
Article

Improving Chemical Autoencoder Latent Space
and Molecular De Novo Generation Diversity
with Heteroencoders

Esben Jannik Bjerrum 1,* and Boris Sattarov 2

1 Wildcard Pharmaceutical Consulting, Zeaborg Science Center, Frødings Allé 41, 2860 Søborg, Denmark
2 Science Data Software LLC, 14914 Bradwill Court, Rockville, MD 20850, USA; brois475@gmail.com
* Correspondence: esben@wildcardconsulting.dk; Tel.: +45-28-23-80-09

Received: 23 September 2018; Accepted: 23 October 2018; Published: 30 October 2018
����������
�������

Abstract: Chemical autoencoders are attractive models as they combine chemical space navigation
with possibilities for de novo molecule generation in areas of interest. This enables them to produce
focused chemical libraries around a single lead compound for employment early in a drug discovery
project. Here, it is shown that the choice of chemical representation, such as strings from the simplified
molecular-input line-entry system (SMILES), has a large influence on the properties of the latent
space. It is further explored to what extent translating between different chemical representations
influences the latent space similarity to the SMILES strings or circular fingerprints. By employing
SMILES enumeration for either the encoder or decoder, it is found that the decoder has the largest
influence on the properties of the latent space. Training a sequence to sequence heteroencoder based
on recurrent neural networks (RNNs) with long short-term memory cells (LSTM) to predict different
enumerated SMILES strings from the same canonical SMILES string gives the largest similarity
between latent space distance and molecular similarity measured as circular fingerprints similarity.
Using the output from the code layer in quantitative structure activity relationship (QSAR) of five
molecular datasets shows that heteroencoder derived vectors markedly outperforms autoencoder
derived vectors as well as models built using ECFP4 fingerprints, underlining the increased chemical
relevance of the latent space. However, the use of enumeration during training of the decoder leads
to a marked increase in the rate of decoding to different molecules than encoded, a tendency that can
be counteracted with more complex network architectures.

Keywords: deep learning; RNN; LSTM; de novo molecule design; molecular autoencoders; molecular
heteroencoders; molecular data augmentation

1. Introduction

Autoencoders have emerged as deep learning solutions to turn molecules into latent vector
representations as well as decode and sample areas of the latent vector space [1–3]. An autoencoder
consists of an encoder which compresses and changes the input information into a code layer and a
decoder part which recreates the original input from the compressed vector representation (the latent
space vector). After training, the encoder can be extracted from the autoencoder and used to calculate
vector representations of the molecules. These can be used as a sort of molecular fingerprints or GPS
for the chemical space of the molecules. The decoder can be used to translate back from the latent
representation to the molecular representation used during training, such as simplified molecular-input
line-entry system (SMILES). This makes it possible to use the decoder as a steered solution for molecular
de novo generation, as the probability outputs of the decoder can be sampled, creating molecules
which are novel but close to the point in latent space. Alternatively, the molecules of the nearby latent
space can be explored by adding a suitable amount of random noise to the vector.

Biomolecules 2018, 8, 131; doi:10.3390/biom8040131 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0003-1614-7376
https://orcid.org/0000-0003-0007-976X
http://www.mdpi.com/2218-273X/8/4/131?type=check_update&version=1
http://dx.doi.org/10.3390/biom8040131
http://www.mdpi.com/journal/biomolecules


Biomolecules 2018, 8, 131 2 of 17

Various encoder–decoder architectures have been proposed as well as the encoder output
functions have been regularized or manipulated using variational autoencoders [1] and adversarial
autoencoders [2]. Both convolutional neural networks (CNNs), as well as recurrent neural networks
(RNNs) have been used for the encoder part [1–3], whereas the decoder part has mostly been based
on RNNs with either gated recurrent units (GRU) [4] or long short-term memory cells (LSTM) [5] to
enable longer range sequence memory. The various approaches and their use in both de novo and
quantitative structure activity relationship (QSAR) applications in drug discovery are part of a recent
mini-review [6].

A famous painting of René Magritte, “The Treachery of Images”, shows a pipe, and also has the
text “Ceci n’est pas une pipe”: This is not a pipe. The sentence is true as it is a painting of pipe, not the
pipe itself, kindly reminding us that representation is not reality. Autoencoders based on SMILES
strings [7] face the same fundamental issue. Is the latent space a representation of the molecules or is it
a condensed representation of the SMILES strings representing the molecules?

Due to the SMILES language rules, multiple different SMILES can represent the same molecule.
This has been exploited as data augmentation with the SMILES enumeration technique [8]. A simple
challenge with different SMILES representations of the same molecule shows that the same molecule
end up in different parts of the latent space due to the specific SMILES form used. Figure 1 shows
the same three molecules after projecting into the latent space of an RNN to RNN autoencoder.
The different SMILES representation of the molecules end up being projected to very different areas
of the latent space, although some clustering can be observed. The latent space thus also contains
information about the specific SMILES string and not only the molecule it represents which has also
previously been noted [2,6]. One way of solving this challenge could be to use special engineered
networks and graph based approaches [9] for molecular generation.

Figure 1. Enumeration challenge of a sequence to sequence model trained on canonical SMILES
(simplified molecular-input line-entry system). The non-canonical SMILES of the same molecule is
projected to different parts of the latent space reduced to two dimensions with principal components
analysis (PCA). The small blue dots are the test set used for fitting the PCA. Some clustering of the
enumerated SMILES can be observed.

As an alternative to engineering the outcome, it is here suggested that it is possible to use
SMILES enumeration or chemception image embedding [10] to create chemical heteroencoders.
The concept is illustrated in Figure 2. By translating from one format or representation of the molecule
to the other, the encoder–decoder network is forced to identify the latent information behind both
representations. This should in principle lead to a more chemically relevant latent space, independent
of the representations or canonicalization used.

Here, the choice of representation and enumeration is explored for both training the encoder or
decoder and the latent space similarity to SMILES and scaffold based metrics calculated. Moreover, it is
tested if these changes influence the properties of the decoder when used for de novo design



Biomolecules 2018, 8, 131 3 of 17

of molecules. Furthermore, an optimized and expanded heteroencoder architectures trained on
ChEMBL23 datasets are used to encode latent vectors for subsequent use as input to QSAR models of
five different molecular datasets.

Toluene

Cc1ccccc1
c1ccccc1C
c1(C)ccccc1
c1c(C)cccc1

Cc1ccccc1
Encoder

Encoder

Encoder

Encoder Decoder
0.23
0.2
0.98
...

Cc1ccccc1

0.68
0.20
0.87
..

Decoder

c1cc(C)ccc1
Cc1ccccc1
c1cccc(C)c1
c1c(C)cccc1

Latent Space

0.34
0.3
0.7
...

Autoencoder

Heteroencoder

Enumeration

Canonical

2D embedding

Toluene

Figure 2. Chemical heteroencoders are similar to autoencoders but translates from one representation
of the molecule to the other. The molecule toluene can be represented as a canonical SMILES strings,
in different enumerated SMILES or via a 2D embedding. The autoencoder converts the canonical
SMILES string to the latent space and back again (blue arrow), whereas many more possibilities exists
for heteroencoders (green arrows).

2. Results

2.1. GDB-8 Dataset Based Models

All models were trained to full convergence and obtained similar train and test loss function
values, the latter listed in Table 1. The models trained on enumerated SMILES output have a markedly
larger final loss, but all models show a low degree of malformed SMILES when sampling the latent
space vectors calculated from the test set.

Table 1. Properties of the models trained on different input and output representations of the GDB-8
dataset. All values were calculated using the test dataset. Strings in the simplified molecular-input
line-entry system (SMILES) notation were consideret malformed if they could not be parsed to
molecules by RDKit [11].

Model Loss % Malformed
SMILES

% Wrong
Molecule

R2 Fingerprint
Metric

R2 Sequence
Metric

Can2Can 0.0005 0.1 0.0 0.24 0.58
Img2Can 0.02 0.0 8.0 0.05 0.18

Enum2Can 0.03 1.0 17.1 0.37 0.53
Can2Enum 0.18 1.7 50.3 0.58 0.55

Enum2Enum 0.21 2.2 66.8 0.49 0.40
Enum2Enum 2-layer 0.13 0.3 14.7 0.45 0.55

2.1.1. Molecular and Sequence Similarity

Using the same reference molecule, similarity metrics were calculated based on the latent space
vectors of the test set, Morgan fingerprints and sequence alignment scores, followed by calculation
of the correlation coefficients (R2). Examples of SMILES alignments are shown in Figure 3 for two
different alignments. Figure 4 shows an example scatter plot of the alignment scores and latent space
similarity for the first molecule and the rest of the molecules in the test set. The correlation between



Biomolecules 2018, 8, 131 4 of 17

the same latent space similarity measurement and the Morgan fingerprint similarity was intended
as a metric of the scaffold similarity independent of the SMILES strings, and an example scatter plot
is shown in Figure 5. Both the sequence alignment score and the fingerprint based similarity have
a correlation with the latent space similarity, which shows that the latent space is at least somehow
related to our traditional understanding of similarities between molecules. The properties and the
correlations of all the models trained on the GDB-8 dataset are listed in Table 1. The models with a
decoder trained on canonical SMILES show a markedly larger correlation between the latent space and
the SMILES sequence similarity metric than between the fingerprint based similarity and the latent
space. In contrast, the fingerprint and sequence similarities correlations to the latent space similarity
are more on the same level when the decoder is trained using enumerated SMILES. The heteroencoder
based on the image embedding of the molecule has the lowest correlations, indicating a markedly
different or noisy latent space.

Figure 3. Examples of optimal SMILES alignments of a molecule with two other molecules. The score
is +1 for character match, −1 for mismatch, gap openings −0.5 and gap extension −0.05. Gaps are
show with dashes, “-”, and are not SMILES single bonds.

Figure 4. Scatter plot of the latent space similarities and the alignment scores of the SMILES strings.

Figure 5. Scatter plot of the latent space similarities and the circular fingerprint similarities.

Figures 6 and 7 show a result of similarity searching in the latent space of the test set using a query
molecule. The molecules from the can2enum model seems qualitatively more similar than the ones
that are most similar in the latent space produced by the can2can model. There is overlap between the
two sets, so in some respects the two latent spaces are related.



Biomolecules 2018, 8, 131 5 of 17

F

F

F

F

CC(F)(F)CC(F)F

F

F

F

N

CC(F)(F)C(F)C#N

F

F

O

CC(F)(F)C#CC=O

F

F

N

CC(F)=C(F)CC#N

F

F

F

CC(F)C(F)C=CF

F
F

N

CC(F)C=C(F)C#N

OH

F

F

CC(O)C(F)(F)C#C

F

F

NH2

NH

CC(F)(F)CC(N)=N

OH

F

F

O

CC(O)C(F)(F)C=O

F
F

F

CC(F)=CCC(F)F

F

F

OH

CC(F)C(C)(F)CO

F

OH

F

CC(F)C(O)C(C)F

Figure 6. Molecules similar in latent space using the can2can model. The reference molecule is in the
upper left corner and similarity drops row-wise in normal reading direction.

F

F

F

F

CC(F)(F)CC(F)F
F

F

F

F

FC(=C)CC(F)(F)F

F

F

F
CC(C)C(F)C(F)F

F

F

F

FC(F)(F)CC1CC1

F

F

F

F

F

FCC(F)C(F)(F)F

F

F

CC(=C)CC(C)(F)F

F

F

FCC(F)(F)C(F)C#C

F
F

F

CC(C#C)C(F)(F)F
F

F
CC(C)C(F)C(C)F

F
F

F

CC(F)=CCC(F)F

F

F

F

F

CC(F)C(F)=C(F)F
F

F

NH2

NH

CC(F)(F)CC(N)=N

Figure 7. Molecules similar in latent space using the can2enum model. The reference molecule is in the
upper left corner and similarity drops row-wise in normal reading direction.

2.1.2. Error Analysis

The models in general produce large percentages of valid SMILES (Table 1). However, using
enumeration in the input and output significantly increases the percentage of the outputs where the
decoded molecule is not the same as the encoded molecule. The input and output molecules were
further compared with regard to scaffold, molecular sum formula and equality of bonds. Figure 8
shows the error types and overlap for the can2enum model. In addition, 494 molecules out of
1000 tested were valid SMILES but not the same as the input molecule. An additional 220 had the wrong
scaffold, 42 the wrong sum formula and 14 the wrong bondtypes or number of bonds. The majority (251)
had the right scaffold, the right atoms and the correct bonds, but had seemingly assembled the molecule
in a wrong order. The bond types and atoms are in principle simple accounting operations independant
of the SMILES enumeration, whereas the models struggle more with the scaffold reconstruction and the
atom order, which are influenced by the SMILES enumeration. The results for the other heteroencoder
models are qualitatively similar (not shown).

2.1.3. Enumeration Challenge

The encoders capabilities to handle different SMILES from the same molecule were tested by
projection to a PCA reduction of the latent space (c.f. Figure 1). Figure 9 shows the improvement
that can be obtained by training the heteroencoders with enumerated SMILES for either the encoder
and decoder. Training the encoder with enumerated SMILES strings gives the tightest clustering
(enum2can), showing that the encoder has learned to recognize the same molecule independent on
actual serialization of the SMILES string. By showing multiple different SMILES strings to the encoder
during training, the encoder can produce the latent space coordinate most suitable for recreating the
SMILES form of the decoder, irrespective of the SMILES form shown to the encoder. The enum2enum
model has a similar tight clustering as the enum2can model (not shown). The can2enum model also
shows more tight clustering than the can2can model from Figure 1, indicating that the heteroencoding



Biomolecules 2018, 8, 131 6 of 17

itself changes the latent space although the encoder itself was not trained on different SMILES forms.
Alternatively, the model is doing a more complicated task which could work as regularization leading
to better generalization.

Figure 8. Venn diagram of the errors encounted during molecule reconstruction of 1000 molecules for
the GDB-8 can2enum model.

Figure 9. SMILES enumeration challenge of the GDB-8 dataset based Enum2can and Can2enum
encoders. The same three molecules were encoded from 10 enumerated SMILES and projected to the
latent space reduced to two dimensions with principal components analysis (PCA). Using enumerated
SMILES for training of the encoder leads to the tightest clustering, but also training with the enumerated
SMILES in the decoder improves the clustering (c.f. Figure 1). Small blue dots are the test set used for
the PCA reduction.

2.1.4. Sampling Using Probability Distribution

Figure 10 illustrates the difference between probability sampling of the can2can and can2enum
model. The decoder outputs a probability distribution at each step, which can be sampled randomly
according to the probabilities (Multinomial sampling). For the can2can model, there is little
difference between this sampling strategy and the simple selection of the most probable next character.
The can2enum model instead show a lot more uncertainty in the next characters in the beginning of
the sampling. The first character is most likely “C”, but also “N” and “F” are possibilities. As the
model samples “C”, the next character is either a “C”, a branching “(“, or start of a ring “1”. Because it
then samples “C”, it has to choose a ring start next. Towards the end of sampling, the decoder gets
completely certain with the last six characters, probably because there is only one way to finish the
molecule with the already sampled characters. Table 2 shows some statistics on the sampled molecules
using the latent coordinates from a single molecule. The model trained on canonical SMILES in both
encoder and decoder are very sure about the SMILES it want to recreate, as only one SMILES form
and one molecule is sampled. In contrast, the decoders trained with the enumerated SMILES create
different SMILES forms of the correct molecule, but also creates other molecules as well. The more



Biomolecules 2018, 8, 131 7 of 17

complex model with two LSTM layers handles the task a bit better than the single layer version,
which only produce the molecule presented for the encoder 20% of the times. Examples of the sampled
molecules from the two layer model are shown in Figure 11.

A BSampling of Can2Can model Sampling of Can2Enum model

Figure 10. Multinomial sampling of the decoder for two different models illustrated with heat maps of
the character probability for each step during decoding of the latent space. (A) the can2can model is
very certain at each step and samples the same canonical SMILES each time; (B) the can2enum model
has more possibilities at each step in the beginning. The probability heatmap and sampled SMILES
will be different for each sampling run, depending on which character is chosen from the probability
distribution at each step.

Table 2. Statistics on molecule generation with multinomial sampling at t = 1.0, n = 1000, GDB-8 dataset
based models.

Can2Can Can2Enum Enum2Enum 2-Layer

Unique SMILES 1 315 111
% Correct Mol 100 20 57

Unique SMILES for correct Mol 1 34 42
Unique Molecules 1 88 17

Average Fingerprint Similarity 1.0 0.27 0.32

F

F

F

F

F

F

F

F F

F
F

F F

F
F

F

F

F

F

F

F

F

F

HO

F

F

F

F

F

F

F

F

F

F

F

F OH

F

F

F
F

F

F

F
F

F
F

F

F

Figure 11. Examples of different sampled molecules using multinomial sampling with the decoder
from the two layer LSTM model (enum2enum 2-layer). The one in the upper-left corner is the reference
molecule used to encode the latent space coordinates.

2.2. QSAR Modelling Using ChEMBL Trained Heteroencoders

The overall steps for producing the QSAR models is illustrated in Figure 12. Training of the
encoder–decoder models used on the ChEMBL datasets, resulted in final losses of approximately 0.001,



Biomolecules 2018, 8, 131 8 of 17

0.01, 0.10, 0.11 for the can2can, enum2can, can2enum and enum2enum configurations of the training
sets, respectively. Reconstruction performance of the different encoder/decoder configurations is
presented in the Table 3. The performance of the QSAR modelling done based on ECFP4 fingerprints
and the different vectors obtained from the code layers of the three different neural network models
are shown in Table 4. There is some improvement from the ECFP based baseline models to the
can2can vector based models, with further improvement for the models based on the latent vectors
encoded with the heteroencoders. The three different heteroencoders seem to produce latent vectors
which perform very similar to each other in the QSAR modelling, with a tendency for the average
performance to rise from enum2can to enum2enum over can2enum.

Encoder Latent Vectors

3: Encode QSAR
Datasets

Decoder

Code Layer
1: Train on
ChEMBL
Molecules

SMILES

SMILES

Encoder

Code Layer

Latent Vectors

SMILES

Feed Forward
Neural Network

Molecular
Properties

2:

4: Train on encoded
QSAR Datasets

Figure 12. The steps used in the modelling of the QSAR dataset. In step 1, the auto-/heteroencoder is
trained on a large unlabelled dataset of molecules from ChEMBL. After training, the encoder part is
extracted in step 2 and used to encode the molecules from the QSAR datasets into their latent vectors
in step 3. In step 4, a separate standard feed forward neural network is used to build QSAR models
from training sets which are subsequently tested with the held-out test set.

Table 3. Reconstruction performance on the ChEMBL datasets of the different encoder/decoder
configurations.

ChEMBL Model Invalid SMILES (%) SMILES Different from Input (%) Wrong Molecules (%)

Can2Can 0.2 0.3 0.1
Enum2Can 9.3 42.5 36.6
Can2Enum 9.3 99.9 65.6

Enum2Enum 6.7 100 69.9

Table 4. Performance of the QSAR models on the held out test-set for different input data. The best
performance for each metric and dataset is highlighted in bold. R2 is the squared correlation coefficient
(closer to one is better), RMSE is the root mean square error of prediction on the test set (lower is better).

Input Type IGC50 LD50 BCF Solubility MP Average

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE *

Enum2Enum 0.81 0.43 0.68 0.54 0.73 0.71 0.90 0.65 0.86 37 0.80 0.75
Can2Enum 0.78 0.46 0.68 0.54 0.74 0.69 0.89 0.69 0.86 37 0.79 0.77
Enum2Can 0.78 0.46 0.65 0.57 0.73 0.71 0.90 0.66 0.87 38 0.78 0.78
Can2Can 0.71 0.53 0.59 0.62 0.66 0.79 0.82 0.87 0.82 43 0.72 0.89

ECFP4 0.60 0.62 0.62 0.59 0.53 0.94 0.65 1.21 0.82 43 0.64 1.00
* RMSE normalized using the RMSE of ECFP4 based models before averaging.

An interesting observation was that approximately 40% of the neurons of the code layer for each
configuration are never activated. This is likely related to the use of the ReLU activation function and



Biomolecules 2018, 8, 131 9 of 17

diminishing or enlarging the code layer resulted in almost the same percentage of inactive neurons
(results not shown). The latent vector is thus even denser than the chosen number of neurons.

3. Discussion

Changing the representations used for training autoencoders (here called heteroencoders) have
a marked influence on the properties and organization of the latent space. Although a perfect
correlation to the standard fingerprint similarity is not wanted or expected, it is more reassuring
that the dependence to the SMILES sequences is at a similar level to the fingerprint based similarity,
than the situation where the correlation to the SMILES sequence is much larger than the correlation to
the fingerprint metric. The greater balance between the two correlations strongly indicates that the
latent space is just as relevant for the molecular scaffold as it is to the SMILES sequence in itself.

The dataset used in the first part of this study was of a limited size and molecular complexity (only
eight atoms). Additionally, as the dataset is fully enumerated, the same graph structures are very likely
present in both training and test set, which could be the basis of the excellent reconstructions of the test
sets. The model could in principle memorize all graph structures instead of learning the rules behind
the graph scaffolds, and then simply assign a specific sequence of atoms to the memorized graph. Even
though the dataset was somewhat simple, the models trained on enumerated data may have struggled
because of a low neural network fitting capacity. This indeed seems to be the case as the 2-layer
enum2enum model has much lower final loss (Table 1) and also much better reconstruction statistics
when reconstructing (Table 1) and sampling the molecules (Table 2) than the single layer enum2enum
model. There is a rough correlation between the SMILES validity rate and the molecule reconstruction
error rat. However, with heteroencoders, the molecule reconstruction error rate becomes a more
relevant term to measure than the SMILES validity rate, as the former can become high, while the
SMILES validity error rate is still low.

Models employed in other studies are more complex with larger and multiple layers [1–3,9,10,12].
The heteroencoder concept was thus further expanded to also handle ChEMBL datasets. The expansion
of the networks to two layers in both the encoder and decoder, use of bidirectional layers in the encoder
and a larger number of LSTM cells allowed to fit the larger molecules, although the uncertainty in
the reconstruction of the molecule is still present (c.f. Table 3). It is likely that even more complex
architectures with three LSTM layers or a further enlargement of the number of LSTM cells would be
needed to lower the molecule reconstruction error further.

The image to sequence model seems to be an outlier in comparison with the SMILES based models,
in the respect that the latent space don’t show much correlation with neither the SMILES sequence to
be decoded or the molecular graph. However, the model produces a very low percentage of invalid
SMILES and also has a low error rate with respect to molecule reconstruction, but is also decoding to
canonical SMILES which is an easier task than decoding to enumerated SMILES. The various other
tests showed no big difference or benefit when compared to the much simpler use of different SMILES
representations. However, the success of the image to SMILES model to transcode between the image
and the SMILES representation illustrates that the concept is not limited to SMILES based models.
Other types of presenting molecules to neural networks, such as graph convolutional approaches
for molecules [13,14] would also be worth exploring for the encoder network. The heteroencoder
architecture may be useful for architectural experiments with large unlabeled datasets to find better
architectures and suitable deep learning feature extractions for training on molecules. The identified
architectures and trained weights may be useful for transfer learning in for example QSAR modeling.

The failure of the image to SMILES heteroencoder to produce significantly better latent
representation fits with the observation that the latent space is mostly influenced by the decoding
procedure, not the encoding procedure. The various encoders, whether based on images, canonical
SMILES or trained on enumerated SMILES, seem to learn to recognize the molecules anyway and
create a latent space that is best suitable for recreation of the decoders form. It thus seems that using



Biomolecules 2018, 8, 131 10 of 17

enumeration techniques or other molecular representation for the decoder will influence the latent
space the most.

Training autoencoders on enumerated or different data further seems to improve the latent space
with respect to its relevance for QSAR modelling. This is encouraging as it suggests that the encoded
vectors are not only relevant for reconstruction of the molecular scaffold in itself, but additionally
capture the variations underlying biological as well as physico-chemical properties of the molecules.
It seem that already the encoder independence of the SMILES form for the enum2can leads to a more
smooth latent space (c.f. Figure 9 panel A), which increases the relevance for QSAR modelling. This is
in contrast to the results in Table 1, where a less skewed correlation to the decoded SMILES serialization
in the encoder part is forced by training on enumerated data in the output, which however only leads
to marginal gains in QSAR model performance.

The improvement seems quite marked and larger than what other studies have found. Winter et al.
also used the heteroencoder approach in parallel to our work and found improvements for QSAR
modelling [15]. However, the improvements over baseline models were not as marked as in our
results. The differences in network architectures (our use of bidirectional layers, LSTM vs. GRUs and
batch normalization as example) and maybe also the choice of training data (Drug like molecules of
ChEMBL) could be possible explanations. Future benchmarking on common datasets will likely show
the way to the best network architecture and what unlabelled datasets to use for specific tasks.

On the other hand, the solubility dataset we used have previously been carefully modelled with
chosen features and topological descriptors, resulting in a R2 of 0.92 and a standard deviation of
prediction of the test set of 0.6 [16]. Likewise, a carefully crafted QSAR model of BCF obtained a
R2 of 0.73 and an RMSE of 0.69 [17], which is on par with our model using the can2enum derived
latent vectors. However, a later benchmark showed better performance for the CORAL software for
prediction of BCF (R2: 0.76, RMSE: 0.64) [18], suggesting that further improvements are possible.

Thus, the QSAR models based on heteroencoder derived latent vectors seem to almost match
the performance of highly optimized QSAR models from selected features (c.f. Table 4), and it may
rather be the ECFP4 and can2can model derived latent vectors that are mediocre for the tested type of
QSAR tasks. Furthermore, the ECFP fingerprints and auto-/heteroencoder derived latent vectors are
of different dimension and nature. The fingerprints are 1024-dimensional, but binary, where the latent
vectors are 256-dimensional and real valued. To make sure that the improvements were not due to
different optima of the model hyper parameters for the different data, the neural network architectures
for the QSAR models were optimized based on the ECFP4 fingerprint input. Some improvement of the
fingerprint based models were observed, but reusing the ECFP4 hyper parameters for the latent vector
based modelling still resulted in a large improvement in model performance for these input types.
Further tuning of the hyper parameters of the models based on the latent vectors could likely further
increase the performance to some degree (not tested). On the other hand, the denser dimensionality
(256 < 1024) could help protect against over fitting and make the choice of hyper parameters less
critical for these models. Either way, the use of heteroencoder derived latent vectors seem to be the
better choice.

Feature generation for a dataset of chemical structures using the ChEMBL trained auto-/
heteroencoders described in the publication is publicly available and hosted on the open sciende
data repository (OSDR) platform [19], where it is possible to encode molecular datasets into the latent
vector space for subsequent uses, such as in QSAR modelling.

The increased relevance of the latent space with respect to bioactivity and physico-chemical
properties are likely to increase the relevance and quality of the de novo generated libraries where
the neighborhood of as example lead compounds are sampled on purpose. However, the use of
enumeration for training the decoder comes at the cost of greater uncertainty in the decoding, at a
marginal improvement to the relevance of the latent space for QSAR modelling when compared to
the enum2can model. On the other hand, the greater uncertainty and “creativity” in decoding could
be beneficial and further help in creating more diversity in the generated libraries, but if this is the



Biomolecules 2018, 8, 131 11 of 17

case has yet to be investigated. The choice of enumeration for decoder and/or encoder will thus likely
depend on the intended use-cases.

4. Materials and Methods

4.1. Datasets

4.1.1. GDB-8

The GDB-8 dataset [20,21] was downloaded and split randomly into a train and test set using a
0.9 to 0.1 ratio.

4.1.2. ChEMBL23

Structures were extracted from the ChEMBL23 database [22] and validated using in-house rules
at Science Data Software LLC (Rockville, MD, USA) (salts were stripped, solvents removed, charges
neutralized and stereo information removed). The maximum available length of the canonical SMILES
string allowed for a molecule was 100 characters. In addition, 10,000 molecules were selected randomly
for the held out test set. From the remainder of the 1.2 million molecules, a training set of 400,000
molecules and a validation set of 300,000 molecules was randomly selected for use during training
procedures.

4.1.3. QSAR Datasets

Five experimental datasets were used, spanning physico-chemical properties as well as bioactivity.
Four datasets (IGC50, BCF, MP, LD50) for QSAR modeling were downloaded from the EPA Toxicity
Estimation Software Tool [23] webpage [24] and used as is without any additional standardization.
The solubility was obtained from the supplementary information of [16]. The parsed dataset is availble
for download [25]. Information of the datasets are shown in Table 5.

Table 5. The datasets used for quantitative structure activity relationship (QSAR) modelling.

Label Endpoint Endpoint Values Span Number of Molecules

BCF
Bioconcentration factor, the logarithm of the ratio
of the concentration in biota to its concentration in
the surrounding medium (water) [26]

−1.7 to 5.7 541

IGC50
Tetrahymena pyriformis 50% growth inhibition
concentration (g/L) [27] 0.3 to 6.4 1434

LD50 Lethal Dosis 50% rats (mg/kg body weight) [28] 0.5 to 7.1 5931

MP
Melting point of solids at normal atmospheric
pressure [23] −196 to 493 7509

Solubility log water solubility (mol/L) [16] −11.6 to 1.6 1297

Datasets from EPA’s TEST suite were already split into train/test sets in a 75/25% ratio and
were used accordingly. Molecules for the solubility dataset were obtained by resolving CAS numbers
from the supporting info [16] and the dataset was randomly split using the same ratio as the other
QSAR datasets.

4.2. 1D and 2D Vectorization

SMILES were enumerated and vectorized with one-hot encoding as previously described [8].
In addition, 2D vectorization was done similar to the vectorization used in Chemception networks [10]
with the following modifications: a PCA with three principal components was calculated on
atomic properties from the mendeleev python package [29] (dipole_polarizability, electron_affinity,
electronegativity, vdw_radius, atomic_volume, softness and hardness). The PCA scores were



Biomolecules 2018, 8, 131 12 of 17

normalized with min-max scaling to be between zero and one to create the atom type encoding.
PCA and scaling were performed with the Scikit-Learn python package [30]. RDKit [11] was used to
compute 2D coordinates and extract information about atom type and bond order. The normalized
PCA scores of the atom types were used to encode the first three layers and the bond order was
used to encode the forth layer. A fifth layer was used to encode the RDKit aromaticity perception.
The 2D coordinates of the RDKit molecule were rotated randomly up to +/− 180° around the center
of coordinates before discretization into numpy [31] floating point arrays.

4.3. Neural Network Modeling for GDB-8 Dataset

Sequence to Sequence RNN models were constructed using Keras v. 2.1.1 [32] and Tensorflow
v. 1.4 [33]. The overall architecture follows the encoder -> code layer -> decoder scheme shown in
Figure 2 with a detailed scheme in the Supplementary Information Figure S1.

The first layer consisted of 64 LSTM cells [5] used in batch mode. The final internal memory
(C) and hidden (H) states were concatenated and used as input to a dense layer (the code layer) of
64 neurons with the rectified linear unit activation function (ReLU) [34]. Two separate dense layers
with ReLU activation functions were used to decode the code layer outputs into the initial C and H
states for the RNN based decoder. The decoder consisted of a single layer of 64 LSTM cells trained
with teacher forcing [35] in batch mode. The output from the LSTM cells was connected to a Dense
layer with a softmax activation function matching the dimensions of the character set. A two-layer
model was also constructed by increasing the number of LSTM cells to 128 and the number of LSTM
layers to two in both the encoder and decoder. Accordingly, four separate dense networks were used
to decode the code layer into the initial C and H states for the two LSTM layers in the decoder.

The networks were trained with mini-batches of 256 sequences for 300 epochs using the categorical
cross entropy loss function and the Adam optimizer [36] with an initial learning rate of 0.05. The two
layer model was trained with an initial learning rate of 0.01. The loss was followed on the test set
and the learning rate lowered by a factor of two when no improvement in the test set loss had been
observed for 5 epochs.

After training in batch mode, three models were created from the parts of the full model. A decoder
model from the initial input to the output of the cdoe layer. A model to calculate the initial states of
the LSTM cells in the decoder, given the output of the code layer. Lastly, a stateful decoder model
was constructed by creating a model with the exact same architecture as the decoder in the full model,
except the LSTM cells were used in stateful mode and the input vector reduced to a size of one in the
sequence dimension. After creation of the stateful model, the weights for the networks were copied
from corresponding parts of the trained full model.

The image to sequence model CNN encoder was built from three different Inception-like
modules [37] similar to the Chemception modelsChemception networks [10]. The architecture is
shown schematically in the Supplementary Information Figure S2. The first module consisted of a
tower with a 1 × 1 2D convolutional layer (Conv2D) followed by a 3 × 3 Conv2D, a tower with a 1 × 1
Conv2D layer followed by a 5 × 5 Conv2D layer and a tower with just a single 1 × 1 Conv2D layer.
The outputs from the towers were concatenated and sent to the next module.

The standard inception module was constructed with a tower of 1 × 1 Conv2D layer followed by
a 3 × 3 Conv2D layer, a tower with a 1 × 1 Conv2D layer followed by a 5 × 5 Conv2D layer, an extra
tower of a 1 × 1 Conv2D layer followed by a 7 × 7 Conv2D but with only half the number of kernels
and a tower with a 3 × 3 Maxpooling layer followed by a 1 × 1 Conv2D layer. All strides were 1 × 1 .
The outputs from the four towers were concatenated and sent to the next module.

The inception reduction modules were similar to the standard module, except they had no 7 × 7
tower and used a stride of 2 × 2.

A standard inception module was stacked with a reduction inception module three times, giving 7
inception modules in total including the initial one. The number of kernels was set to 32.



Biomolecules 2018, 8, 131 13 of 17

The outputs from the last inception module were flattened and followed by a dropout layer with
a dropout rate of 0.2. Lastly the output was connected to the code layer consisting of a dense layer with
the ReLU activation function. The decoder part was constructed similar to the sequence to sequence
models described above with one layer LSTM cells. The image to sequence model was trained similar
to the sequence to sequence models for 200 epochs.

The models are named after the training data in a encoder2decoder naming scheme. “Can” is
training data with canonical SMILES, where “Enum” designates that the input or output was
enumerated during the training. “Img” shows that the data was the 2D image embedding.

4.4. Similarity Metrics

SMILES strings sequence similarities were calculated as the alignment score reported by the
pairwise global alignment algorithm of the Biopython package [38]. The match score was set to 1,
the mismatch to −1, the gap opening to −0.5 and the gap extension to −0.05. The fingerprint similarity
metric was calculated on basis of circular Morgan fingerprints with a radius of 2 as implemented in
the RDKit library [11]. The fingerprints were hashed to 2048 bits and the similarity calculated with the
RDKit packages FingerprintSimilarity function. The latent space similarity between two molecules
was calculated as the negative logarithm to the Euclidean distance of the vector coordinates.

4.5. Enumeration Challenge

The encoder was used to calculate the latent space of the test set, followed by a dimensionality
reduction with standard principal components analysis (PCA) as implemented in the Scikit-Learn
package [30]. Three molecules were converted to different SMILES strings with SMILES enumeration [8].
The latent space coordinates of the non-canonical SMILES were calculated with the encoder and
transformed and projected onto the visualization of the principal components from the PCA analysis.

4.6. Error Analysis of Output

The percentage of invalid SMILES was quantified as the number of produced SMILES which could
not be validated as molecules by RDKit. Subsequently the equality of the input and output RDKit
molecules was checked. The similarity of the scaffold was checked by comparing the generalized
murcko scaffolds [39] including side-chains. The atom equivalence was checked by comparing the
molecular sum formulas. The number and nature of bonds was compared via a “bond sum formula”
by counting the number of single, double, triple and aromatic bonds.

4.7. Multinomial Sampling of Decoder

Multinomial sampling was implemented as previously described [12]. The sampling temperature
was kept at 1.0.

4.8. Neural Network Modelling for the ChEMBL Dataset

The overall steps for producing the QSAR models is illustrated in Figure 12. The sequence
to sequence autoencoder used for encoding the ChEMBL data and encoding of vectors for QSAR
modelling was programmed in Python 3.6.1 [40] using Keras version 2.1.5 [32] with the tensorflow
backend [33]. A detailed scheme of the network is available in the Supplementary Information
Figure S3. The encoder consisted of two bidirectional layers of 128 CuDNNLSTM cells in each one-way
layer. The final C and H states were concatenated and passed as input to a dense layer with 256 neurons
using the ReLU [34] activation function (the code layer). The output from the dense layer were decoded
by four parallel dense layers with the ReLU activation function, whose outputs were used to set the
initial C and H states of the decoder LSTM layers. The decoder itself consisted of two unidirectional
layers of 256 CuDNNLSTM cells each . The decoder was trained under teacher forcing as described
for the simpler networks above. Every non-linear activation was followed by Batch Normalization.



Biomolecules 2018, 8, 131 14 of 17

No additional regularization was used. Furthermore, 400,000 random structures from the CheMBL23
training set were pre-enumerated 50-times for each SMILES string. The new 20 million pairs were
shuffled and used in both a canonical to enumerated and an enumerated to canonical setting and
trained until model convergence. The same 400,000 canonical SMILES were also used to train an
auto encoder from canonical to canonical SMILES. For the enumerated to enumerated training setting
50 pairs (when possible) of different SMILES strings were created for each molecule of the training
set. The network was trained using mini-batches of 256 one-hot encoded SMILES strings, using the
Adam optimizer with an initial learning rate of 0.005. The training was monitored and controlled by
three callbacks. One callback monitored the loss of the validation set and lowered the learning rate by
a factor two when no improvement had been observed for two epochs (ReduceLROnPlateu). Another
Callback stopped training when no improvement in the validation set loss had been observed for five
epochs (EarlyStopping), and the last callback saved the model if the validation loss has improved
(CheckPoint). Models typically converged after approximately 40 epochs, which usually took about
six hours on a NVIDIA GTX 1080 Ti equipped server.

4.9. QSAR Modelling

Subsequent QSAR modelling was performed using the machine learning capabilities of the Open
Science Data Repository [41]. An initial search for hyper parameters was performed after converting
the molecules into ECPF4 fingerprints (radius 2, 1024 bits). The hyper parameter search for a neural
network was performed using Tree of Parzen Estimators (TPE) algorithm [42] as implemented in
Hyperopt [43] with the search space bounds listed in Table 6. The performance on each dataset
was optimized using 3-fold cross validation on the training set. The performance of the model with
the final hyperparameters were subsequently tested on the held-out test set using an ensemble of
10 models build during 10-fold cross validation during training. The auto-/heteroencoders trained on
the ChEMBL23 molecules were subsequently used to encode the QSAR datasets into vectors using
the output from the code layer. The vectors were used as input to the QSAR models. The same
hyper parameters were used as identified for the ECFP4 based models, with no further attempt to
optimize the hyper parameters of the feed forward neural networks using the auto-/heteroencoder
encoded molecules.

Table 6. Hyper parameter search space using the Tree of Parzen estimator method in Hyperopt.

Hyper Parameter Search Space

Input dropout 0.0–0.95
Units per layer 2–1024

Kernel regularizer (L2) 0.000001–0.1
Kernel constraint (maxnorm) 0.5–6

Kernel initializer ‘lecun_uniform’ ‘glorot_uniform’, ‘he_uniform’,
‘lecun_normal’, ‘glorot_normal’, ‘he_normal’

Batch normalization Yes (after each activation), No
Activation function ReLU, SeLU

Dropout 0.0–0.95
Number of hidden layers 1–6

Learning rate 0.00001–0.1
Optimizer Adam, Nadam, RMSprop, SGD

5. Conclusions

The pilot study using a fully enumerated train and test set with eight atoms showed that the
latent space representation is sensitive to the chosen representations of the input and output in the
training. Using canonical SMILES for the decoder gives a latent space representation which seems
closer correlated to the SMILES strings than to the molecular graphs. In contrast, training the encoders
on input and output from different representations in chemical heteroencoders (image or enumerated



Biomolecules 2018, 8, 131 15 of 17

non-canonical SMILES), gives a latent space with a better balance between SMILES similarity and
a traditional molecular similarity metric. Forcing the encoder–decoder pair to trans-code between
different molecular or SMILES representation indeed seems to give a latent space more tuned towards
a molecular structure encoding. The latent space properties were most strongly influenced by the
choice of training data and representations used for the decoder targets. The decoders trained on
enumerated data also had a higher variance in produced molecules and produced SMILES during
multinomial sampling. Training the decoders on enumerated data removed their tendency to only
produce one canonical SMILES form of the same molecule. The larger diversity in the output may
make them more relevant in de novo design approaches in drug discovery, where a balance between
similarity and variance is the goal.

The improved performance when using the latent space vectors from heteroencoders for QSAR
modelling, further emphasizes their increased relevance, not just being a more SMILES independent
representation of the molecule, but also for a better description of the chemical space relevant for
biological as well as physico-chemical properties. This should hopefully lead to more drug-discovery
relevant de novo generated libraries. The increased relevance however comes at the price of greater
uncertainty in the decoding, although more complex decoders seem to perform better at that metric.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/8/4/131/s1,
Figure S1, Figure S2, Figure S3

Author Contributions: E.J.B. developed the concept of heteroencoders, performed the training and tests using
the GDB-8 datasets and prepared the initial [16] and final manuscripts. B.S. optimized the network architecture
for ChEMBL data, prepared the QSAR datasets, trained and tested the performance of the latent vectors for QSAR
application and helped prepare the final manuscript.

Acknowledgments: We thank Alexandru Korotcov, the science team leader of ScienceDataSoftware, for helpful
comments on the manuscript.

Conflicts of Interest: E.J.B. is the owner of Wildcard Pharmaceutical Consulting. The company is usually contracted
by biotechnology/pharmaceutical companies to provide third party contract research and IT services. B.S. is employed
by Science Data Software LLC on a part time basis. The company provide data infrastructure and machine learning
capabilities for drug discovery and chemical research.

Abbreviations

The following abbreviations are used in this manuscript:

Conv2D 2D convolutional layer
ECFP4 Extended connectivity fingerprint with 4 bonds
GRU Gated Recurrent Unit
LSTM Long short-term memory
QSAR Quantitative structure activity relationship
ReLU Rectified liniar unit
RMSE Root mean square error
RNN Recurrent Neural Network
SMILES Simplified molecular-input line-entry system

References

1. Gómez-Bombarelli, R.; Duvenaud, D.; Hernández-Lobato, J.M.; Aguilera-Iparraguirre, J.; Hirzel, T.D.;
Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation
of molecules. arXiv 2016, arXiv:1610.02415.

2. Blaschke, T.; Olivecrona, M.; Engkvist, O.; Bajorath, J.; Chen, H. Application of Generative Autoencoder
in De Novo Molecular Design. Mol. Inform. 2017, 37, 1700123, doi:10.1002/minf.201700123. [CrossRef]
[PubMed]

http://www.mdpi.com/2218-273X/8/4/131/s1
http://dx.doi.org/10.1002/minf.201700123
http://www.ncbi.nlm.nih.gov/pubmed/29235269


Biomolecules 2018, 8, 131 16 of 17

3. Xu, Z.; Wang, S.; Zhu, F.; Huang, J. Seq2Seq Fingerprint: An Unsupervised Deep Molecular Embedding for
Drug Discovery. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics, ACM-BCB ’17, Boston, MA, USA, 20–23 August 2017; ACM: New York, NY,
USA, 2017; pp. 285–294, doi:10.1145/3107411.3107424. [CrossRef]

4. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv 2014, arXiv:1412.3555.

5. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

6. Chen, H.; Kogej, T.; Engkvist, O. Cheminformatics in Drug Discovery, an Industrial Perspective. Mol. Inform.
2018, 37, e1800041. [CrossRef] [PubMed]

7. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and
encoding rules. Proc. Edinb. Math. Soc. 1970, 17, 1–14. [CrossRef]

8. Bjerrum, E.J. SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules.
arXiv 2017, arXiv:1703.07076.

9. Li, Y.; Zhang, L.; Liu, Z. Multi-Objective De Novo Drug Design with Conditional Graph Generative Model.
arXiv 2018, arXiv:1801.07299.

10. Goh, G.B.; Siegel, C.; Vishnu, A.; Hodas, N.O.; Baker, N. Chemception: A deep neural network with
minimal chemistry knowledge matches the performance of expert-developed qsar/qspr models. arXiv 2017,
arXiv:1706.06689.

11. Landrum, G.A. RDKit: Open-Source Cheminformatics Software. Available online: http://www.rdkit.org/
(accessed on 1 July 2018).

12. Bjerrum, E.J.; Threlfall, R. Molecular Generation with Recurrent Neural Networks (RNNs). arXiv 2017,
arXiv:1705.04612.

13. Duvenaud, D.K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P.
Convolutional networks on graphs for learning molecular fingerprints. In Proceedings of the
28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 2224–2232.

14. Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: moving beyond
fingerprints. J. Comput.-Aided Mol. Des. 2016, 30, 595–608. [CrossRef] [PubMed]

15. Winter, R.; Montanari, F.; Noé, F.; Clevert, D.A. Learning Continuous and Data-Driven Molecular Descriptors
by Translating Equivalent Chemical Representations. ChemRxiv 2018, doi:10.26434/chemrxiv.6871628.v1.
[CrossRef]

16. Huuskonen, J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular
topology. J. Chem. Inf. Comput. Sci. 2000, 40, 773–777. [CrossRef] [PubMed]

17. Gissi, A.; Gadaleta, D.; Floris, M.; Olla, S.; Carotti, A.; Novellino, E.; Benfenati, E.; Nicolotti, O. An alternative
QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. ALTEX-Altern.
Anim. Exp. 2014, 31, 23–36.

18. Gissi, A.; Lombardo, A.; Roncaglioni, A.; Gadaleta, D.; Mangiatordi, G.F.; Nicolotti, O.; Benfenati, E.
Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint:
The bioconcentration factor (BCF). Environ. Res. 2015, 137, 398–409. [CrossRef] [PubMed]

19. Open Science Data Repository. Features Computation Beta. Available online: http://ssp.dataledger.io/
features (accessed on 1 September 2018).

20. Polishchuk, P.G.; Madzhidov, T.I.; Varnek, A. Estimation of the size of drug-like chemical space based on
GDB-17 data. J. Comput.-Aided Mol. Des. 2013, 27, 675–679, doi:10.1007/s10822-013-9672-4. [CrossRef]
[PubMed]

21. Ruddigkeit, L.; Van Deursen, R.; Blum, L.C.; Reymond, J.L. Enumeration of 166 billion organic small
molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 2012, 52, 2864–2875. [CrossRef]
[PubMed]

22. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.;
Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954,
doi:10.1093/nar/gkw1074. [CrossRef] [PubMed]

23. EPI Suite Data. Available online: http://esc.syrres.com/interkow/EpiSuiteData.htm (accessed on 1 July 2018).

http://dx.doi.org/10.1145/3107411.3107424
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1002/minf.201800041
http://www.ncbi.nlm.nih.gov/pubmed/29774657
http://dx.doi.org/10.1021/ci00057a005
http://www.rdkit.org/
http://dx.doi.org/10.1007/s10822-016-9938-8
http://www.ncbi.nlm.nih.gov/pubmed/27558503
http://dx.doi.org/10.26434/chemrxiv.6871628.v1
http://dx.doi.org/10.1021/ci9901338
http://www.ncbi.nlm.nih.gov/pubmed/10850781
http://dx.doi.org/10.1016/j.envres.2014.12.019
http://www.ncbi.nlm.nih.gov/pubmed/25616163
http://ssp.dataledger.io/features
http://ssp.dataledger.io/features
http://dx.doi.org/10.1007/s10822-013-9672-4
http://www.ncbi.nlm.nih.gov/pubmed/23963658
http://dx.doi.org/10.1021/ci300415d
http://www.ncbi.nlm.nih.gov/pubmed/23088335
http://dx.doi.org/10.1093/nar/gkw1074
http://www.ncbi.nlm.nih.gov/pubmed/27899562
http://esc.syrres.com/interkow/EpiSuiteData.htm


Biomolecules 2018, 8, 131 17 of 17

24. EPA, U. Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11; United States Environmental
Protection Agency: Washington, DC, USA, 2018.

25. Open Science Data Repository. Features Computation Beta. Available online: https://ssp.dataledger.io/
file/00120000-ac12-0242-bcea-08d5f0abb793 (accessed on 1 September 2018).

26. Arnot, J.A.; Gobas, F.A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF)
assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297, doi:10.1139/a06-005.
[CrossRef]

27. Schultz, T.W. Tetratox: Tetrahymena pyriformis population growth impairment endpointa surrogate for fish
lethality. Toxicol. Methods 1997, 7, 289–309, doi:10.1080/105172397243079. [CrossRef]

28. ChemIDplus Database. Available online: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
(accessed on 1 July 2018).

29. Mentel, L. Mendeleev—A Python Resource for Properties of Chemical Elements, Ions and Isotopes. 2014.
Available online: https://bitbucket.org/lukaszmentel/mendeleev (accessed on 1 July 2018).

30. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer,
P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

31. Walt, S.V.d.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation.
Comput. Sci. Eng. 2011, 13, 22–30. [CrossRef]

32. Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 17 September 2018).
33. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.; Davis, A.; Dean, J.; Devin, M.; et al.

Tensorflow: Large-scale machine learning on heterogeneous distributed systems. 2016. arXiv 2016,
arXiv:1603.04467.

34. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

35. Williams, R.J.; Zipser, D. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks.
Neural Comput. 1989, 1, 270–280, doi:10.1162/neco.1989.1.2.270. [CrossRef]

36. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.

Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

38. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.;
Wilczynski, B.; et al. Biopython: freely available Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009, 25, 1422–1423, doi:10.1093/bioinformatics/btp163. [CrossRef] [PubMed]

39. Bemis, G.W.; Murcko, M.A. The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996,
39, 2887–2893. [CrossRef] [PubMed]

40. Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica Amsterdam:
Amsterdam, The Netherlands, 1995.

41. Open Science Data Repository. Available online: http://osdr.dataledger.io/ (accessed on 10 September 2018).
42. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings

of the 24th International Conference on Neural Information Processing Systems, Granada, Spain,
12–15 December 2011.

43. Hyperopt: Distributed Asynchronous Hyper-Parameter Optimization. Available online: https://github.
com/hyperopt/hyperopt (accessed on 1 July 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://ssp.dataledger.io/file/00120000-ac12-0242-bcea-08d5f0abb793
https://ssp.dataledger.io/file/00120000-ac12-0242-bcea-08d5f0abb793
http://dx.doi.org/10.1139/a06-005
http://dx.doi.org/10.1080/105172397243079
http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
https://bitbucket.org/lukaszmentel/mendeleev
http://dx.doi.org/10.1109/MCSE.2011.37
https://github.com/fchollet/keras
http://dx.doi.org/10.1162/neco.1989.1.2.270
http://dx.doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pubmed/19304878
http://dx.doi.org/10.1021/jm9602928
http://www.ncbi.nlm.nih.gov/pubmed/8709122
http://osdr.dataledger.io/
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	GDB-8 Dataset Based Models
	Molecular and Sequence Similarity
	Error Analysis
	Enumeration Challenge
	Sampling Using Probability Distribution

	QSAR Modelling Using ChEMBL Trained Heteroencoders

	Discussion
	Materials and Methods
	Datasets
	GDB-8
	ChEMBL23
	QSAR Datasets

	1D and 2D Vectorization
	Neural Network Modeling for GDB-8 Dataset
	Similarity Metrics
	Enumeration Challenge
	Error Analysis of Output
	Multinomial Sampling of Decoder
	Neural Network Modelling for the ChEMBL Dataset
	QSAR Modelling

	Conclusions
	References

