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Introduction

Oxidative stress has been implicated in the pathophysiology of 
multiple human diseases.1 Furthermore, oxidative stress is regarded 
as a mediator of nerve cell death in several neurodegenerative 
disorders.2

Vitiligo is characterized by the selective destruction of mel-
anocytes which had been derived from neuroectoderm. Although 
its cause is unknown, several reasons for the selective destruction 
of melanocytes have been suggested. Dopamine (DA) is a well-
known neurotoxin that plays an etiologic role in neurodegenerative 
disorders such as Parkinson’s disease, and it has been reported that 
DA induces oxidative stress and neuronal cell death.3,4 Neural fac-
tors have long been suspected to contribute to the development of 
vitiligo, and catecholamines such as norepinephrine, epinephrine, 
and DA and their metabolites have been found to be elevated in the 
urine and plasma of vitiligo patients.5-7 We previously reported that 
melanocytes were susceptible to DA, and that thiol compounds 
such as N-acetyl-L-cysteine (NAC) effectively protected against 
DA-induced melanocyte cell death.8 Using this model, the role of 
Akt in DA-induced cell death was investigated.

Dopamine (DA) is a well known oxidative neurotoxin. In addition, Akt has been reported to deliver a survival signal 
that inhibits apoptosis. However, it has also been reported that chronic Akt activation leads to apoptosis in response to 
oxidative stress. The objective of the present study was to investigate the possible role of the Akt pathway in vitiligo and 
its possible relationship with DA-induced cell death using Mel-Ab cells. Cultured Mel-Ab cells were treated with DA with 
and without N-Acetyl-L-cysteine (NAC), which is known to have antioxidative properties. Cell viability was then assessed 
by a crystal violet assay and Annexin staining was performed. The changes in the expression of Akt were analyzed by 
western blot analysis. The cell viability was reduced by approximately 60% in response to treatment with 500 μM DA, 
and NAC effectively prevented this cytotoxic effect. Likewise, treatment with DA produced numerous Annexin positive 
cells, while treatment with NAC prevented this apoptotic cell death. Akt was slowly phosphorylated after treatment 
with DA, while NAC clearly inhibited the DA-induced Akt activation. Western blot analysis also showed that treatment 
with DA induced the activation of Bad. Finally, LY294002 exerted a protective effect against DA-induced apoptotic cell 
death. DA may induce redox-sensitive Akt activation and increase the level of Bad, which can promote cell death by 
heterodimerization with survival proteins. Moreover, NAC effectively protects against DA-induced melanocyte death via 
inhibition of DA-induced Akt activation.         
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Activation of Akt is known to deliver a survival signal that 
inhibits apoptosis.9 It has also been reported that Akt inhibits 
apoptosis through a variety of molecular mechanisms, including 
direct phosphorylation and inhibition of the pro-apoptotic Bcl-2 
family and Bad.10 However, chronic Akt activation has also been 
reported to lead to apoptosis through oxidative stress.11 In this 
study, the mouse-derived spontaneously immortalized melano-
cyte cell line, Mel-Ab, was used to investigate the possible role 
that Akt pathway in vitiligo.12

Results

Dopamine-induced cytotoxicity and the effects of NAC. Mel-Ab 
cells were treated with various concentrations of DA (0–500 μM) 
for 24 hr, after which the cell viability was measured. The cell 
viability was reduced by approximately 60% in response to treat-
ment with 500 μM DA; therefore, this concentration was cho-
sen for further experiments (Fig. 1A). It was previously reported  
that NAC and glutathione protected Mel-Ab cells against 
dopamine-induced cell death.8 Thus, the protective effects of 
NAC were evaluated. The results revealed that NAC effectively 
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prevented the DA-induced cytotoxicity. The survival 
rate was found to be greater than 95% in the presence 
of 10 mM NAC (Fig. 1B). These findings were con-
firmed by microscopic examination (Fig. 1C). Thus, 
10 mM NAC was used for subsequent experiments.

Dopamine-induced apoptotic cell death and the 
effects of NAC. Early events in the apoptotic process 
include the translocation of phosphatidylserine. Thus, 
Annexin V can bind to phosphatidylserine on the 
surface of cells undergoing apoptosis.13 The present 
study showed that DA treatment produced numerous 
Annexin-V positive cells, and that NAC effectively 
prevented the formation of Annexin-V positive cells 
(Fig. 2A). In addition, PARP were clearly activated 
after DA treatment, and NAC prevented this activa-
tion of PARP (Fig. 2B, C).

Akt activation after dopamine treatment and 
the effects of NAC. To investigate the mecha-
nism underlying DA-induced cell death, the 
changes in Akt were analyzed by western-blotting.  
As shown in Figure 3A, immediate changes were 
not observed; however, Akt phosphorylation was 
slowly increased by time-dependent manner after DA 
treatment. We also evaluated the effects of NAC to 
determine if it could inhibit the DA-induced Akt acti-
vation. As shown in Figure 3B, NAC clearly inhibited 
DA-induced Akt activation.

Protective effects of the Akt pathway inhibi-
tor. The role of Akt pathway in the induction of 
DA-induced cell death was evaluated. Cell viability 
assay (Fig. 4A) showed that LY294002 partially pro-
tected against DA-induced apoptotic cell death. In 
addition, cell death was evaluated by flow cytometric 
analysis. After DA treatment, cells were analyzed by 
forward scattering and side scattering. Results showed 
that DA treatment induced the appearance of cells 
(R1) at the right side of normal cells. Thus, these cells 
are considered to be apoptotic cells. Then, LY294002 
was added to test the effects of inhibition of Akt path-
way in DA-induced cell death. It was found that prob-
able apoptotic cell death has decreased from 33.5% to 
15.0% (Fig 4B, C).

Involvement of Akt and Bad in the induction 
of DA-induced apoptotic cell death. Western blot-
ting demonstrated that the DA induced activation 
of Bad, while NAC almost completely abolished the 
DA induced activation of Bad. LY294002 also par-
tially inhibited the DA induced activation of Bad  
(Fig. 5A). However, Bcl-2 and Bcl-xL were not changed  
(Fig. 5B, C). 

Discussion

Oxidative stress is believed to be a key mediator of 
neurotoxicity by DA. The auto-oxidation of DA 
produces quinines as well as an array of other free 

Figure 1. Concentration-dependent cytotoxic effects of DA and protective effects 
of NAC against DA-induced cytotoxicity . (A) Following serum starvation, the cells 
were treated with various concentrations of DA for 24 hr, after which their viability 
was measured by crystal violet assay. (B) After serum starvation, the cells were pre-
treated with different concentrations of NAC for 20 min and then treated with 500 
μM DA for 24 hr. Next, the viability of the cells was measured by crystal violet assay. 
(C) The morphology of the cells was evaluated using an inverted microscope (x100 
objective). (a) control; (b) 1 mM of NAC; (c) 10 mM of NAC; (d) 500 μM of DA; (e) 1 mM 
of NAC and 500 μM of DA; (f) 10 mM of NAC and 500 µM of DA. *p < 0.05 (Mann-
Whitney U test).
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radical species. Additionally, monoamine oxi-
dase (MAO) contributes to DA toxicity via the 
generation of hydrogen peroxide and 3,4-dihy-
droxyphenylacetaldehyde (DOPAL). These ROS 
and quinines induce cellular damage and apop-
tosis.14 Previously, we reported that DA induced 
apoptotic cell death in Mel-Ab cells and cultured 
normal human melanocytes. Furthermore, we 
showed that thiol-containing compounds, such 
as NAC and GSH, induced a marked protective 
effect against apoptosis, while vitamin C, vitamin 
E, Trolox and quercetin had negligible protective 
effects.8 

In the present study, the molecular mechanism 
of cell death following DA treatment was investi-
gated. The results showed that delayed activation 
of Akt occurred following DA treatment (Fig. 3). 
It has previously been reported that phosphoti-
dylinositol 3-kinase regulates melanogenesis by 
modulating the expression of tyrosinase, and that 
activation of Akt is related to the suppression of 
melanin production in G361 melanoma cells.15

It has also been reported that Akt is a major 
mediator of the cell survival pathway; there-
fore, activation of Akt leads to the inhibition of 
caspase activity and protection from apoptotic 
cell death.16 Despite this, stimulation of the Fas 
receptor by its ligand (FasL) induces phosphory-
lation of Akt and a parallel increase in apoptosis 
in epidermal CI41 cells.17 Furthermore, electron 
resonance studies have shown that FasL treat-
ment induces rapid generation of reactive oxygen 
species (ROS), and that inhibition of ROS by 
antioxidants effectively inhibits Akt signaling. As 
already indicated, increased Akt is a hallmark of 
antiapoptotic survival signals.18 However, oxida-
tive stress related Akt activation leads to apop-
totic cell death.11 Taken together, these findings suggest 
that DA also leads to redox sensitive Akt activation and 
apoptotic cell death.

In mammals, three Akt isoforms Akt1, Akt2, Akt3 
which exhibit sequence homology are known. Akt1 is 
the most ubiquitously expressed isoform and Akt2 has 
its highest expression levels in insulin-responsive tis-
sue.19,20 Akt3 expression is mainly limited to brain, tes-
tis, lung, heart, kidney, mammary gland and fat.21 Since, 
several previous studies showed that Akt1 is involved in 
apoptosis induced by oxidative stress11 or in the redox 

Figure 2. Microscopic observation of DA-induced cell death and PARP activation by 
western blotting. (A) After serum starvation, the cells were treated with 500 µM DA for 
16 hr with or without pretreatment with 10 mM NAC for 20 min. Photographs were then 
taken using a fluorescent inverted microscope (x100 objective). (B) After serum starvation, 
the cells were treated with 500 µM DA for 6 hr or 16 hr. β-actin antibody was used as a 
control for equal loading of proteins. (C) The cells were then treated with 500 µM DA for 
16 hr with or without 10 mM NAC pretreatment. β-actin antibody was used as a control 
for equal loading of proteins.

Figure 3. Activation of Akt after DA treatment. (A) After 
serum starvation, the cells were treated with 500 μM DA for 
the indicated time points. Total-Akt antibody was used as 
a control for equal loading of proteins. (B) After serum starva-
tion, the cells were treated with 500 μM DA for 16 hr with 
or without pretreatment with 10 mM for 20 min. Total-Akt 
antibody was used as a control for equal loading of proteins.
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modulation of cell cycle progression,22 we could presume that the 
Akt which detected in our study might be Akt1.

To determine whether DA induced apoptotic cell death 
via the Akt pathway, Mel-Ab cells were treated with DA with 
or without LY294002 (a specific inhibitor of the Akt pathway) 

pretreatment for 20 min. The results revealed that LY294002 
partially inhibited the DA-induced cell death (Fig 4, 5). These 
findings indicate that the Akt pathway is involved in DA-induced 
cell death. Furthermore, NAC, which effectively protects against 
DA-induced cell death (Fig. 1), also inhibits DA-induced Akt 
activation (Fig. 3). Taken together, these findings indicate that 
DA may induce apoptotic cell death through the activation of 
Akt, which is considered to be redox sensitive.

It has also been reported that proteins belonging to the Bcl-2 
family are important regulators of cell death in mammalian 
cells.23 Bad is a distinct member of the Bcl-2 family that promotes 
cell death, at least in part, through heterodimerization with the 
survival proteins, Bcl-2 and Bcl-xL.24 The proapoptotic function 
of Bad is reported to be regulated by the Akt pathway.10 Recently, 
it is also reported that Myricetin, a potent anticancer phytochem-
ical, caused a decrease in phosphorylation of Bad by decreas-
ing phosphorylation of Akt.25 Furthermore, it is reported that  
transforming growth factor-beta prevent osteoblast apoptosis 

Figure 4. Effect of Akt inhibitor on DA-induced cell death. (A) After se-
rum starvation, the cells were treated with 500 μM DA for 16 hr or 24 hr 
with or without pretreatment with 50 μM LY294002 for 20 min. Viability 
of the cells was measured by crystal violet assay. *p < 0.05 (Mann-Whit-
ney U test). (B, C) After serum starvation, the cells were treated with  
500 μM DA for 16 hr with or without pretreatment with 50 μM LY294002 
for 20 min. Flow cytometric analyses were measured by forward and 
side scattering. Graph shows the percentages of representative data 
among two independent experiments.

Figure 5. Levels of Bad, Bcl-2 and Bcl-xL in DA-induced apoptosis.  
(A) After serum starvation, the cells were treated with 500 μM DA for  
16 hr with or without pretreatment with 10 mM NAC or 50 μM 
LY294002. β-actin antibody was used as a control for equal loading of 
proteins. (B, C) Western blotting was conducted using Bcl-2 (B) or Bcl-xL 
(C) antibody. β-actin antibody was used as a control for the equal  
loading of proteins.
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Morphological examination. The morphology of the cul-
tured Mel-Ab cells was observed using a fluorescent inverted 
microscope (Axio Observer. Z1, Carl Zeiss, Thornwood, NY). 
Morphological changes were evaluated at 100x magnification 
using the Axio Vision 4.7 software (Carl Zeiss).

Annexin staining. After treatment, the cells were washed 
using HEPES buffer and then incubated with 2% Annexin-V-
Fluorescein (#11 858 777 001, Roche, Mannheim, Germany) in 
HEPES buffer for 15 min at room temperature. The stained cells 
were then rinsed with methanol and incubated with 1 µg/ml 
DAPI (#10 236 276 001, Roche) to counter-stain the nucleus. 
After washing, the cells were observed using a fluorescent 
inverted microscope.

Western blot analysis. Cells were lysed in buffer composed of 
62.5 mM Tris–HCl (pH 6.8), 2% SDS, 5% β-mercaptoethanol, 
2 mM phenylmethylsulfonyl fluoride, 1 mM Na3VO4, 50 mM 
NaF and protease inhibitors (Roche). The total protein con-
centration was determined using a Bio-Rad protein assay kit 
(Bio-Rad, Hercules, CA), after which 50 µg of proteins were 
electrophoresed using Tris-Glycine gel (EC6008, Invitrogen). 
The separated proteins were then transferred to a PVDF mem-
brane (Immobilon-P, IPVH00010, Millipore, Bedford, MA). 
The membrane was then blocked using 5% non-fat dry milk 
(Bio-Rad) in Tris-buffered Saline containing 0.2% Tween 
20. Next, the blocked membrane was incubated with primary 
antibody and horseradish peroxidase-conjugated second-
ary antibody. The bound antibodies were detected using an 
ECL western blotting analysis system (RPN2109, Amersham 
International, Little Chalfont, UK).

Flow cytometric analysis. Sixteen hours after DA treatment, 
we collected the culture supernatant, which contained floating 
dying cells and apoptotic cells. Then adherent cells were harvested 
by a brief trypsinization. The two fractions were combined and 
washed with PBS. Flow cytometric analyses were performed on 
a FACSCalibur (Becton Dickinson, San Jose, CA). Experiments 
were repeated at least twice under the same conditions and set-
tings. The effects of LY294002 (50 µM) pretreatment were also 
investigated.
Statistics. Differences between groups were analyzed by a  
Mann-Whitney U test. The SPSS statistics package (SPSS 
V12.0K, SPSS Inc., Chicago, IL) was used for all analyses.
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