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The Jacobian matrix of a dynamical system describes
its response to perturbations. Conversely, one can
estimate the Jacobian matrix by carefully monitoring
how the system responds to environmental noise.
We present a closed-form analytical solution for the
calculation of a system’s Jacobian from a time series.
Being able to access the Jacobian enables a broad
range of mathematical analyses by which deeper
insights into the system can be gained. Here we
consider in particular the computation of the leading
Jacobian eigenvalue as an early warning signal for
critical transitions. To illustrate this approach, we
apply it to ecological meta-foodweb models, which are
strongly nonlinear dynamical multi-layer networks.
Our analysis shows that accurate results can be
obtained, although the data demand of the method is
still high.
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1. Introduction
As humans we are dependent on the functioning of complex systems on many scales, ranging
from our own body with its interlinked metabolic, signalling and microbial networks, via
technical and organizational systems such as power grids and political systems, to the planetary-
scale supply chains and the climate systems. All of these are complex nonlinear many-variable
systems, and as such at a risk of undergoing sudden, qualitative and potentially irreversible
transitions [1]. Over the past decades, there has been a steadily growing interest in methods that
provide early warning of such transitions [2,3]. In particular, there is a growing awareness that
such methods are needed for systems that are spatial or network based and hence inherently
high-dimensional [4–6].

The traditional approach to anticipating qualitative transitions in complex systems is
mechanistic modelling. Many well-understood systems can be modelled so precisely that the
model can accurately predict the threshold parameter values where transitions occur. For
technical applications such as aircraft flight or stability of structures, the model-based stability
analysis is well established and in many cases part of a legally mandated licensing process
[7]. However, model-based approaches tend to produce poor results in systems that are less
well known as seemingly minor details of the model can sometimes drastically affect transition
points.

It has long been known that critical transitions are generally preceded by critical slowing
down [8,9]. This phenomenon leads to a distinctive increase in the auto-correlation and cross-
correlations of time series before a transition. The advantage of correlation-based warning signs
is that detailed understanding of the system is not needed. Its disadvantage is that high-
frequency time-series data is necessary for robust warning, which imposes a strong, and for many
applications prohibitive, constraints.

The model-based and correlation-based approaches to predicting critical transitions can be
seen as two extreme strategies. The former is entirely based on structural knowledge of the
system and uses real-world data at most to fit model parameters. The latter eliminates the need
for structural information, at the cost of a high time-series data demand [10,11].

In many potential applications, there are aspects of the system that are well understood
because different variables are related via physical laws or subject to logical constraints [11]. If
such bits of ‘structural’ knowledge are available in a system it is desirable to exploit them for
the construction of early warning signals. However, the same systems may also contain aspects
that are considerably less well understood and hence make purely model-based predictions
unreliable. This defines the need for a middle way, where available structural information on
a system is used to reduce the data demand, while time-series data is used to close gaps in the
understanding in areas where structural information is not available [2].

A common approach to finding a middle way in the construction of early warning signs is to
use data assimilation approaches to fit and/or continuously improve a dynamical model [11–13].
A classical application of these approaches is the eutrophication of shallow lakes [14,15], for which
good early warning signs can be constructed using techniques such as Bayesian learning and
Kalman filters [16–18]. However, a broad investigation of such approaches shows that they may
result in warning signs that are ‘faint and late’ [11] and hence Boettiger and Hastings point out
advantages of a model-based approach [15].

A different approach to critical transitions is based more directly on linear stability analysis
[19,20]. In [19], the authors formulated a model that was sufficiently general to encompass the
whole class of conceivable models into which a given system could potentially fall. Using the
so-called generalized modelling approach, the Jacobian matrices were computed that govern
the system’s response to perturbations and from which the bifurcation points can be computed.
Because the underlying models contain unknown functional relationships, the Jacobian matrices
that are thus obtained still contain unknown parameters. The authors used time-series data to
eliminate these remaining uncertainties. They showed that in this way accurate early warning
signals can be constructed that only require very limited time-series data.
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To understand the scope of the challenge, it is useful to recall that inferring a system’s
Jacobian matrix from the covariance of variables, means constructing causality from correlation.
Several approaches have been proposed to tackle this widely recognized challenge. A simple ad-
hoc approach is the so-called Granger causality [21] which is based on the idea that causality
causes correlation with a detectable time delay. A more sophisticated variant of this idea, that
resolves some of its shortcomings by a clever use of Taken’s theorem [22] was proposed by
Sugihara et al. [23].

The present paper takes a different approach to Jacobian reconstruction by building instead
on a fundamental theorem on stochastic processes. In a system that is subject to some noise,
the cross correlations in timeseries encode very similar information to the Jacobian matrix of
its deterministic backbone. Considered in isolation the cross correlations are not sufficient to
reconstruct the full Jacobian; however, a complete reconstruction is possible if we have some
additional structural information. In systems that can be described as complex networks the
network structure imposes constraints on which variables can interact directly, which in turn
implies that some entries of the Jacobian must be zero. In a sufficiently sparse network, and
particularly in multi-layer networks, knowing these zeros provides sufficient information to
reconstruct the remainder of the Jacobian from time series correlations.

For illustration, we apply Jacobian reconstruction approach to an ecological meta-foodweb
model, formulated as a dynamical multi-layer network. By comparing with the known ground
truth of the model, i.e. its exact Jacobian, we show that the Jacobian can be reconstructed faithfully
and demonstrate its value as an early warning signal. We find that despite leveraging the
structural information, the amount of time-series data required for accurate results is at present
still prohibitively high for the ecological application. However, we discuss several avenues of
future research that may reduce the data requirements to a point where the method becomes
widely applicable.

2. Mathematical background
In every dynamical system that is in the vicinity of some form of stationary long-term behaviour
the response of the system to small perturbations in the variables can be captured by some matrix.
In the simplest case, the system is a system of ordinary differential equations (ODEs)

ẋ = f (x, p) (2.1)

in which a vector of variables x evolves in time in a way that is dependent on a set of parameters
p. The simplest form of long-term behaviour is rest in a stationary state x∗(p), such that

f (x∗, p) = 0. (2.2)

The response to sufficiently small perturbations in the steady state is then described by the
Jacobian matrix J, whose elements are computed as

Jij = ∂

∂xj
ẋi

∣∣∣∣∣
x=x∗

. (2.3)

The steady state under consideration is stable when all eigenvalues of the Jacobian have negative
real parts. A smooth change in the parameters p will generally cause the eigenvalues to change
smoothly. When such a change causes one or more eigenvalues to acquire positive real parts, then
a bifurcation occurs in which the dynamics change qualitatively.

Because the Jacobian is a real matrix its eigenvalues are real or form complex conjugate pairs.
Hence there are two fundamental types of bifurcations. In bifurcations of fold-type a single real
eigenvalue acquires a positive real part as it passes through zero. Several different forms of this
bifurcation are commonly encountered in dynamical systems (fold or saddle-node bifurcation,
pitchfork bifurcation, transcritical bifurcation), but generally speaking these are associated with a
change in the number of steady states in the system or the exchange of stability properties.
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In a Hopf bifurcation, a complex conjugate eigenvalue pair acquires a positive real part by
crossing the imaginary axis of the complex plane. This bifurcation is generally associated with
the onset of at least transient oscillations as the system departs from the steady state.

Both types of bifurcations can occur in several different forms, some of which cause only
continuous and hence non-catastrophic transitions (say, replacing stationary behaviour with low
amplitude oscillations), while others lead to a catastrophic (i.e. discontinuous, hard-to-reverse)
departure from the previous state.

One can distinguish between different types of bifurcations by computing normal form
parameters that are functions of higher derivatives of f . However, this is beyond the scope of
the present paper.

In spatially extended systems, which are defined on a continuous space or on a spatial network
of discrete nodes, the fundamental bifurcations can come in two flavours: a bifurcation may affect
all points in space simultaneously in the same way, or it may affect points in space differently
leading to the formation of spatial patterns. For clarity, the bifurcations of the latter type are called
Turing bifurcations (fold-like case) and wave instabilities (Hopf-like case).

While not every bifurcation in a dynamical system is a critical transition, any bifurcation
occurring in an important real-world system is certainly a cause for concern. In this spirit, our
aim in the following is to reconstruct the Jacobian of a dynamical system from data in order to
determine its leading eigenvalue. If the real part of this eigenvalue approaches zero, we interpret
this as a warning signal for an impending bifurcation.

3. Jacobian reconstruction
Our aim in this section is to formulate a method that can reconstruct the Jacobian matrix of a
dynamical system from time series. We do this by expanding on the work of Honerkamp [24],
van Kampen [25] and Steuer et al. [26].

We start from a stochastic time series that fluctuates around a steady-state x∗ of the underlying
deterministic backbone of the system. As shown in [24–26] and reproduced in the electronic
supplementary material the Jacobian J close to x∗ is related to the covariance matrix Γ of time
series, and to the fluctuation matrix D of the noise, via the equation

JΓ + Γ JT = −2D. (3.1)

Consider that a Jacobian matrix of linear dimension N contains N2 independent entries. By
contrast, equation (3.1) equates two symmetric matrices, and hence imposes only N(N + 1)/2
constraints on the elements of J. Therefore, in any application with multiple variables (N > 1)
the system is underdetermined such that we cannot recover the complete Jacobian purely from
the time series.

Recovery of the full Jacobian may be possible if we can leverage some additional information
on the system. Fortunately, in many applications some structural information is easily accessible.
In particular in large complex spatial systems or reasonably sparse networks, we know that
certain variables cannot interact and hence the corresponding elements of the Jacobian must be
zero.

The structural zeros yield a set of constraints of the form Jij = 0. If we can identify at least
N(N − 1)/2 such zero entries, then the time series contain enough information to reconstruct all
remaining Jacobian entries.

Particularly in large networks such structural zeros are common due to informational
constraints. In many examples of dynamics on networks only neighbouring nodes are interacting
hence Jacobian elements corresponding to interactions between non-adjacent nodes must be zero.
In a network of mean degree z, this results in the necessary number of N(N − 1)/2 zeros if
N ≥ 2z − 1. For example for a mean degree of z = 3 every network with at least five nodes meets
this condition.

In multilayer networks, additional informational constraints typically exist that make the
condition even easier to satisfy. Below we consider an example where S different species occupy
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P habitat patches in a landscape. Within a patch, species can coexist such that the dynamical
dimension of the system is N = SP dynamical variables and hence SP(SP − 1)/2 zeros are needed.
An individual of a given species can affect the population of the same species in a different
patch by migrating there. It can also affect the dynamics of other species at the patch where it
is currently at, e.g. by predation. However, it cannot affect the dynamics of a different species
in a different patch, which implies SP(S − 1)(P − 1) zeros in the Jacobian. This means that even
if the geographical network is fully connected then sufficient structural zeros are available if
2(S + P) < SP − 3. For example, for S = 3 species even fully connected networks will have enough
zeros if there are at least six patches. Again, the condition becomes easier to satisfy for a higher
number of species and/or patches.

Given a time series of the system’s N variables and a set of G additional structural constraints,
with G ≥ N(N − 1)/2 we now solve the equation (3.1) to estimate the non-zero entries of the
Jacobian. To understand how this equation is solved let us first consider the two-dimensional
example (

J11 J12
J21 J22

)(
Γ11 Γ12
Γ12 Γ22

)
+
(

Γ11 Γ12
Γ12 Γ22

)(
J11 J21
J12 J22

)
= −2

(
D11 D12
D12 D22

)

which implies the independent conditions

2J11Γ11 + 2J12Γ12 = −2D11 (3.2)

J11Γ12 + J12Γ22 + J21Γ11 + J22Γ12 = −2D12 (3.3)

and 2J21Γ12 + 2J22Γ22 = −2D22 (3.4)

with the second condition applying to both off-diagonal terms. The left-hand side of these
equations is a linear system. Hence we can write the conditions in the form

Bj = −2d (3.5)

where B is a matrix, j is a column vector that contains the entries of the Jacobian, i.e. j =
(J11, J21, J12, J22)T and d is the corresponding vector for D. For the two-dimensional example, this
reads ⎛

⎜⎜⎜⎝
2Γ11 0 2Γ12 0
Γ12 Γ11 Γ22 Γ12
Γ12 Γ11 Γ22 Γ12
0 2Γ12 0 2Γ22

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

J11
J21
J12
J22

⎞
⎟⎟⎟⎠= −2

⎛
⎜⎜⎜⎝

D11
D12
D12
D22

⎞
⎟⎟⎟⎠ (3.6)

The form of this equation suggests that we can solve it for j by multiplying B−1 from the left.
However, we have to take care because B is not invertible because the two centre rows are
identical, which is a consequence of the missing information. We can fix this problem by using
the additional constraints. Imposing structural constraints on the two-variable system makes this
example almost pointless, but, for the purpose of illustration, let us assume that we know that
variable 1 cannot depend on variable 2 and hence J12 = 0. We can represent this constraint in the
same matrix equation as the system by adding it as an additional line,⎛

⎜⎜⎜⎜⎜⎝
2Γ11 0 2Γ12 0
Γ12 Γ11 Γ22 Γ12
Γ12 Γ11 Γ22 Γ12
0 2Γ12 0 2Γ22
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

J11
J21
J12
J22

⎞
⎟⎟⎟⎠= −2

⎛
⎜⎜⎜⎜⎜⎝

D11
D12
D12
D22

0

⎞
⎟⎟⎟⎟⎟⎠ (3.7)

If this is the only constraint then we can now drop the third row of the matrix and the third
entry of the vector on the right-hand side and solve for j by matrix inversion. In practice there
are typically additional constraints and hence the system will be overdetermined. In this case we
use least squares optimization to find an approximate solution, which can be done in closed form,
so no numerics are necessary. As we will see below the form of equation (3.7) is very convenient
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for finding the least squares solution. In particular it allows us to obtain a analytical closed-form
solution for j.

Let us now generalize from the two-dimensional example to systems with an arbitrary number
of variables. For this purpose we define the vectorization operator [27]

vec(X) = (X11, X21, . . . , XN1, X12, . . .)T. (3.8)

We can now write equation (3.5) as

B vec(J) = −2 vec(D), (3.9)

i.e. the vectorization of a matrix is the columns of the matrix stacked on top of each other. To find
the general form of B, we start from equation (3.1) and vectorize both sides, which yields

vec( JΓ + Γ JT) = vec(−2D). (3.10)

Because vectorization is a linear operator we can pull the −2 out of the vectorization on the right-
hand side and apply the vectorization separately to the two terms on the left-hand side, hence

vec( JΓ ) + vec(Γ JT) = −2 vec(D). (3.11)

It is known [27] that for matrices X, Y, Z the following identity holds (see electronic supplementary
material):

vec(XYZ) = (ZT ⊗ X) vec(Y), (3.12)

where ⊗ is the Kronecker product of matrices defined by

X ⊗ Y =

⎛
⎜⎜⎝

X11Y X12Y . . .

X21Y X22Y . . .

...
...

. . .

⎞
⎟⎟⎠ (3.13)

We now substitute Y = J, Z = Γ and X = I, where I is the identity matrix of appropriate size. This
yields

vec(JΓ ) = vec(IJΓ ) = (Γ ⊗ I) vec(J) (3.14)

which brings the first term from equation (3.11) into the desired form. If we try the same for the
second term we find

vec(Γ JT) = vec(Γ JTI) = (I ⊗ Γ ) vec(JT) (3.15)

which is not quite the desired form because vectorization of the transpose of J appears rather than
the vectorization of J itself. The vectorization of a matrix and the vectorization of its transpose are
not identical but closely related. Consider that for our two-dimensional the two vectorizations are
related by

vec(JT) =

⎛
⎜⎜⎜⎝

J11
J12
J21
J22

⎞
⎟⎟⎟⎠= C

⎛
⎜⎜⎜⎝

J11
J21
J12
J22

⎞
⎟⎟⎟⎠= C vec(J), (3.16)

where

C =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ (3.17)

is a permutation matrix. In the general case, we can still write

vec(JT) = C vec(J) (3.18)
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where C is now a permutation matrix of size N2 × N2, one can construct this matrix from blocks
of size N × N as

C =

⎛
⎜⎜⎝

C11 C12 . . .

C21 C22 . . .

...
...

. . .

⎞
⎟⎟⎠ (3.19)

Here, Cnm is a N × N-matrix defined by

(Cnm)ij = δimδnj (3.20)

where δ is the Kronecker delta.
Using the commutation matrix we can write equation (3.15) as

vec(Γ JT) = (I ⊗ Γ ) vec(JT) = (I ⊗ Γ ) C vec(J) (3.21)

Substituting this relationship and equation (3.14) into equation (3.11) we get the desired form

((Γ ⊗ I) + (I ⊗ Γ ) C)︸ ︷︷ ︸
B

vec(J)︸ ︷︷ ︸
j

= −2 vec(D)︸ ︷︷ ︸
d

. (3.22)

We now know how to construct the matrix B such that we can write the system in the form

Bj = −2d. (3.23)

However, this system is still underdetermined. If we know that some elements of j must be zero
we can represent this knowledge in a matrix U. For this purpose, we can gather the respective
elements of j in an ordered list U and then define U as an |U | × N matrix with

Unm =
{

1 if jm is the n-th entry of U
0 otherwise

(3.24)

Each row of this matrix represents one of the constraints that we wish to impose. For example if
in the fourth row the only non-zero entry is in the eighth column this means our fourth condition
is that the eighth element of j must be zero.

In analogy to the small example, we can now impose the additional conditions on the system
by stacking them below the matrix B such that equation (3.23) becomes(

B
U

)
j = −2

(
d
0

)
(3.25)

where 0 is a column vector containing |U | zeros. The () that appear in this equation should be
read as a block-wise notation for matrices/vectors, where rows are stacked on top of each other
in analogy to equation (3.7).

To simplify the notation we introduce

B̂ =
(

B
U

)
d̂ =

(
d
0

)
(3.26)

which allows us to write the whole set of conditions once again in the form

B̂j = d̂ (3.27)

In practice, this will now be an overdetermined system, such that no exact solution exists.
However, finding an approximation that minimizes the squares of the deviations in each row
is a well-known problem. The known solution [28,29] (cf. electronic supplementary material) for
this problem is

j = (B̂
T

B̂)−1B̂
T

d̂ (3.28)

where the expression (B̂
T

B̂)−1B̂
T

, the pseudo-inverse of B̂, appears.
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The equation provides a closed-form solution by which the Jacobian elements can be computed
from the covariance matrix of the time series, a known or estimated fluctuation matrix, and a set
of additional structural constraints on the Jacobian.

Typically the least-squares fit will not set the Jacobian elements governed by the structural
constraints exactly to zero. One may, therefore, enforce these known zeros by setting the
respective elements of the Jacobian explicitly to zero after the computation of equation (3.28) has
finished. In numerical experiments, described below, we found that this improved the accuracy
of Jacobian eigenvalues estimated by this method.

To summarize, the Jacobian J of an N-dimensional system close to a steady state can be
reconstructed as follows:

(i) Compute the co-variance matrix from the time-series data, Γij = 〈XiXj〉.
(ii) Construct the diagonal fluctuations matrix D, and compute d = vec(D). In some systems

these fluctuations can be measured directly, otherwise a reasonable approximation may
be derived based on assumptions on the underlying noise process [25].

(iii) Construct the permutation matrix C according to equations (3.17) and (3.18).
(iv) Compute the matrix

B = (Γ ⊗ I + (I ⊗ Γ ) C) ,

where I is the N × N identity matrix.
(v) Define j = vec(J) and identify at least N(N − 1)/2 elements of j that must be zero due

to structural constraints. Use these to construct the matrix U (see equation (3.24)). The
column-dimension of U is the row dimension of j, and row dimension of U is identical to
the number of structural constraints. The matrix has exactly one non-zero entry in each
row such that Unm = 1 if the nth structural condition reads jm = 0.

(vi) Construct

B̂ =
(

B
U

)
d̂ =

(
d
0

)

(vii) Compute

j = (B̂
T

B̂)−1B̂
T

d̂

and recover the Jacobian J from its vectorization j.
(viii) Set the elements of J governed by structural constraints explicitly to zero.

4. Application to a meta-foodweb model
In the following, we explore if the Jacobian matrix can be reconstructed sufficiently accurately to
warn of impending critical transitions. We constructed a test system of realistic complexity for
which the Jacobian matrix is nevertheless known analytically, and then created noisy time series
for this system.

In the simulations we used a meta-foodweb model already studied in [30,31] (see electronic
supplementary material for details). The model consists of a spatial network of P habitat patches
linked by avenues of species dispersal (figure 1). Each patch harbours a complex foodweb,
consisting of S nodes that represent populations of different species, which are linked by
predator–prey interactions. The dynamics of the system are given by a set of differential equations
that govern the changes in variables due to diffusive dispersal between patches and biological
processes occurring within a patch (primary production, predator–prey interaction, natural
mortality).

The model contains several complicating factors encountered in real systems. The functions
used to model the biological processes are strongly nonlinear. They capture various saturation
effects and realistic responses to the availability of different food sources (prey switching). The
dynamics of different species occurs on different time scales according to biological scaling
relationships which relate a species position in the foodweb to its expected biomass turnover rate
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Figure 1. Schematic of the model system. The system is a multilayer network, where copies of an ecological food web exist
in different geographical patches (a). We consider an intra-guild predation food web with an additional predator (b) and a
predator–prey system (c). For the spatial network, we use the smallest completely asymmetric graph (d) and a larger random
topology, generated as a random geometric graph (e). (Online version in colour.)

[32]. Similar scaling relationships also govern the rate at which different species disperse across
the spatial network [30].

We consider two different versions of the patch topology. The smaller of the two consists six
patches which are connected in such a way that they form the smallest completely asymmetric
network (figure 1d). The larger one contains 15 patches and was generated as a random geometric
graph (figure 1e). It has a comparatively large diameter and high clustering and contains several
symmetries that are characteristic for this type of spatial networks [33]. For the food webs, we
used a predator–prey system consisting of two species (figure 1c), as well as a four-species system
in the shape of the so-called intra-guild predation motif with an additional predator (figure 1b), a
common foodweb motif.

Work by Nakao & Mikhailov [34] and the extension of their approach to meta-foodwebs [30]
showed that network models behave analogously to dynamical systems in continuous space.
Hence the theory of pattern formation in partial-differential equation systems can transferred
almost exactly to these dynamical networks. This means that our test systems can exhibit
instabilities that are best described as pattern-forming bifurcations, specifically Turing and Wave
instabilities. Pattern forming instabilities in predator-prey systems in continuous space were
studied in detail in [35] which made it easy to locate these bifurcations also in our multi-layer
network predator–prey system (figure 2).

Using a generalized modelling approach [36–38], we analytically computed the Jacobian that
describes the two example food webs on arbitrary spatial topologies. We then picked specific
realizations of models in which relevant bifurcations occurred. To produce noisy time series,
we simulated these models with added noise using the Euler–Maruyama method (see electronic
supplementary material) [39].

5. Results
As a first test we generated simulated noisy time series containing 2 × 105 data points from
the two-species system on the six-patch topology. Parameter values for these simulations were
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[35] which studies a predator-prey system in continuous space. Lines (a–d) indicate the transects used for the corresponding
simulations in figure 3. (Online version in colour.)

chosen to lie on four transects through the parameters space that crossed bifurcation points. For
each of these time series, we then reconstructed the Jacobian matrix and computed the leading
eigenvalue. Before the bifurcation point the estimated eigenvalues are in very good agreement
with the known ground truth provided by the analytic eigenvalues (figure 3).

As we follow the transects the real part of the leading eigenvalue crosses zero in a bifurcation.
When the bifurcation occurs the reconstructed eigenvalue departs from the analytical value.
This behaviour is expected as the analytical solution continues to show the eigenvalues around
the, now unstable, steady state, whereas the reconstruction algorithm computes the leading
eigenvalue associated with the new dynamics, which has now departed from the previous steady
state.

We note that in transect (d) the reconstructed eigenvalue is almost exactly zero in a wide
region after the bifurcation. This happens because the system approaches a stable limit cycle for
which the leading Lyapunov exponent is zero. The recovery of this zero by the algorithm provides
some (unexpected) evidence suggesting that the method reveals some salient information even in
non-stationary states. To test whether the full Jacobian rather than just the leading eigenvalue is
reconstructed correctly we compare the full reconstructed eigenvalue spectrum to the analytical
ground truth (figure 4a). The results show that in stable steady states the relative accuracy for the
reconstruction of all eigenvalues is comparable, which is the expected behaviour.

After destabilization the simulated system departs from the analytical steady state and thus
discrepancies appear that are not due to reconstruction errors but arise as we are now comparing
different states. It is interesting, but perhaps not surprising, that this discrepancy is larger for the
eigenvalues close to zero. Whereas very negative eigenvalues that are likely grounded in strong
restorative forces are relatively unaffected.

Careful examination of the transects (figure 3) suggests that the accuracy of reconstruction
improves as we approach the bifurcation point. To explore this further, we generated 15 transects
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in the vicinity of bifurcation points and generated three sets of time series along every one of the
transects (see electronic supplementary material for details). The results confirm that the accuracy
of the estimate improves as the bifurcation point is approached (figure 4b).

We now consider the case where parameters are slowly changing over a long simulation run.
Our aim is to estimate the leading eigenvalue of the Jacobian over time as this slow change in
the system is taking place. For this purpose, we apply the proposed method to reconstruct the
Jacobian in sliding time window of length τ . The results (figure 5) show that the estimates based
on the sliding window are more noisy, undergoing visible fluctuations around the true value.
Nevertheless, the trend of the eigenvalue approaching zero is still clearly captured.

To test the applicability to larger networks, we apply Jacobian reconstruction to a model system
with four species on 15 patches (i.e. a 60-dimensional dynamical system). Even in this larger
system, the accuracy is still quite good but the estimated eigenvalue is systematically slightly
less than the true value (figure 6). We suspect that this may be the combined effect of the non-
autonomous nature of this systems and the noise leading to bifurcation delay. This delay effect
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can be expected to be more pronounced in the larger food web due to the presence of higher-
level predators whose dynamics happen on correspondingly longer time scales (leading to a wide
range of time scales in the model). If this is the case then the reconstructed Jacobian eigenvalue
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Figure 6. Eigenvalue estimations for the system with four species on 15 patches. We consider loss of stability as a result of
the change of two different parameters, governing the nonlinearity of primary production,φ (a,c) and the nonlinearity of the
functional response of attack rate to prey density,γ (b,d). The leading eigenvalue of the Jacobian was reconstructed from time
series for fixed parameters (a,b) and parameter transects (c,d). The steady state under consideration is unstable subsequent to
a Hopf bifurcation (region shaded grey). For the transects estimates are shown in the centre of the sampling window (window
width is indicated by blue area). See electronic supplementary material for parameters and details. (Online version in colour.)

may actually offer a better estimate of the relevant transition point than the analytical solution for
the system without noise.

So far we have studied systems that were designed using the generalized modelling approach.
We complement this by the analysis of a well-established ecological model, the Rosenzweig–
MacArthur predator–prey model [40] with quadratic mortality and diffusion on the six-patch
network (see electronic supplementary material for details). The results of Jacobian reconstruction
(figure 7) show that the leading eigenvalue can be recovered with reasonable accuracy, again the
accuracy of the estimate improves significantly as the system approaches the bifurcation point.

6. Summary and discussion
In this paper, we expanded on previous work by Honerkamp, van Kampen, Steuer and others to
derive a closed-form expression for the reconstruction of Jacobian matrices from time-series data.

Our work contributes to the bigger overarching question how causality can be inferred
from correlations. The calculation presented here shows that one can analytically infer causality
(described by a Jacobian matrix) from correlations (covariance and fluctuation matrices) if some
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Figure 7. Eigenvalue estimations in the Rosenzweig–MacArthur with quadratic mortality and diffusion on the six-patch
network. The steady state under consideration loses stability due to a Fold (a,c) and Hopf (b,d) bifurcations. The leading
eigenvalue was reconstructed from simulation runs with fixed parameters (a,b) and slowly changing parameters (c,d). The
accuracy of the estimates improves as the system approaches the bifurcation. (Estimated values are shown in the middle of the
sampling window, indicated in blue. See electronic supplementary material for details). (Online version in colour.)

additional information is available. In this case, this additional information is the placements
of some zeros of the Jacobian matrix. If the zeros and correlations are known exactly, then the
causality can be inferred exactly. If this information is only known approximately, then the
prediction will deteriorate. It can be expected that inaccuracies in the correlations should carry
over almost linearly to the Jacobian, whereas the impact of misplaced zeros is more complicated
and remains a question for future research.

For illustration, we applied the derived mathematical formula to the an ecological meta-
foodweb model. This example illustrated that a relatively robust reconstruction of the leading
eigenvalue of the Jacobian is possible even in a strongly nonlinear multi-layer network with
dynamics on multiple time scales. However, the example also revealed that the required amount
of data is still prohibitive for the ecological application.

There is reason to believe that future research and in particular a deeper mathematical
understanding of the Jacobian reconstruction can significantly reduce the required amount of
data. Particularly interesting in this respect is the observed increase in accuracy close to the
bifurcation point. A promising goal for future exploration would be to understand how far this
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region of heightened accuracy extends. If a real-world application under consideration is already
close to bifurcation one might find that much less data is required to reach the desired accuracy.

Alternatively, it might be possible to reduce the data demand by optimizing the sampling
scheme. One can envision an iterative scheme, similar to [41], where a small number of samples is
used to find an initial estimate of the Jacobian. Using the initial estimate, one could then identify
the relevant time scales and important entries in the covariance matrix and optimize the sampling
effort accordingly.

A third alternative may be to use additional information that may be available. The advantage
of our Jacobian-based approach is that it can take advantage of additional knowledge on the
systems that may be available in ecological applications. For example, if predators do not interact
predation and mortality rates should be linear, which fixes some entries of the Jacobian matrix
of a generalized model. A previous study [19] suggests that the use of this information may
reduce the data demand considerably. Meanwhile the method proposed here may be useful in
fields where data are more readily available, such as studies of metabolism, power grids, or
economic data. In the study of metabolism Jacobian reconstruction is already frequently used
[42], for this application the present work yields an analytic closed-form solution to a problem
that is so far solved by machine learning methods. For power grids, reconstructing Jacobians may
be particularly interesting because it could yield deeper insights into the functioning of the system
in addition to providing an early warning signal. For applications to economics, we note that the
Jacobian is a representation of causality in the system. Closed-form Jacobian reconstruction thus
offers a way to infer causality from correlation that is exact in the large data limit.

We note that by providing a closed-form analytical solution the proposed method differs
qualitatively from other approaches. It thus lays the foundation for closed mathematical
exploration where the Jacobian appears as part of a bigger problem. For example, one could
explore the question how causality flows in certain epidemic models where the Jacobian
correlation and noise are all explicit functions of the system state, but the state that the system
approaches cannot be calculated analytically. In this case having another closed-form relationship
between correlation, fluctuation and state available could allow to solve for the state and lead to
a complete solution.

Finally, we note that the method is not limited to bifurcations of steady states but could be
applied to Poincaré maps or stroboscopic projections to explore the dynamics of other attractors.

In summary, we find that Jacobian reconstruction is a promising approach to the analysis of
complex systems near critical transitions, although the data requirements presently still limit its
applicability. We expect that the closed-form solution derived in the present paper inspires future
mathematical work to alleviate these requirements.
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