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Abstract

The understanding of human mobility patterns in different transportation modes is an inter-

disciplinary research field with a direct impact in aspects as varied as urban planning, traffic

optimization, sustainability, the reduction of operating costs as well as the mitigation of pollu-

tion in urban areas. In this paper, we study the global activity of users in bike-sharing sys-

tems operating in the cities of Chicago and New York. For this transportation mode, we

explore the temporal and spatial characteristics of the mobility of cyclists. In particular,

through the analysis of origin-destination matrices, we characterize the spatial structure of

the displacements of users. We apply a mobility model for the global activity of the system

that classifies the displacements between stations in local and non-local transitions. In local

transitions, cyclists move in a region around each station whereas, in the non-local case,

bike users travel with long-range displacements in a similar way to Lévy flights. We repro-

duce the spatial dynamics by using Monte Carlo simulations. The obtained results are simi-

lar to the observed in real data and reveal that the model implemented captures important

characteristics of the global spatial dynamics in the systems analyzed.

Introduction

With a high proportion of the world’s population living in cities, the understanding of patterns

in human mobility in urban settlements, as well as the development of models that capture

fundamental aspects of these systems from different perspectives, have become of utmost

importance [1–5]. Individuals move in cities with different intentions, to buy or sell goods, to

work, to meet other people, among a series of human activities that require intra-city displace-

ments. In fact, good quality of life in a city requires adequate transport infrastructures [1]. In

order to satisfy the needs of their inhabitants, large cities have grown developing several public

transportation modes like taxis [6–8], metro [9], bus services [10], bicycle-sharing systems,

among others [1]. Each of these systems operates with particular infrastructures and efficient

displacements require the coupling between different transportation modes [11–13].

Bike-sharing systems (BSS) have grown rapidly in the past decade. Although the concept

has been around since the 1960s, the number of cities offering bike share has increased
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significantly in the last two decades [14, 15]. The term bike-share system refers to all the infra-

structure and provision of bikes in a system where users pick up and drop off bicycles at self-

serving docking stations [14]. In comparison with other modes of transport, BSS offer a reli-

able, practical and sustainable transportation option for short to medium distance urban utili-

tarian and recreational trips [16]. In addition, it is widely accepted, cycling tends to produce

health benefits and reduce air pollution and policymakers encourage people to use bikes by

improving cycling facilities as well as developing bicycle-sharing systems [17]. The users’

movement characterization in BSS provides an important tool to study global human mobility

behavior and, a deep understanding of the statistical patterns embedded in the bike flow data

is an urgent and overriding issue to inform decision-making for a variety of problems includ-

ing traffic prediction, station placement, and bike redistribution [18]. In addition, the detec-

tion of spatiotemporal patterns in these systems [16, 18–24] has impact in the implementation

of re-balancing strategies [25], the reduction of costs [26], the study of the relation between the

mobility of users and the spatial structure of urban areas [16, 27–30], among other benefits

[31].

In this work, we analyze spatiotemporal patterns emerging in BSS in the cities of Chicago

and New York. In the first part, we characterize the temporal dynamics of users. We find simi-

lar behaviors in the weekly activity of users of public bicycles in both systems. In addition, we

identify an inverse power-law relation for the probability of the time that the cyclists spend on

their trips. On the other hand, the geographical locations of stations in BSS remain the same

for long periods of time or at least vary on a different scale from the daily activity of the system.

This fact is important in the study of BSS and allows a correct description of the global activity

in terms of origin-destination matrices. Through the analysis of probabilities of transition

between stations, we identify the parameters of a model that associates a local neighborhood

around each station, for which cyclists move to stations independently of their geographical

separation, and long-range displacements with probabilities of transition that decay as an

inverse power law of the distance between stations. We simulate the systems obtaining results

that describe appropriately the real data and reveal that the model explored captures important

aspects of the global dynamics in BSS. Our findings contribute to a better understanding of

mobility patterns emerging in BSS. The methods developed in this research can be imple-

mented in different existing bicycle-sharing systems to identify temporal and spatial patterns

associated with human mobility in urban areas.

Methodology

Data description

In this section, we study the collective dynamics of BSS in two big cities. We analyze the records

of anonymous users in the cities of Chicago and New York. Divvy is Chicago’s bike share sys-

tem, with 580 stations and 5 800 bikes in service. In this system we explore 9 992 991 trip regis-

ters from June 2013 to December 2016, the complete dataset with the historical trip records is

available to the public in [32]. For the same period of time, we analyze the activity of the system

Citi Bike in New York with 10 000 bikes and 600 stations. Citi Bike is New York City’s bike

share system, and the largest in the United States. The number of registers studied is 36 228 361

and the dataset is available in the web page [33]. These two BSS are available for use 24 hours/

day, 7 days/week, 365 days/year. The databases include anonymized information of each bike

trip including the trip start day and time, the trip end day and time, the trip durations, as well

as GPS coordinates (latitude and longitude) of the start and end stations. The datasets of users’

activity in these two systems provide information to characterize the global dynamics defined

by the location of stations and transitions between them. It is worth mentioning that the
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databases with registers of the activity of the systems Divvy and Citi Bike are a valuable source

to the study of fundamental laws in the dynamics of BSS. Several authors have explored these

databases in contexts as varied as the influence of the spatial distribution of a city in the

demand of the bike service [16], the detection of communities in bike stations activity [18, 23],

the relation between costs and traveling distances [26], the influence of BSS in other public

transport systems [34], the prediction of individual trips and the planning of routes [35, 36],

among others [37]. In the following part, we analyze global characteristics of the temporal and

spatial dynamics of users’ trips in BSS in Chicago and New York. We develop different meth-

ods to analyze the spatial dynamics in a network of bike stations and identify global patterns in

the activity that reveal a connection with Lévy flights in the context of human mobility [38].

Temporal patterns in bicycle-sharing systems

We start our study exploring the global dynamics to identify patterns in the weekly activity of

the start and end time of users in their movement between stations. For each register in the

dataset, we select the day and hour registered at the initial station as well as the time when

cyclists leave their vehicles at the final station. With this information, we calculate the frequen-

cies of the values obtained for the cities of Chicago and New York. We depict our results in Fig

1(a) where we observe similar behaviors in the global activity of both cities: From Monday to

Friday, the systems present high demand around 8 am and also at 6 pm while weekend usage

is strongest in the middle of the day. Our findings agree with the work of Zhou in reference

[23] where the author presents a detailed analysis of flow patterns and weekly activity of the

Divvy system in Chicago.

Another quantity of interest in BSS is the time that users utilize bikes in their displacements

between stations. We denote this time as τ and from the difference of times registered in the

final and initial stations we calculate the value of τ for each trip. In Fig 1(b) we present the time

τ for 105 successive registers in the datasets. We observe that in both cities the time τ varies sig-

nificantly between users, with a bursty behavior detected in different human activities [39]

including human mobility [38]. The statistical analysis of τ is depicted in Fig 1(c) for the prob-

ability density p(τ) calculated as the normalized relative frequency of the values τ. We find the

same inverse power-law relation p(τ)/ τ−3 for times in the interval 10 min� τ� 6h, and is

surprising that in both cities the probability p(τ) presents similar characteristics. However, for

times τ� 6 h the results have different behavior, associated with a small fraction of users with

unusual activity and the policies that regulate each system. In addition, the result p(τ)/ τ−3

suggests a relation between the mobility of users in bike-sharing systems and Lévy walks for

which, in a continuum space, displacements of length r asymptotically follow a probability

p(r)*r−α with α> 0. Lévy walks have been studied extensively as a common strategy in several

animal species and humans [38, 40–46], among many other applications [47]. However, in

BSS the locations of stations are permanent and in this way, the movements take place in a dis-

crete system that can be described as a network of interacting stations.

The relation between the geographical distances in the displacements of users and the trip

duration τ motivate us to analyze the average speed v of cyclists in each of their trips. In Fig 2

we explore the average speed v of urban cyclists to determine a connection between the tempo-

ral and the spatial dynamics in the systems Divvy and Citi Bike. First, we analyze two-dimen-

sional histograms generated with information of the distances d between initial and final

stations and the duration time τ of each trip. We depict in Fig 2(a) and 2(b) the frequencies f(τ,

d) for all the trips registered in the datasets. Our findings show that a high fraction of users

propagates with the same average speed v, this result is presented with dashed lines that repre-

sent the relation d = vτ. In Fig 2(c) we use v = d/τ to analyze the probability density p(v) for the
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average speeds v. We see that, on average, the speed of users in New York is lower than the

average in Chicago; in addition, the most probable average speed of users in New York is

9 Km/h whereas in Chicago is 10 Km/h.

The existence of the relation d = vτ observed for a high fraction of users in BSS is important

since, due to our previous result p(τ)*τ−3 in Fig 1(c), we can establish that also the distances

traveled could be described statistically by inverse power laws and, in this way, this is indirect

evidence of a movement with characteristics observed in Lévy walks. However, in the analyzed

databases we only have information for the start and end of the path traveled by each of the

Fig 1. Temporal patterns of users in bike-sharing systems in Chicago and New York. In (a) we depict the frequency of users grouped according to the weekday and the

hour registered at the start and end of each trip. Continuous lines represent the activity in the stations considering the starting time and dashed lines show the results for

the registers at the end of the travel. On the other hand, in (b) we present the time τ elapsed between the start and end of a trip. We consider 105 successive events in both

systems. In (c) we show the results for the statistical analysis obtained with the probability density p(τ) for the duration time of each trip; the complete databases are

analyzed by using logarithmically spaced bins. The dashed line in (c) represents the inverse power law p(τ)/ τ−3 and the vertical lines denote two values used as reference

at τ = 10 min and τ = 6 h.

https://doi.org/10.1371/journal.pone.0213106.g001
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cyclists. This is a limitation in our study since many people use BSS for recreational purposes

and not only for direct trips between stations. These events have high values of the time τ, as

we evidenced in our analysis presented in Fig 1(c). In this way, to detect patterns in the global

activity of each system, in the following part, we restrict our analysis to the spatial component.

We develop methods that allow us to study the flow of users in discrete systems defined by the

positions of the stations.

Origin-destination matrices

Once discussed temporal patterns that emerge in human activity in BSS; in this section, we

apply different methods to characterize the spatial component of displacements of users; in

particular, the probability of transition between stations and the relation of this quantity with

the geographical distance between the starting point and the final destination. Once explored

this relation, we establish connections between the observed results and Lévy flights in discrete

systems. We implement a Lévy-like model to simulate the transitions between defined loca-

tions (stations) and explore the predictions of this model to compare the spatial displacements

of users in the datasets with the dynamics generated by using Monte Carlo simulations of BSS.

Origin-destination matrices OD constitute an important tool to have a global picture of

human mobility in a particular region. In cases where the coordinates (latitude, longitude) of

the origin and destination points of trips can take any value, it is common to divide into zones

the region where the spatial dynamics takes place [1, 2]. Then, each element of the OD matrix

quantifies the number of displacements between zones; however, much of the information

that this matrix can give depends on the implemented method to generate the partition of the

region. An advantage in the analysis of the spatial dynamics in BSS is that the movements of

users occur in a discrete space that can be interpreted as a spatial network where each node

represents a bike station in the system (for a review of spatial networks and different applica-

tions see the work of Barthélemy in [48]). Therefore, it is unnecessary the use of partitions to

define the OD matrix describing the system.

Fig 2. Relation between the trip duration and the distance traveled by bike users in Chicago and New York. In (a) and (b), we present hexagonally binned two-

dimensional histograms for the logarithm of τ/τ0 and the logarithm of the corresponding quantity d/d0 where τ0 = 1s and d0 = 1Km are reference values. The colors

codified in the colorbar represent the number of travels f(τ, d) found in each hexagonal bin. For the results in both cities, the dashed lines depict the relation d = v?τ
where v? is an effective speed (v? = 10 Km/h for Chicago and v? = 9 Km/h in New York). This relation is explored in (c) where we analyze the values of the average speed

v ¼ d
t

for each of the trips. We obtain the probability density p(v) by using linear bin counts with size Δv = 0.05 Km/h. Our findings reveal marked peaks for the values of

the speed that appear with high probability in each city and coincide with the value v? reported in (a) and (b).

https://doi.org/10.1371/journal.pone.0213106.g002
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To calculate the OD matrix for the BSS operating in the cities of Chicago and New York,

we analyze the coordinates of the origin and destination points reported in the datasets. We

determine the locations of stations as well as the number of bikes that reach or leave each bike

station. By using this information, we filter the datasets to reduce our analysis to the most

active stations. Hence, we only consider stations with high activity that reported in the com-

plete dataset at least M bicycles arriving in each station and the same rule applies to the num-

ber of vehicles leaving the stations. We choose M ¼ 1 000 for the analysis of Chicago and

M ¼ 10 000 for New York. The election of the value M is based on the differences in the total

number of trips registered in the datasets of Divvy and Citi Bike.

Once determined a set of active stations, we calculate the origin-destination matrix OD for

which the element (OD)ij is the number of users that utilize the system starting from station i
and passing to station j. In the following discussion, we sort the locations of stations in terms

of their geographical latitudes and longitudes. The index i = 1, 2, . . ., N denotes each station.

We sort the spatial coordinates of stations starting from the south-west and considering the

longitudes (from west to east) as a first parameter and then the latitudes (from south to north).

Once sorted the bike stations, we count the number of displacements between stations by

using the registers in the complete dataset for active stations. The obtained results for the cities

of Chicago and New York are presented in Fig 3. In particular, we consider N = 340 active sta-

tions in Chicago and N = 421 in New York. The number of trips examined in this analysis is

reported in Table 1.

In addition to the elements of the OD matrix, it is important the value kðoutÞi that gives the

total number of bicycles that depart from station i and the quantity kðinÞi that counts the total

number of bikes arriving to station i. In terms of the elements of the OD matrix, we have for

Fig 3. Origin-destination matrices for bike-sharing systems. We present the results obtained for the city of (a)

Chicago (N = 340) and (b) New York (N = 421). The geographical coordinates (longitude, latitude) of stations are

sorted starting from the southern locations and considering the order of longitudes from west to east. The number of

displacements or trips between origin and destination stations is codified in logarithmic scale in the colorbar; null

entries are represented in white.

https://doi.org/10.1371/journal.pone.0213106.g003
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these quantities

kðoutÞi ¼
XN

‘¼1

ðODÞi‘; ð1Þ

kðinÞi ¼
XN

‘¼1

ðODÞ
‘i: ð2Þ

In the general case, the origin-destination matrix is not symmetric. As a consequence, the

total number of users traveling from i to j is different from the inverse case, i.e. users that start

in station j and reach the station i. However, from a global perspective, the differences in these

quantities are small in comparison with the total number of bikes leaving or arriving at each

station; for this reason, the OD matrices presented in Fig 3 have approximately a symmetric

structure. In addition, we observe small differences between the values kðoutÞi and kðinÞi for each

station i = 1, 2, . . ., N; however, these differences that in the global dynamics can be classified

as small, in a scale of days or hours reveal that in some stations there is accumulation (or defi-

cit) of bikes that requires the massive relocation of bikes between some stations to maintain

the correct operation of the whole system. In the literature this phenomenon is called re-bal-

ancing. The efficient re-balancing in BSS is an important problem that has been addressed by

several authors (see [25] for details).

Probabilities of transition between stations

As we mentioned before, a bike-sharing system can be represented as a spatial network. In

addition, the spatial activity of users traveling between stations is described as a dynamical pro-

cess for which the probability of transition wðODÞi!j between stations i and j is defined in terms of

the OD matrix as

wðODÞi!j ¼
ðODÞij
kðoutÞi

ð3Þ

where the value kðoutÞi is a normalization factor that guarantees the property
PN

‘¼1
wðODÞi!‘ ¼ 1

Table 1. Characteristics of the spatial dynamics in bike-sharing systems. The number N denotes the active stations

considered in the definition of the OD matrix. The total number of displacements is presented as well as the fraction of

trips with distances d classified in different intervals. The values a, b and α for the best fit are obtained by the formalism

developed in the Methods section. In addition, the value R = 10b (Km) defines a local neighborhood around each sta-

tion. Beyond this characteristic distance, the displacements are well described by long-range transitions with a Lévy-

like dynamics that follows the relation wðODÞi!j / d� aij .

Value Chicago New York

Number of active stations N 340 421

Total number of displacements 8 133 602 32 583 436

Average probability of return (%) 3.93 2.29

Parameter a -2.03 -2.13

Parameter α 2.11 2.12

Parameter b 0.077 0.039

Distance R (Km) 1.194 1.094

Fraction of values d in 0 < d � R (%) 33.2 34.25

Fraction of values d in d> R (%) 62.87 63.46

Fraction of values d in 0.3Km < d� 5Km (%) 95.99 95.50

https://doi.org/10.1371/journal.pone.0213106.t001
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that establishes that the total probability to travel from i to any station in the system is 1. On

the other hand, to understand the spatial dynamics in BSS, we are interested in the relation of

the transition probability wðODÞi!j with the geographical distance dij between the stations i and j.
Here it is worthy to mention that in the study of human mobility in urban settlements, other

metrics can be used. For example, the Manhattan’s distance that gives the length of the shortest

path followed in the street network. The relation between the intention of movement of users,

quantified by the transition probability wðODÞi!j , and the distance dij is an open question in the

characterization of transportation modes in urban areas and this is a topic less explored in the

context of BSS.

Now, by using information consigned in the OD matrix, we calculate the probabilities of

transition between stations defined by Eq (3) and the geographical distance separating these

places is obtained through the coordinates of the stations. In Fig 4 we present the logarithm of

the transition probability wðODÞi!j as a function of the logarithm of the distance dij between sta-

tions. From the obtained distribution of points, we calculate two-dimensional histograms that

quantify the frequencies of the pairs (x, y) given by the values log 10

dij
d0

� �
; log 10w

ðODÞ
i!j

� �
for

non-null dij and wðODÞi!j considering i, j = 1, 2, . . ., N (we use the distance d0 = 1 Km as a refer-

ence). From the results in this representation, we observe that in both cities the probabilities

of transition between stations are approximately constant for distances less than a characteris-

tic value R. In addition, for distances greater than R, the resulting probabilities are well

described by the inverse power-law relation wðODÞi!j / d� aij with α� 2. In order to determine the

Fig 4. Probabilities of transition between stations. We explore the relation of the probability of transitiono
ðODÞ
i!j and the respective geographical

distance dij between stations i and j for the activity of BSS users in (a) Chicago and (b) New York. We present hexagonally binned two-dimensional

histograms for the logarithm of o
ðODÞ
i!j and the logarithm of dij/d0 where d0 = 1 Km is a reference distance. Dashed lines depict the best fit described

by Eq (4) for the pairs log
10

dij
d0

� �
; log

10
wðODÞi!j

� �
with i, j = 1, 2, . . ., N. The values codified in the colorbar represent the frequencies f ðdij;o

ðODÞ
i!j Þ found

in each hexagonal bin and presented as a logarithm.

https://doi.org/10.1371/journal.pone.0213106.g004
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parameters R and α for the best fit of the values (x, y) explored, we implement a particular type

of least squares method to find a y(x) fit given by

y ¼
a for x � b;

a � aðx � bÞ for b < x:

(

ð4Þ

This specific fit allows finding a good approximation for the dependence between transition

probabilities and the distance between stations.

Algorithm to obtain the parameters a, α, and b
In this part we explain the methods introduced to explore the relation between the probability

of transition wðODÞi!j and the geographical distance dij separating stations i and j. For the pairs

ðdij;w
ðODÞ
i!j Þ presented in the two-dimensional histograms in Fig 4, we search the parameters α

and R that define a fit of the form

wðODÞi!j ¼

C for dij � R;

C R
dij

� �a
for dij > R:

8
><

>:
ð5Þ

This particular fit allow us to determine the value R around each station where the transi-

tion probability has a constant value C and a parameter α that models long-range transitions

that decay with the distance as an inverse power law.

Now, by considering only non-null values of dij and wðODÞi!j and a given length of reference d0

> 0 for distances, we take the logarithm of Eq (5) to obtain

log 10 wðODÞi!j

� �
¼ log 10C for log 10

dij

d0

� �

� log 10

R
d0

� �

ð6Þ

and, in a similar way, for distances dij that satisfy log 10

dij
d0

� �
> log 10

R
d0

� �
, we have

log 10 wðODÞi!j

� �
¼ log 10C � a log 10

dij

d0

� �

� log 10

R
d0

� �� �

: ð7Þ

Hence, if we consider the values log 10

dij
d0

� �
; log 10 wðODÞi!j

� �� �
as coordinates (x, y) in the

plane, the fit presented in Eq (5) takes the form

y ¼
a for x � b;

a � aðx � bÞ for x > b

(

ð8Þ

where a = log10 C, b ¼ log 10
R
d0

� �
, x denote the values log 10

dij
d0

� �
and, y represent the values

log 10ðw
ðODÞ
i!j Þ. This change in the variables allows to obtain the fits presented with dashed lines

in Fig 4.

In the following, we explore a particular fit for M data pairs (xi, yi) with i = 1, 2, . . ., M and a

form defined by Eq (8) where a, b, α are constants to be determined. In order to find the best

fit, we need to minimize the sum of the squares of the residuals between the data and the fit

model in a similar way to the traditional least-squares method for a linear fit [49]. We have the
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sum for the quadratic error

Sða; a; bÞ �
XM

i¼1

ðyðfitÞi � yðdataÞi Þ
2
: ð9Þ

To evaluate this sum, for a determined value of b, we separate the data in two sets of elements

that satisfy x� b and x> b. To do this classification, we divide the set I ¼ fiji ¼ 1; 2; . . . ;Mg
in the following way

I ðbÞ
�
¼ fi 2 I jxi � bg; I ðbÞ

>
¼ fi 2 I jxi > bg: ð10Þ

Therefore

Sða; a; bÞ ¼
X

i2IðbÞ
�

ða � yiÞ
2
þ
X

i2IðbÞ>

ða � aðxi � bÞ � yiÞ
2
:

ð11Þ

Now, we need to find the values of a, b, α that minimize Eq (11). The optimal parameters a,

α satisfy

0 ¼
@S
@a
¼ 2

X

i2IðbÞ
�

a � yið Þ þ 2
X

i2IðbÞ>

a � aðxi � bÞ � yið Þ; ð12Þ

0 ¼
@S
@a
¼ � 2

X

i2I ðbÞ>

a � aðxi � bÞ � yið Þðxi � bÞ: ð13Þ

Therefore, the coefficients a and α that minimize S(a, α, b) depend on b and are defined by

the linear equations

aM � a
X

i2IðbÞ>

ðxi � bÞ ¼
X

i2I

yi; ð14Þ

a
X

i2IðbÞ>

ðxi � bÞ � a
X

i2IðbÞ>

ðxi � bÞ2 ¼
X

i2IðbÞ>

yiðxi � bÞ:
ð15Þ

In this way, we can obtain a, α for each value of b. The combination of the solution of this

2 × 2 linear system and Eq (11) allow us to define the quadratic error as a function S(b). Unfor-

tunately, the value b that minimizes this equation can not be obtained with the use of a deriva-

tive. Due to the fact that for a given value b we can deduce a, α and then S(b), we can obtain

numerically S(b) and find the minimum value of S(b), denoted as Sr, and deduce the best fit for

the data with a model of the form presented in Eq (8). Following a similar approach to the

implemented in the traditional linear fit [49], we define a correlation coefficient r in terms of

Sr and the value St ¼
PM

i¼1
ðyi � �yÞ2 where �y is the average of the values y1, y2, . . ., yM in the

dataset. The correlation coefficient r satisfies r2 = (St − Sr)/St.

Results

Spatial patterns: Local and long-range dynamics

In the Methods section we described in detail the algorithm to obtain the values of the parame-

ters a, α, and b = log10(R/d0) for the best fit that establishes a relation between wðODÞi!j and dij.
The results are depicted with dashed lines in Fig 4. In Table 1 we present the information
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obtained from the analysis of the OD matrices and distances in the datasets of BSS in the cities

of Chicago and New York, including the values for R and α. In addition, we report the average

probability of return to the same station, the fraction of displacements in the interval (0, R] as

well as long-range displacements greater than R, among other quantities.

The results for the transition probability between bike stations explored before suggest that

the spatial dynamics can be approximately described by a model with constant transitions to

stations in a local neighborhood within a distance R, and a long-range dynamics given by

wðODÞi!j / d� aij for dij > R:

In this way, the long-range displacements are modeled by Lévy flights, a well-known

dynamics in continuum spaces in the context of human mobility [43, 44], animal foraging [41,

42, 50], anomalous diffusion [51], among many others [47]. For the case of networks and dis-

crete spaces like the stations in BSS, Lévy flights are introduced in [52] and explored in differ-

ent contexts in references [53–57]. From the analysis of the complete datasets of users’ activity

in BSS, we know that only a small fraction of users return to the initial station (around 4%),

whereas local transitions with distances d in the interval 0< d� R appear approximately in

33% of the cases. Long-range dynamics with transitions similar to Lévy flights in discrete struc-

tures appear when the displacements satisfy d> R; this type of movements are observed in the

datasets in approximately 63% of the trips. All this information for the stations in Chicago and

New York is presented in Table 1.

The results obtained from the study of transitions between stations calculated directly

from the analysis of the information in the OD matrix suggest a simplified model that cap-

tures the features observed for transitions in a local-neighborhood and the Lévy-flight

dynamics for long-range displacements. A model with these characteristics was introduced

by Riascos and Mateos in reference [38] to describe the spatial dynamics of people who visit

specific locations in urban areas (restaurants, universities, public libraries, among others).

The resulting navigation strategy is similar to Lévy flights and is defined in terms of random

transitions to visit specific locations in a spatial region. The model considers N locations

denoted by the index i = 1, 2, . . ., N that in BSS defines the positions of bike stations. Addi-

tional to this, we know the coordinates of the stations and we denote as dij the geographical

distance between stations i and j. The transition probability wðaÞi!jðRÞ to hop randomly from i
to j is given by [38]

wðaÞi!jðRÞ ¼
O
ðaÞ

ij ðRÞ
PN

‘¼1
O
ðaÞ

i‘ ðRÞ
; ð16Þ

with

O
ðaÞ

ij ðRÞ ¼
1 for 0 � dij � R;

ðR=dijÞ
a for R < dij

8
<

:
ð17Þ

and where α and R are positive real parameters. The length R determines a local neighbor-

hood around which the random walker can go from the initial site to any of the locations in

this region with equal probability; this transition is independent of the distance between the

respective sites. Therefore, if there are S sites inside a circle of radius R, the probability to

select one of these sites is simply 1/S. Additionally, for places beyond the local neighborhood,

i.e., for distances greater than R, the transition probability decays as an inverse power law of

the geographical distance and is proportional to d� aij . In this way, the parameter R defines a
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characteristic length of the local neighborhood and α controls the capacity of the walker to

hop with long-range displacements [38]. In the general model defined in Eqs (16) and (17)

variations of α allow to study different regimes; for example, in the limit α!1 the dynamics

becomes local, whereas the case α! 0 gives the possibility to go from one location to any dif-

ferent one with the same probability. In this limit, we have wð0Þi!jðRÞ ¼ N � 1 (see reference [38]

for details). In this way, the model is a combination of a rank model [58–60] for shorter dis-

tances and a gravity-like model for larger ones [61]. In Fig 5 we present the results for the

dynamics obtained by using this model in the context of BSS. In Fig 5(a) we present a simple

scheme to illustrate local and long-range transitions. On the other hand, in Fig 5(b) we depict

the results for Monte Carlo simulations of a bike traveling in the BSS in Chicago and New

York. In these simulations, we choose randomly an initial station and by using the probabili-

ties given by Eq (16) we obtain the location of the next station to visit. The successive applica-

tion of this algorithm to generate random transitions produces the path followed by a bike in

Chicago and New York. We represent with a line each transition between stations. The values

for R and α used in each Monte Carlo simulation were obtained in the analysis of the data in

Fig 4 and reported in Table 1.

Fig 5. A schematic illustration of the random walk strategy as defined in Eq (16). In (a) we depict locations on the plane (represented by circles); the

probability to go from location i to a different site is determined by two types of transition probabilities: wðaÞi!jðRÞ, which is a constant, to a site j inside a

circular region of radius R centered in the location i and wðaÞi!kðRÞ, for a displacement to the site k outside the circle of radius R, that considers long-range

transitions with a power-law decay proportional to d� aik , where dik is the distance between sites i and k. In (b) we present Monte Carlo simulations of a

discrete-time random walker that visits the stations in BSS in the cities of Chicago and New York following the random strategy defined by the

transition probabilities in Eq (16). The information of the values N, R and α used in each system is reported in Table 1. The total number of transitions

between stations in each simulation is t = 100 and we assign a colored line to each of the displacements. The scale in the color bar represents the discrete

time t at which each transition occur. The maps were drawn from base maps of satellite imagery (Source: http://server.arcgisonline.com/ArcGIS/rest/

services/World_Shaded_Relief/MapServer) and the Matplotlib Basemap package (https://pypi.python.org/pypi/basemap/1.0.7).

https://doi.org/10.1371/journal.pone.0213106.g005
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Monte Carlo simulations

Now, once defined a particular strategy that models the transitions between stations, we are

interested in the understanding of the spatial dynamics in the complete system. In this case, we

simulate the dynamics of multiple users that start from initial stations chosen randomly with a

probability weight proportional to the values fkðoutÞm g
N
m¼1

that quantify the importance of each

station in the system. Then, a displacement is generated randomly from the origin site to a

final station by using the transition probabilities in Eq (16); this process is repeated several

times until we have the same number of non-null displacements between stations reported in

the datasets analyzed (see Table 1 for details). For each random transition, we calculate the

geographical distance d between initial and final stations. In addition, to compare the predic-

tions of the model with respect to the observed in the OD matrix, we repeat the simulations by

using the transition probabilities determined by Eq (3). In Fig 6 we present the probability

density p(d) for the distances d obtained by the direct analysis of the non-null displacements

observed in the cities of Chicago and New York and by Monte Carlo simulations of the transi-

tions between stations given by the model in Eq (16) and the matrix with elements in Eq (3)

that captures all the information registered in the OD matrix for each of the BSS explored. In

this way, we are comparing the predictions of random transitions presented in Fig 4 with the

real displacements observed in the complete bike-sharing system.

Our results reveal that the values obtained with random transitions generated by the ele-

ments wðODÞi!j reproduce the probability p(d) observed in real data. This fact shows that the

dynamics of bicycles can be modeled as a Markovian random process and in this way, the

global spatial dynamics is not affected considerably by the daily routines of users. On the other

hand, all the information in the elements wðODÞi!j can be modeled satisfactorily by using the ele-

ments wðaÞi!jðRÞ in Eq (16) that only consider two parameters: the value R� 1Km that defines a

local neighborhood around each station and α� 2 that describes a long-range dynamics simi-

lar to Lévy flights on discrete structures. We observe that the simulations in Fig 6, considering

Fig 6. Statistical analysis of displacements in bicycle-sharing systems. We depict the probability density p(d) of the geographical distance d
between initial and final stations of BSS users in the cities of (a) Chicago and (b) New York. We present statistics obtained from the analysis of the

complete datasets and random transitions between the departure station i and the final location j. Simulated values are generated by using Monte

Carlo simulations (MCS) with transition probabilitieso
ðODÞ
i!j calculated with information in the OD matrix and the transition probabilitieso

ðaÞ

i!jðRÞ
defined by the model in Eqs (16) and (17). Continuous lines presented with the analysis of the datasets with real registers of the mobility are used as

a guide.

https://doi.org/10.1371/journal.pone.0213106.g006
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Markovian processes, generate results for the spatial dynamics that agree with the real dis-

placements d in the interval 0.3 Km< d� 5 Km. The displacements in this interval represent

approximately 95% of all the transitions analyzed in the BSS operating in the cities of Chicago

and New York (the exact values found for each city are reported in Table 1).

Discussion

In this paper, we explore the global activity of users in bicycle-sharing systems. We analyze

real data for users’ trips in the systems Divvy in Chicago and Citi Bike in New York. The data-

sets include massive records about start and end stations, start and end time of trips, trip dura-

tion, among other quantities like user types, age and gender information for registered

members. As a first result, we study the temporal activity of users and we observe the same

patterns for weekly activity as well as a bursty behavior in the time elapsed in the displace-

ments between stations with probabilities that decay with the same inverse power law in the

two BSS explored. In the second part, we analyze the distances between stations traveled by

each of the users on their trips. We calculate origin-destination matrices for stations with high

activity and with this information we obtain the probability of transition of users as a function

of the distance between departure and arrival locations. Our results clearly reveal the same

characteristics for the global dynamics in BSS classified them as local and long-range transi-

tions. In local displacements, the users travel to stations around R� 1Km from the departure

station. In this case, the probability to pass to one of the stations in the local neighborhood is

approximately constant. On the other hand, long-range transitions appear for users with dis-

placements to stations beyond the local neighborhood and, in this case, the probabilities of

transition decay with the distance in the same way as in the gravity-law model for human

mobility.

Our findings motivate us to implement a model that describes the observed spatial dynam-

ics with constant transitions to nearby stations and a long-range power-law strategy for the

probabilities of transition to distant stations, akin to Lévy flights. Then, by implementing

Monte Carlo simulations, we reproduce the global spatial dynamics comparing the real data

with simulations using the complete origin-destination matrix and the model explored. The

results explain the global spatial dynamics in BSS with a mathematical model that only uses

two parameters: the distance R that defines local movements and the power α associated with

long-range displacements.

The methods we introduce in this research can be applied to other cities in order to study

citywide biking behavior and mobility patterns in multi-modal transportation systems. The

existence of a simple model to characterize the spatial dynamics is useful in the planning of

locations of new stations, to implement efficient schemes of reorganization of bikes for the

optimal operation of the system along with the understanding of fundamental relations

between human mobility and the spatial structure of urban areas.
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11. Gallotti R, Barthélemy M. Anatomy and efficiency of urban multimodal mobility. Sci Rep. 2014; 4:6911.

https://doi.org/10.1038/srep06911 PMID: 25371238

12. Zhao K, Musolesi M, Hui P, Rao W, Tarkoma S. Explaining the power-law distribution of human mobility

through transportation modality decomposition. Sci Rep. 2015; 5:9136. https://doi.org/10.1038/

srep09136 PMID: 25779306

13. Aleta A, Meloni S, Moreno Y. A Multilayer perspective for the analysis of urban transportation systems.

Sci Rep. 2017; 7:44359. https://doi.org/10.1038/srep44359 PMID: 28295015

14. Fishman E. Bikeshare: A Review of Recent Literature. Transport Rev. 2016; 36(1):92–113. https://doi.

org/10.1080/01441647.2015.1033036

15. Wang M, Zhou X. Bike-sharing systems and congestion: Evidence from US cities. J Transp Geogr.

2017; 65:147–154. https://doi.org/10.1016/j.jtrangeo.2017.10.022

16. Faghih-Imani A, Eluru N. Incorporating the impact of spatio-temporal interactions on bicycle sharing

system demand: A case study of New York CitiBike system. J Transp Geogr. 2016; 54:218–227.

https://doi.org/10.1016/j.jtrangeo.2016.06.008

Human mobility in bike-sharing systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213106 March 6, 2019 15 / 17

https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1371/journal.pone.0034487
http://www.ncbi.nlm.nih.gov/pubmed/22529917
https://doi.org/10.1371/journal.pone.0203221
https://doi.org/10.1371/journal.pone.0203221
http://www.ncbi.nlm.nih.gov/pubmed/30161199
https://doi.org/10.1080/10630732.2018.1469339
https://doi.org/10.1080/10630732.2018.1469339
https://doi.org/10.1007/s11116-018-9885-4
https://doi.org/10.1007/s11116-018-9885-4
https://doi.org/10.1007/s12469-016-0135-x
https://doi.org/10.1038/srep06911
http://www.ncbi.nlm.nih.gov/pubmed/25371238
https://doi.org/10.1038/srep09136
https://doi.org/10.1038/srep09136
http://www.ncbi.nlm.nih.gov/pubmed/25779306
https://doi.org/10.1038/srep44359
http://www.ncbi.nlm.nih.gov/pubmed/28295015
https://doi.org/10.1080/01441647.2015.1033036
https://doi.org/10.1080/01441647.2015.1033036
https://doi.org/10.1016/j.jtrangeo.2017.10.022
https://doi.org/10.1016/j.jtrangeo.2016.06.008
https://doi.org/10.1371/journal.pone.0213106


17. Sun Y, Mobasheri A, Hu X, Wang W. Investigating Impacts of Environmental Factors on the Cycling

Behavior of Bicycle-Sharing Users. Sustainability. 2017; 9(6):1060. https://doi.org/10.3390/su9061060

18. Chang X, Shen J, Lu X, Huang S. Statistical patterns of human mobility in emerging Bicycle Sharing

Systems. PLoS ONE. 2018; 13(3):e0193795. https://doi.org/10.1371/journal.pone.0193795 PMID:

29543832

19. Zaltz Austwick M, O’Brien O, Strano E, Viana M. The Structure of Spatial Networks and Communities in

Bicycle Sharing Systems. PLoS ONE. 2013; 8(9):e74685. https://doi.org/10.1371/journal.pone.

0074685 PMID: 24040320

20. Sarkar A, Lathia N, Mascolo C. Comparing cities’ cycling patterns using online shared bicycle maps.

Transportation. 2015; 42(4):541–559. https://doi.org/10.1007/s11116-015-9599-9

21. Médard de Chardon C, Caruso G. Estimating bike-share trips using station level data. Transp Res B

Methodol. 2015; 78:260–279. https://doi.org/10.1016/j.trb.2015.05.003
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Rev E. 2012; 86:056110. https://doi.org/10.1103/PhysRevE.86.056110

53. Estrada E, Delvenne JC, Hatano N, Mateos JL, Metzler R, Riascos AP, et al. Random multi-hopper

model: super-fast random walks on graphs. J Compl Net. 2018; 6(3):382–403. https://doi.org/10.1093/

comnet/cnx043

54. Riascos AP, Mateos JL. Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy
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