. Multi-Omics integration network analysis. (A) Significant (p < 0.05; |r| > 0.1) associations
of SNVs and metabolites in individuals with depressive onset prior to age 18. (B) Significant (p < 0.05;
|r| > 0.1) associations in individuals with depressive onset at or after age 18. Legend applies to both
(A) and (B).

4. Discussion

This work establishes multi-omics characterization of early- versus adult-onset MDD
using data from the PGRN-AMPS and CO-MED studies. GWAS for age at depressive onset
were performed for both PGRN-AMPS and CO-MED, and top variants were then integrated
with plasma metabolomics to identify biological signatures which best differentiated early
and adult-onset MDD. These multi-omics networks enabled biological characterization of
MDD by age at onset and provide a basis for future functional experiments aiming to inves-
tigate the mechanisms underlying the development of MDD across the lifespan. Derived
early- and adult-onset MDD biosignatures showed distinct associations between variants
in/near INTU, FAT1, CNTN6, and TM9SF2 with plasma metabolites (phosphatidylcholines,
carnitines, biogenic amines, and amino acids) for continued future investigation.



J. Pers. Med. 2022, 12, 412 10 of 18

Expression of top variants identified through GWAS for age at depressive onset was
enriched in the brain and during embryonic development according to the DAVID database,
which provides functional annotations for lists of variants [48]. No variant achieved
genome-wide significance, although this is not uncommon for GWAS for psychiatric traits
given the phenotypic complexity [8,13,64–66]. Valuable mechanistic insights into biological
drivers of neuropsychiatric diseases and drug response have been gained from GWAS
signals of suggestive significance from the PGRN-AMPS cohort, despite its limited sample
size [26,67,68]. Several variants meeting suggestive significance (mapping to SAMD3,
GRIN2B) have previously been implicated in MDD [69,70], with our current study adding
to this body of literature by revealing novel associations with age at MDD onset. In
several instances, the minor allele of GWAS variants associated with a later onset of MDD,
suggesting they might be protective against disease onset. Alternatively, these variants may
confer MDD susceptibility by interacting with risk factors specific to later life, for example,
functional/cognitive impairment or marital challenges [71]. In this context, continued
investigation of the biological implications of top GWAS signals through multi-omics
integration analysis was warranted.

The multi-omics integration analysis characterized the variant-metabolite associations
that best differentiated early (<18 years) and adult-onset MDD. Onset of MDD was di-
chotomized at age 18 for this assessment for several reasons. For many, the transition
at age 18 into legal adulthood includes major changes in determinants of health such as
financial resources and social environments [72–74]. Clinically, age 18 also corresponds
to a transition from adolescent to adult medical care. Furthermore, most research studies
use age 18 to define early versus adult samples. Finally, age 18 was the median age at
MDD onset in CO-MED and near the median (20 years) in PGRN-AMPS, so this threshold
enabled a relatively balanced sample split.

The multi-omics networks demonstrated that rs1399212, nearest the “Inturned Planar
Cell Polarity Protein (INTU)” gene, negatively associated with phosphatidylcholines of
both networks, and had unique associations with the phosphatidylcholine acyl-alkyl (PC-
ae) species in individuals with adult-onset MDD. The ether phosphatidylcholines (PC-ae
species) play distinct roles from conventional phosphatidylcholines (PC-aa species) in cell
differentiation, cell signaling, and reduction of oxidative stress [75]. These network asso-
ciations suggest that INTU variation may impact concentrations of phosphatidylcholine
metabolites, which is corroborated by associations of INTU and trans fatty acid levels
in a sample of >9000 individuals with replication across diverse ancestries [76]. Further-
more, the differential INTU-phosphatidylcholine associations in early vs. adult-onset
MDD, with adult-onset having many PC-ae associations, suggest that regulation of phos-
phatidylcholine biosynthesis or metabolism by INTU may be biologically distinct between
groups, potentially conferring effects on cell differentiation, cell signaling, and reduction of
oxidative stress.

INTU protein is a central component of the CPLANE (ciliogenesis and planar po-
larity effector) module [77], which is critical for ciliogenesis and transport of ciliary pro-
teins [77–79] (Figure 3). Cilia are highly conserved organelles which form specialized
extensions of the cell membrane, and they may be motile or non-motile. In the brain, motile
cilia are present on the ependymal cells of the ventricles and in the choroid plexus, whereas
non-motile cilia are widely observed, including on astrocytes, neurons, and progenitors [80].
Cilia are critical for embryonic development [81–84]. Both during development and in adult
homeostasis, cilia facilitate cellular signal transduction along major signaling pathways, in-
cluding Hedgehog, Wnt, Notch, transforming growth factor B, G protein-coupled receptors,
receptor tyrosine kinases, extracellular matrix receptors [85–88], pathways that are known
to be perturbed in MDD [89,90]. Perturbations in cilia structure and/or function can lead
to a spectrum of diseases (‘ciliopathies’) with broad developmental and adult phenotypes,
including cognitive defects and neuropsychiatric phenotypes [91,92]. The cilia interactome,
defined as interactions between ciliary proteins, also demonstrates extensive overlap with
neuropsychiatric disease interactomes and genes differentially expressed in neuropsy-



J. Pers. Med. 2022, 12, 412 11 of 18

chiatric diseases, including MDD, schizophrenia, bipolar disorder, Alzheimer’s disease,
ADHD, autism spectrum disorder, and Parkinson’s disease [93,94]. At the macroscopic
level, INTU variants are amongst the polygenic signals associating with cortical thickness
(5 × 10−9) in children of the Adolescent Brain Cognitive Development (ABCD) Study [95].
Cortical thickness, in turn, is dysregulated in MDD compared with controls [96–98], and a
preliminary study suggests differences in cortical thickness between pediatric and adult
onset MDD [99].
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Figure 3. Analysis conclusions and future aims. (A) Modulators (e.g., transcriptomics and proteomics)
may mediate the differential associations between variation near INTU and phosphatidylcholine
metabolites in early vs. adult-onset MDD. Future investigation into such modulators may enhance
our understanding of the development of MDD at various stages across the lifespan. (B) INTU
is a member of the CPLANE protein module which facilitates intraflagellar transport of proteins
and lipids throughout the cilia via the intraflagellar transport A and B (IFT-A, IFT-B) complexes.
Phosphatidylcholines are lipids widely present in the lipid membrane which facilitate receptor
localization in the membrane and signaling via intracellular cascades.

The differential associations of specific phosphatidylcholine species and INTU variants
according to age at depressive onset may be indicative of a mechanistic basis distinguishing
early and adult-onset MDD. These associations may be mediated by additional biological
and environmental factors (Figure 3), and they may have a functional relationship with the
observed cortical thickness differences in patients with MDD across the lifespan. Given
the role of INTU in neurodevelopment, whether these differences are specific to the neu-
rodevelopmental period or whether they persist into adulthood remains a question for
future investigation. Based on these networks, further characterization of the precise lipid
content within ciliary membranes and their trafficking may help advance our biological
understanding of early versus adult-onset MDD.

The multi-omics networks also reveal additional associations for future mechanistic
studies. This includes the associations of variation near CNTN6 with plasma carnitines,
which are specific to adult-onset MDD. Such an investigation will add to the current
characterizations of subgroups of MDD by acylcarnitine metabolomic profiles [50]. This
also includes the associations of variants in FAT1 with spermidine, given that spermidine
has recently been proposed as an antidepressant drug [100,101]. Perhaps the most critical
future direction arising from this work’s identification of differential variant-metabolite
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associations in early and adult-onset MDD will be for future studies to assay biomeasures
across the lifespan to enhance our understanding of the development of MDD. The present
data were sourced from adults. A characterization across the lifespan of biochemical (e.g.,
omics) and neuroimaging measures is needed, given the suggested interplay between INTU,
plasma metabolomics, and cortical thickness in differentiating individuals by the age at
MDD onset. Except in the case of rare mutation, an individual’s genome remains consistent
throughout the lifespan. Meanwhile, the regulation of genomics via downstream biological
and environmental factors creates a dynamic metabolome. Epigenetics may be particularly
valuable in future studies for explaining the differential gene-metabolite associations in
early versus adult-onset depression. Early life adversity can confer epigenetic modifications
linked to development of depression in youth and adults [102]. Epigenomic alterations may
drive neuropsychiatric disease through changes in gene expression and neural function, and
individuals with adult versus later onset depression have been successfully discriminated
by genome-wide DNA methylation markers [103,104]. Integrating biomeasures (e.g., -omics
including epigenomics) in children and older adults alongside environmental (e.g., stress)
information will further clarify mechanisms of MDD development at various stages of life
and may enable strategies to mitigate risk.

While these findings are novel, this study acknowledges limitations. The top GWAS
signals were not genome-wide significant and did not overlap in the PGRN-AMPS and
CO-MED studies despite comparable age at depressive onset, sex, and baseline depres-
sion levels upon study enrollment. Differences may be attributed to ethnicity differences
across cohorts (higher proportion of Hispanic individuals in CO-MED), enrollment criteria
differences (PGRN-AMPS patients included all MDD, while CO-MED patients specifi-
cally had chronic or recurrent MDD), and/or limited sample sizes to investigate these
hypotheses. Findings should therefore be validated in larger cohorts. Age at depressive
onset was self-reported without independent verification. The multi-omics signatures of
early and adult-onset MDD were derived from samples of adults with MDD. The extent
to which these signatures replicate in the context of child and adolescent patient samples
must be evaluated. Ideally, as MDD is not a static disorder but rather a disorder that
may recur and change, longitudinal studies should exist which collect measures (e.g.,
metabolomics, neuroimaging) throughout various stages of health and disease to assess the
trajectory of the illness. This may also enable identification of ‘hidden nodes’ underlying
genomic-metabolomic associations to derive insights into their functional relationships.
PGRN-AMPS and CO-MED did not uniformly collect data on environmental contribu-
tors to MDD or age-specific risk factors including puberty or menopause. Therefore, the
extent of environmental stressors or hormonal influences were unaccounted for in the
analyses. This study was performed in Caucasian individuals to maximize sample size and
to avoid confounding of genomic findings from differences in minor allele frequency across
ancestries. The characterized network signatures should be replicated in larger cohorts
and across ancestries to assess the generalizability of these findings. These studies lacked
uniform data on the duration of depressive illness and the number of prior depressive
episodes at the time of metabolomic assay. Metabolites were not collected in a systematic
manner (e.g., under fasting conditions, at a uniform time of day), which may confer noise
to the analyses, although fasting status may not significantly impact laboratory variabil-
ity for most metabolites [105]. The p180 platform does not assay several key psychiatric
neurotransmitters, including dopamine and GABA, and the platform was unable to detect
serotonin at the quality control threshold employed. Lipids assayed by current mass spec-
trometry technology may actually reflect sum signals of all isomeric/isobaric compounds
having the same parent and daughter ions [49]. Therefore, future studies should validate
the identified lipid metabolites with additional assays.

In conclusion, this study identified candidate variants through genome-wide analyses
which associate with the development of MDD across the lifespan. Novel multi-omics
integration analysis with top GWAS variants and plasma metabolomics enabled characteri-
zation of biosignatures of early and adult onset MDD. Such networks serve two purposes:
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First, they enable hypothesis generation for future mechanistic studies of the development
of MDD throughout the lifespan. For example, this may include follow-up investigation of
INTU-phosphatidylcholine functional relationships. Second, they demonstrate potential
differential genomic regulation of the plasma metabolome by the age at MDD onset. The
results here encourage future longitudinal studies to collect and integrate additional -omics
(e.g., proteomics, exposomics) and neuroimaging at multiple timepoints to enable deeper
biological characterization of MDD. This may ultimately help parse the heterogeneity
of MDD and enable insights into biological drivers and protectors of the disease across
the lifespan.
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