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Abstract

Background: Protein-coding genes expressed in sperm evolve at different rates. To gain deeper insight into the
factors underlying this heterogeneity we examined the relative importance of a diverse set of previously described
rate correlates in determining the evolution of murine sperm proteins.

Results: Using partial rank correlations we detected several major rate indicators: Phyletic gene age, numbers of
protein-protein interactions, and survival essentiality emerged as particularly important rate correlates in murine
sperm proteins. Tissue specificity, numbers of paralogs, and untranslated region lengths also correlate significantly
with sperm genes’ evolutionary rates, albeit to a lesser extent. Multifunctionality, coding sequence or average intron
lengths, and mean expression level have insignificant or virtually no independent effects on evolutionary rates in
murine sperm genes. Gene ontology enrichment analyses of three equally sized murine sperm protein groups
classified based on their evolutionary rates indicate strongest sperm-specific functional specialization in the most
quickly evolving gene class.

Conclusions: We propose a model according to which slowly evolving murine sperm proteins tend to be constrained
by factors such as survival essentiality, network connectivity, and/or broad expression. In contrast, evolutionary change
may arise especially in less constrained sperm proteins, which might, moreover, be prone to specialize to reproduction-
related functions. Our results should be taken into account in future studies on rate variations of reproductive genes.

Keywords: Protein evolution, Tissue specificity, Protein essentiality, Sperm proteins, Protein-protein interactions,
Gene age, Multifunctionality, Paralogs, Gene compactness, dN/dS

Background

The spermatozoon is a highly specialized cell type indis-
pensable for male fitness. Different types of postmating sex-
ual selection are thought to drive the diversification of
sperm anatomy and function across taxa. For instance,
sperm competition, the competition between sperm from
several males for fertilization of a female’s ova [1], is consid-
ered to increase sperm viability in Drosophila [2] and num-
bers of sperm produced in mice [3, 4]. In primates, sperm
midpiece volume varies depending on mating systems and
thus presumably in response to different levels of sexual se-
lection [5] (for rodents, see [6]). Furthermore, sperm com-
petition and other types of sexual selection, such as cryptic
female choice (see, e.g., [7]) and sexual conflict (reviewed in
[8]), may exert selective pressures not only on sperm form
or production, but also on the proteins constituting these
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cells. Accordingly, adaptive evolution of male reproductive
proteins has been observed in a wide range of taxa (see,
e.g., [9-12]). However, studies with proteome-wide per-
spectives demonstrated that despite the rapid evolution
of certain reproduction-related genes, the majority of
male reproductive proteins are conserved [13, 14]. This
variation in sequence evolution of male reproductive
proteins is moreover characterised by temporal and spatial
compartmentalization of sperm or testis proteomes with
higher rates in later steps of spermatogenesis and in pro-
teins acting proximate to fertilization (see, e.g., [15-18]).
Dorus et al. [13] hypothesized that the strong conserva-
tion of many sperm proteins might rely on either their in-
volvement in critical cellular functions or their expression
in nonreproductive tissues, which generates pleiotropic
constraints. Corresponding to the second prediction of
Dorus et al. [13], other authors indeed found rate acceler-
ation of testis-specific genes in Drosophila compared with
genes also expressed in other tissues [19]; in the mouse
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sperm proteome, however, testis overexpression was in-
sufficient to explain evolutionary rate variation [16].

Hence, although it may be assumed that all protein-
coding genes expressed in sperm cells could potentially
experience sexual selection, adaptive evolution affects only
a relatively small fraction of them. The above mentioned
studies were able to partially explain rate variations of
male reproductive proteins. However, the influence of a
larger set of potential rate determinants on the evolution
of mammalian sperm proteins has not yet been studied.

In evolutionary biology, the quest for such rate determi-
nants has long been a central issue and several correlates
of evolutionary rates have been identified (reviewed in,
e.g., [20, 21]): The evolutionary rate of a protein is
thought to be mainly shaped by its level of essentiality
and functional constraint [22]. Essentiality manifests in
the fitness effect of gene deletion and has been shown to
correlate negatively with evolutionary rates (see, e.g., [23]).
Functional constraint refers to the compatibility of sub-
stitutions with a protein’s function (see, e.g., [22]), which,
however, is more difficult to quantify than essentiality.
Still, several correlates of evolutionary rates, such as
connectivity in protein-protein interaction (PPI) networks
[24], multifunctionality [25], and expression breadth
[26, 27] have been established, all of which might relate
to pleiotropic [28, 29] and/or structural and functional
constraints [30, 31]. Moreover, other variables including
phyletic gene age [32, 33], gene compactness [34], expres-
sion level [35-37] or numbers of paralogs [38, 39] have
been identified as substantial rate indicators of protein-
coding genes.

In the present study we aim to uncover factors influ-
encing rate variations of sperm proteins. We intend to
unravel the relative importance of several proposed vari-
ables as correlates of sperm proteins’ evolutionary rates.
Based on a published murine sperm proteome [40] we
used zero-order and partial rank correlations to disentangle
the effects of individual gene properties on dN/dS. This lat-
ter measure is the ratio of nonsynonymous (dN) and
synonymous substitution rates (dS), with dN/dS=1, <1,
and >1 indicating neutral evolution, purifying, and
positive selection, respectively. We included essential-
ity, multifunctionality, number of PPIs, tissue specificity
(1), mean expression level inferred over 22 mouse tissues,
phyletic gene age, number of paralogs, and different
measures of gene compactness (coding sequence (CDS)
length, 5" and 3" untranslated region (UTR) length, aver-
age intron length) as potential correlates of sperm proteins’
dN/dS values. Additionally, we retrieved gene ontology
(GO) information for sperm protein groups with different
rates of sequence evolution. Based on our results, we
propose a model for sperm protein evolution. Our find-
ings underscore the relevance of tissue- or cell type-
specific analyses of putative rate determinants.
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Methods

Ensembl Gene IDs corresponding to proteins expressed
in murine epididymal sperm according to Chauvin et al.
[40] were identified using Uniprot’s ID mapping tool
(19th march 2015) and Ensembl Biomart version 79 (for
details, see Additional file 1: Supplementary Methods).

For each sperm gene, we extracted pairwise dN/dS esti-
mates from the orthologues view pages in Ensembl version
79. On these pages, dN/dS values potentially biased by dS
saturation are hidden (http://mar2015.archive.ensembl.org/
info/genome/compara/homology_method.html), so that
our data should be largely unaffected by such bias. We
considered dN/dS values which had been estimated between
1-to-1 orthologues of mouse (Mus musculus; genome
assembly GRCm38.p3) and rat (Rattus norvegicus; genome
assembly Rnor_5.0) using CodeML from the PAML
package [41].

Descriptions of how we determined the number of
paralogs, CDS, average intron as well as 5" and 3" UTR
length for each gene can be found in Additional file 1:
Supplementary Methods.

Genes coding for the sampled sperm proteins were clas-
sified into six age groups corresponding to their earliest
phyletic origin and coded as numbers descending towards
younger ages: cellular organisms (6), Eukaryota (5), Fungi/
Metazoa (4), Metazoa (3), Chordata (2), Mammalia (1).
Age classifications were taken from supplementary data of
Chen et al. [42] and had been estimated applying a bit
score cutoff of 80 in FASTA (for more details, see sup-
plementary methods of [42]).

Numbers of direct and indirect PPI partners relating
to Swiss-Prot accession numbers were extracted from
downloadable data of 12D (Interologous Interaction Data-
base; http://ophid.utoronto.ca/; [43]) version 2.9 (for details,
see Additional file 1: Supplementary Methods).

For each gene, the tissue specificity index t [44] and the
mean expression level were gathered from supplementary
data of Kryuchkova-Mostacci and Robinson-Rechavi [39].
The index 1 ranges from 0 to 1, with larger values indi-
cating higher tissue specificity [44]. Both t and mean
expression level had originally been calculated based on
ENCODE [45] expression data comprising 22 mouse
tissues [39].

In order to measure multifunctionality, we assigned
numbers of biological processes per protein [46] from
GOSlim generic annotations to each Swiss-Prot ID (for
details, see Additional file 1: Supplementary Methods).

MGI (Mouse Genome Informatics) IDs corresponding
to Ensembl Gene IDs were identified via Ensembl Bio-
mart version 79. Based on downloadable data from MGI
(version 5.22; http://www.informatics.jax.org/; [47]; state:
19th August 2015), we determined the knockout pheno-
type for each gene in our dataset. We exclusively consid-
ered homo- or — in case of X-chromosomally encoded
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genes — hemizygous null alleles (with allele attributes
containing the term “Null/knockout”) generated by
homologous recombination (allele type “Targeted”). Fur-
thermore, we incorporated only alleles affecting single
genes. Essential genes were those associated with any of
the MP (Mammalian Phenotype) IDs summarized under
“preweaning lethality” (MP:0010770) or “lethality at wean-
ing” (MP:0008569). All other genes with known pheno-
types conforming to the criteria outlined above were
classified as “nonessential”. Genes without such known
phenotypes were left unregarded in analyses involving
essentiality.

Our statistical analyses conform to the principles applied
in related exploratory studies (see, e.g., [34, 48, 49]).
Spearman’s rank correlations and partial Spearman’s
rank correlation were conducted with MATLAB version
R2015b. Genes with lacking information regarding any
variable were removed from the dataset so that we in-
cluded only those for which all variables were available. As
many genes had to be excluded from analyses due to miss-
ing information concerning knockout phenotypes, we
computed all correlations twice (except for those compris-
ing essentiality), in a dataset with (681 proteins) and in a
dataset without the essentiality variable (1557 proteins).

To assess potential functional trends in dependence of
evolutionary rates, we divided our protein sample (with-
out essentiality data; n=1557) into three equally sized
bins of 519 proteins according to their genes’ dN/dS
estimates: bin 1 (“low dN/dS”; dN/dS <0.0362); bin 2
(“medium dN/dS”; dN/dS 0.03633-0.12561); bin 3
(“high dN/dS”; dN/dS = 0.12574). For each bin, we per-
formed an enrichment analysis by functional annota-
tion clustering based on GOTERM_BP_FAT using the
Database for Annotation, Visualization and Integrated
Discovery (DAVID; version 6.7; https://david.ncifcrf.
gov/home.jsp; [50, 51]). To this end, we entered
Ensembl Gene IDs, all of which could be matched to
DAVID IDs, and specified the classification stringency
as “high”.

Results and discussion

We compiled a set of proteins expressed in mouse epi-
didymal sperm [40] and collected the pairwise dN/dS es-
timate with rat for each coding gene as well as several
variables which had previously been shown to correlate
with evolutionary rates. The potential correlates of dN/dS
comprised gene essentiality, multifunctionality, number of
PPIs, expressional tissue bias (1), mean expression level,
phyletic gene age, number of paralogs, and several mea-
sures of gene compactness (CDS length, 5" and 3" UTR
length, average intron length). We included only genes for
which all variables were available, restricting our rank cor-
relation analyses to 681 genes. The most limiting factor
was the accessibility of knockout data to evaluate a gene’s
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essentiality for survival: such data existed for less than half
of the genes for which all other variables were obtainable.
Due to this confined availability of knockout data we
recalculated the correlations without essentiality in a set
of 1557 genes. Results of Spearman’s rank correlations
were largely similar in both datasets, showing significant
correlations of most variables with dN/dS (Table 1). Only
CDS and intron length did not correlate significantly with
dN/dS values and the signs of their correlation coefficients
differed between the datasets incorporating 681 or 1557
proteins.

Due to interdependencies among the gene properties
(Fig. 1; Additional file 1: Figure S1) we employed partial
rank correlations to determine the relative strength of cor-
relation for each variable with dN/dS; thereby, we con-
trolled for all remaining gene properties. Partial rank
correlations have been used previously to examine rate de-
terminants in various taxa (see, e.g., [34, 49, 52]). Figures 2
and 3 depict partial rank correlation coefficients and p
values for each studied variable with pairwise dN/dS
estimates. Whether essentiality was included or ex-
cluded, most results remained qualitatively unchanged
(Figs. 2 and 3).

Additionally, we computed partial rank correlations
between each gene property and either dN or dS calculated
for orthologous sequences of mouse and rat (see
Additional file 1: Supplementary Methods). Results of
these analyses demonstrate that the patterns observed
for dN/dS are either driven by dN or a combination
of AN and dS, but none of the significant partial

Table 1 Spearman’s rank correlations between dN/dS and each
gene property

Gene properties o with dN/dS (n=681) o with dN/dS (n=1557)

5'UTR —0.172%** —0.132%%*
3'UTR —(0.203%** —0.1471%**
DS —0.014 (ns) 0.044 (ns)
intron -0.017 (ns) 0.023 (ns)
multi —0.099** -0.051%

T 0.293%** 0.228***
PPI —0.305%** —0.293%**
essentiality —0.303*** NA
exlev. —0.259%** —0.246***
para —0.154%% —0.105%**
age —0.268*** —0.214%**

age Phyletic age of genes, multi Multifunctionality (number of biological processes
per protein according to GOSlim generic), PPl Number of PPIs, para Number of
paralogs, CDS Coding sequence length; intron average intron length, 3'UTR
Length of 3’ UTR, 5'UTR Length of 5'UTR, essentiality essentiality for survival, 0
=nonessential, 1 = essential, T tissue specificity index, ex.lev. mean mRNA
expression level, NA Not applicable. Significance: *p < 0.05; **p < 0.01; **p < 0.001;
ns Nonsignificant
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Fig. 1 Spearman’s rank correlation between all variable pairs, excluding dN/dS. Edges represent correlation coefficients (p) between two properties. All
correlations were calculated in the dataset of 1557 proteins, apart from those involving essentiality, which are calculated for 681 proteins. Only correlations
significant with p < 0.05 are depicted. See legend of Table 1 for descriptions of the biological variables: 3'UTR, 5'UTR, age, essentiality, exlev. multi, para, PPI,
CDS, intron, and T

correlations with dN/dS can solely be traced back to  variable) after exclusion of genes with signals of positive
the impact of dS (see Additional file 1: Tables S1 and  selection according to CodeML analyses (see Additional
S2). Furthermore, results of partial rank correlations in-  file 1: Supplementary Methods and Table S3). It can, thus,
cluding dN/dS remained qualitatively unchanged when overall be concluded that none of our observations is the
obtained in two datasets (with or without the essentiality  result of an overabundance of positively selected genes.
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Gene compactness

UTR and intron length

Liao et al. [34] reported that of the factors analysed in
their study, gene compactness in terms of UTR and
average intron length was the most important determin-
ant of evolutionary rate in murine protein-coding genes.
They found significant negative correlations between
dN/dS and both UTR length and average intron length,
whereas the zero-order correlation between evolutionary
rate and CDS length was nonsignificant. In our sperm
gene dataset we also detected significant negative partial
correlations between pairwise dN/dS estimates and both
5" (681 genes: Spearman’s partial p=-0.105, p<0.01;
1557 genes: Spearman’s partial p = —0.101, p < 0.001) and
3" UTR lengths (681 genes: Spearman’s partial p = -0.
159, p < 0.001; 1557 genes: Spearman’s partial p = -0.122,
p<0.001) (Figs. 2 and 3). Untranslated regions are cru-
cial for posttranscriptional regulation implemented via
diverse mechanisms most of which utilize cis- and trans-
acting elements (see e.g., [53, 54]). Against this back-
ground, genes with tightly adjusted expression patterns
may have a tendency to contain more binding sites for
regulatory molecules, which might entail longer UTRs.
Accordingly, Cheng et al. [55] uncovered that human
and mouse genes targeted by more distinct types of miR-
NAs (microRNAs) have longer 3" UTRs and evolve at
lower rates. This pattern applies to genes with critical
functions whose mRNAs’ translation must be precisely
adjusted to ensure correct temporal and spatial expres-
sion. Housekeeping genes, however, are less regulated by

miRNAs and have short 3° UTRs, but are also slowly
evolving [55]. Such opposing regulation patterns via UTR
binding elements might have an impact on the correla-
tions between UTR lengths and dN/dS. These correlations
could presumably be stronger or weaker in different
subsamples of genes with or without spatial or temporal
expression variation, according to the patterns outlined
above [55].

In contrast, average intron length showed no signifi-
cant partial correlations with dN/dS in the current study
(681 genes: Spearman’s partial p =0.041, p > 0.05; 1557
genes: Spearman’s partial p = 0.028, p > 0.05) (see Figs. 2
and 3). This result disagrees with findings of previous in-
vestigations on mouse genes which revealed significant
negative correlations [34, 56]. But as both partial and
zero-order correlations (see Table 1, Figs. 2 and 3) were
nonsignificant, average intron length does not seem to be
an important rate indicator in our sperm protein dataset.

CDS length

Partial correlation between CDS length and dN/dS was
significant in the larger dataset of 1557 genes (Spear-
man’s partial p =0.087, p <0.001), but nonsignificant in
the more restricted set (n = 681; Spearman’s partial p =
0.055, p > 0.05). In both cases, however, the partial cor-
relation coefficient indicated a positive relationship be-
tween evolutionary rate and sequence length (see Figs.
2 and 3). The interplay of these two variables has been
studied in different taxa, but the results were contra-
dictory: While some authors detected no significant
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correlation between rates of sequence evolution and
protein or CDS length (see, e.g., [34]), others reported
significant positive (see, e.g., [49, 57, 58]) or negative
correlations (see, e.g., [39, 59]). Chang and Liao [49]
proposed that the positive correlation between dN/dS
and CDS length might rely on lower domain density
and thus lower percentage of functionally important
residues in longer proteins. However, they concluded
that this explanation is insufficient to fully account for
this correlation, at least in the flagellated algae studied
[49]. Based on the current data we are unable to defin-
itely resolve the relation between CDS lengths and evo-
lutionary rates of murine sperm proteins. But
regardless whether CDS lengths and evolutionary rates
are related, other gene properties studied herein are
considerably more strongly correlated with dN/dS (see
Figs. 2 and 3).

Pleiotropy and essentiality

We measured different aspects of pleiotropy: degree of
expressional tissue bias (), numbers of PPIs, and multi-
functionality. The latter, defined as the number of bio-
logical processes a protein is involved in [46], correlated
negatively with evolutionary rates of human genes in a
study by Podder et al. [25]. We found nonsignificant
positive partial correlations (681 genes: Spearman’s partial
p =0.020, p > 0.05; 1557 genes: Spearman’s partial p =
0.042, p > 0.05) (Figs. 2 and 3) between multifunction-
ality and dN/dS, while the corresponding zero-order
correlations were negative and significant (681 genes:
Spearman’s p = -0.099, p < 0.01; 1557 genes: Spearman’s
p=-0.051, p< 0.05) (Table 1). Together, these results
illustrate that multifunctionality and sequence evolu-
tion of murine sperm proteins are largely unrelated
when controlling for all other gene properties.

In contrast, we observed a positive partial correlation
between tissue specificity index T and dN/dS, which was
significant in both datasets (681 genes: Spearman’s
partial p=0.124, p <0.01; 1557 genes: Spearman’s par-
tial p=0.141, p<0.001) (Figs. 2 and 3). This index
ranges between 0 and 1, with higher values indicating
more tissue-biased expression [44]. Our observation of
stronger purifying selection in genes expressed broadly
is in accordance with numerous previous studies (see,
e.g., [27, 60]). The same is true for number of PPIs:
Results of partial correlations between evolutionary
rates and this property indicated that proteins with
higher connectivity in PPI networks tend to evolve
more slowly (681 genes: Spearman’s partial p = -0.177,
p <0.001; 1557 genes: Spearman’s partial p = -0.229, p
<0.001) (Figs. 2 and 3), a pattern described for various
taxa (see, e.g., [56, 61, 62]). This connection might be
ascribed to the greater portion of functional sites
within highly connected proteins [24]. Additionally,
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deleterious mutations within proteins expressed in a wide
range of tissues or having many interactors should have
more serious consequences than such mutations in other
proteins [27, 63]. This circumstance could also restrain
their sequence evolution and might moreover underlie the
correlations of tissue specificity and number of PPIs with
essentiality (681 proteins; correlation between essentiality
and T: Spearman’s p =-0.318, p <0.001; correlation be-
tween essentiality and number of PPIs: Spearman’s p = 0.
256, p < 0.001; Fig. 1 and Additional file 1: Figure S1).

The relationship between dN/dS and survival essenti-
ality was exclusively explored in the restricted dataset
of 681 sperm protein-coding genes and we found a sig-
nificant negative partial correlation (Spearman’s partial
p=-0.194, p <0.001; Fig. 2). In 1977 Wilson et al. [22]
predicted that genes indispensable for survival or
reproduction should evolve more slowly than nonessen-
tial genes. However, this postulate remained disputed
after initial studies yielded contradictory results (see, e.g.,
[64, 65]), although the slower evolution of essential pro-
teins could be confirmed in many following investigations
(see, e.g., [34, 66]).

Overall, murine sperm genes which are indispensable
for survival, broadly expressed, and/or whose encoded
proteins are highly connected in PPI networks tend to
evolve more slowly than other genes. Zero-order correla-
tions highlight the interrelatedness among these variables
(Fig. 1 and Additional file 1: Figure S1). Numbers of PPIs
and gene essentiality are among the strongest independent
rate correlates and t appears to be an important determin-
ant of dN/dS, too (Figs. 2 and 3); but beyond that, num-
bers of PPIs, survival essentiality, and expression breadth
could influence evolutionary rate together with further
properties as a compound factor which Choi and Hannen-
halli [67] called the “function (fitness)-centred” variable.

Expression level

Several studies found gene expression level to be an im-
portant determinant of evolutionary rates, especially in
yeast [35, 37, 68, 69] and bacteria [36], but also in multi-
cellular organisms [60, 70]. However, the correlation be-
tween rates of sequence evolution and expression level is
rather weak in mammals [71], especially if other variables
are controlled for [34] (see also [39]). Instead, breadth of
expression seems to be a more prominent factor affecting
mammalian protein evolution [34, 72]. Results of current
analyses on murine sperm proteins underscore the greater
importance of expression breadth than expression level in
determining rates of protein evolution in mammalian
species: While negative zero-order correlations between
mean expression level of protein-coding genes and dN/
dS were significant (681 genes: Spearman’s p = -0.259,
p <0.001; 1557 genes: Spearman’s p = -0.246, p < 0.001)
(Table 1), the equivalent partial correlations became
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weaker (in the dataset of 1557 proteins; Spearman’s partial
p = —0.060; p <0.05; Fig. 3) or even nonsignificant (in the
dataset of 681 proteins; Spearman’s partial p = —0.045;
p >0.05; Fig. 2). In contrast, the tissue specificity index
T was significantly positively correlated with evolution-
ary rate even when confounding factors were controlled
for (see above; Figs. 2 and 3).

Feyertag et al. [73] discovered that the anticorrelation
between evolutionary rate and expression level cannot
be found in secreted proteins of diverse taxa. To investi-
gate if the marginal or nonsignificant correlations be-
tween dN/dS and expression level observed in our two
datasets relied on an enrichment of secreted proteins,
we excluded these proteins and reran the analyses (see
Additional file 1: Supplementary Methods). Results of
partial correlations without secreted proteins remained
qualitatively unchanged (see Additional file 1: Table S4).
We conclude that our results are independent of the
amount of secreted proteins. Hence, expression breadth
remains the more relevant correlate of evolutionary
rates in the murine sperm proteome compared with ex-
pression level.

Evolutionary gene properties: Numbers of paralogs and
gene age

Gene duplication may have two opposing effects on
evolutionary rates. A phase of fast evolution seems to
follow immediately after a duplication event, presumably
due to relaxed constraints and/or the action of positive se-
lection [38]. Later, if both copies are preserved in the gen-
ome increasing constraints [32] or functional relevance
[38] account for a slow-down of sequence evolution. In
our data, the latter effect was evident in significant nega-
tive partial correlations between the number of paralogs
and dN/dS in both datasets (Figs. 2 and 3). This appar-
ently reflects that many of the paralogs studied herein are
rather ancient so that signatures of initial rate acceleration
have already been superimposed by subsequent sequence
conservation. The varying strength of correlation in the
two datasets (681 genes: Spearman’s partial p = -0.162;
p <0.001; 1557 genes: Spearman’s partial p = -0.091; p
<0.001) might be a consequence of different sample
compositions and sizes. However, the results altogether re-
veal a negative relationship between dN/dS and numbers
of paralogs.

In the current study of murine sperm proteins, gene age
also correlated negatively with dN/dS and was even
among the strongest rate indicators according to par-
tial correlation analyses (681 genes: Spearman’s partial
p=-0.193, p<0.001; 1557 genes: Spearman’s partial p
=-0.183, p<0.001) (Figs. 2 and 3). This agrees with
findings by Alba and Castresana [32] who reported that
older genes of mouse and human evolve more slowly than
newer ones and proposed two models to explain this
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inverse relationship between evolutionary rates and gene
age. Their model of “increasing constraint” predicts that
beginning with weak selective pressures shortly after du-
plication, numbers of functional sites accumulate with
time, thereby restraining evolutionary rates. According to
their alternate model of “constant rate”, older evolutionary
innovations (e.g., signal transduction or multicellularity)
inherently entail more functional sites than newer ones.
Neutral evolution should be more prevalent in younger
genes containing fewer functionally constrained sites,
resulting in higher evolutionary rates compared with older
genes. Additionally, rapidly evolving genes are more likely
to be lost from the genome and, thus, not to become
“old”; therefore, they should be more numerous in
younger age classes [32].

These theoretical considerations demonstrate that the
possible mechanisms underlying the connections between
rate of sequence evolution and both number of paralogs
and gene age may be partly redundant. This overlap re-
flects the circumstance that probably most novel genes
emerge from duplications [32, 74].

Enrichment analyses

So far, we found that dN/dS estimates of murine sperm
proteins correlate significantly with essentiality, protein
connectivity, gene age, tissue specificity, number of para-
logs, and UTR lengths, while we obtained contradicting or
negative results for other variables (mean expression level,
CDS length, average intron length, and multifunctional-
ity). Another important factor influencing a protein’s
sequence evolution whose exact impact is inaccessible
through correlation analyses is its exact function (see,
e.g., [13]). To gain insight into differences regarding the
functions carried out by sperm proteins evolving at dif-
fering rates, we tested for enrichment of GO biological
processes in three equally sized (each n=519) protein
groups classified according to their dN/dS estimates.
Although we are aware that this procedure can only ap-
proximately assess influences of individual biological
processes on evolutionary rate, it offered valuable clues.
We used functional annotation clustering implemented
in DAVID [50] to define clusters of related enriched
terms within each of the three protein groups. Herein
we present the top ten clusters for each protein class
(Table 2), but all significantly enriched clusters (enrich-
ment score > 1.3; [50]) are specified in Additional file 2:
Table S5. One result of these analyses was that the most
rapidly evolving protein class was significantly enriched
(enrichment score >1.3) with terms related to male
reproduction and sperm-egg interaction, while the two
more slowly evolving protein bins were not (Table 2). The
enrichment of sperm-egg recognition terms accords with
previous observations of most rapid evolution in sperm
proteins operating within the female reproductive tract
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Table 2 Top 10 GO annotation clusters for three protein groups with different dN/dS estimates
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“Low dN/dS”

Cluster description (enrichment score)

“Medium dN/dS”

Cluster description (enrichment score)

“High dN/dS”

Cluster description (enrichment score)

Protein localization
(18.69)

Protein localization
(13.68)

Macromolecular complex assembly
(8.14)

(m)RNA processing
(8.07)

Protein catabolic process
(7.85)

Protein complex assembly
(5.58)

Regulation of protein complex assembly
(3.71)

ATP synthesis
(3.63)

Sugar catabolism
(3.59)

Sugar metabolism
(3.29)

Protein localization
(7.84)

tRNA metabolism
(7.75)

TCA cycle
(4.85)

ATP synthesis

(3.95)

Porphyrin biosynthesis
(339

Protein complex assembly
(3.12)

Sugar catabolism
(291)

Protein localization
(2.89)

Cytoskeleton organization
(243)

(M)RNA transport
(2.37)

(Male) reproduction
(5.99)

Membrane lipid catabolism
(3.51)

Sperm-egg interaction
(342)

Sugar catabolism
311

Response to oxidative stress
(2.64)

Protein localization
(231)

Porphyrin biosynthesis
(2.09)

Regulation of lipid transport
(2.02)

Lipid metabolism/catabolism
(1.90)

Chemical homeostasis
(1.79)

For a description of the three protein groups, see Methods. Names of clusters were assigned by the authors based on results of enrichment analyses with DAVID

(version 6.7)

(see, e.g., [17, 18, 75]). Contrary to the two remaining pro-
tein classes, the group with highest dN/dS was addition-
ally enriched for terms related to lipid metabolism and
transport (Table 2). This functional enrichment could be
associated with the alteration of the sperm plasma mem-
brane’s lipid composition during epididymal transit, which
might entail higher membrane fluidity [76]. Some enrich-
ment clusters were similar in all three protein classes,
such as those related to protein localization or sugar
catabolism and we of course detected consistencies with
the functional annotations reported in Chauvin et al. [40],
including those corresponding to tricarboxylic acid (TCA)
cycle and sugar metabolism (Table 2). In contrast to the
most rapidly evolving protein groups, the two other pro-
tein classes were enriched with basal cellular processes
such as protein complex assembly.

Taken together, results of GO analyses point to stron-
gest sperm-specific functional enrichment in the most
rapidly evolving protein class. Thus, proteins which
evolve at relatively high rates are functionally more spe-
cialized than others in the murine sperm proteome.
They should furthermore evolve under rather relaxed
constraints as suggested by results of partial rank corre-
lations. This outcome underscores that relaxation of
constraints could be a prerequisite for adaptive evolu-
tion, especially in a sex-specific manner (see, e.g. [77];
see also [78, 79]).

Conclusions

Based on our findings, we propose a model of sperm
protein evolution taking into account rate correlates and
functional aspects.

We conclude that most murine sperm proteins’ primary
function is not reproduction-specific; instead, most
members of the sperm proteome apparently engage in
processes required in sperm as well as other cell types.
Accordingly, results of GO enrichment analyses illus-
trate that only few of the 1557 proteins considered are
engaged in testis- and sperm-specific processes. Further-
more, most sperm proteins display high phyletic ages,
with more than two thirds of genes (1078 of 1557)
assigned to the two oldest age classes. This high pro-
portion of pre-metazoan proteins corresponds to the
findings of Freilich et al. [80], whereupon a relatively
constant fraction (~65%) of proteins in each of the 14
mouse tissues investigated in their study originated be-
fore the emergence of Metazoa. In the current study,
genes which have been retained in the genome over long
evolutionary timescales are more likely to be broadly
expressed, have more PPI partners and paralogs, and to be
essential for survival as depicted in Fig. 1 (see also
Additional file 1: Figure S1). Results of our partial
rank correlations highlight the respective properties —
gene age, numbers of PPIs and paralogs, T, and essen-
tiality — as some of the strongest correlates of dN/dS
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of murine sperm proteins. This observation is largely
consistent in both datasets (n =1557 and n = 681; ex-
ception: essentiality which was only included in analyses of
the smaller dataset). These results agree with the notion
that slowly evolving genes are of “high status”, while rap-
idly evolving genes have “low status” [81], a pattern which,
according to our analyses, apparently also applies to evolu-
tionary rate distributions in the murine sperm proteome.
Thus, most slowly evolving sperm proteins are constrained
by their high status properties, such as a multitude of PPIs
and paralogs, essentiality [81], and/or high age (see [74]),
while proteins with lower status are potentially more
susceptible to evolve neutrally or in response to natural,
in some cases sexual, selection. Status differences might
also be the basis of the functional and evolutionary
compartmentalization detected in male reproductive pro-
teins in various taxa, with proteins expressed at early stages
of reproduction (spermatogenesis, sperm assembly) being
more constrained than those involved in interaction with
the female (sperm motility and sperm-egg interaction)
([17, 18]; see also [14]). The current study reinforces the
notion of Dorus et al. [13] that conservation of sperm
proteins might rely on their basal functions and/or their
degree of pleiotropy. Moreover, we expand this view by
factors such as phyletic gene age and interdependencies
between the mentioned variables. Additionally, our results
underline the importance of incorporating various gene
properties when analysing the evolution of gene groups
or genomes to gain a more general picture of factors
underlying evolutionary rate variation. Furthermore, they
emphasize that although some gene properties are general
correlates of evolutionary rates, their importance may vary
not only in a lineage-, but to some extent also in a cell
type-specific manner.

Additional Files

Additional File 1: Figure S1, Supplementary Methods, Tables S1-
S4. Additional methods and results of additional analyses as specified in
the main text. (PDF 429 kb)

Additional File 2: Table S5. Significantly enriched DAVID GO
annotation clusters for three protein groups with different dN/dS
estimates. (XLSX 17 kb)
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