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ORIGINAL RESEARCH

Tree-Based Machine Learning to Identify 
and Understand Major Determinants for 
Stroke at the Neighborhood Level
Liangyuan Hu , PhD; Bian Liu, PhD; Jiayi Ji, MS; Yan Li , PhD

BACKGROUND: Stroke is a major cardiovascular disease that causes significant health and economic burden in the United 
States. Neighborhood community-based interventions have been shown to be both effective and cost-effective in preventing 
cardiovascular disease. There is a dearth of robust studies identifying the key determinants of cardiovascular disease and 
the underlying effect mechanisms at the neighborhood level. We aim to contribute to the evidence base for neighborhood 
cardiovascular health research.

METHODS AND RESULTS: We created a new neighborhood health data set at the census tract level by integrating 4 types 
of potential predictors, including unhealthy behaviors, prevention measures, sociodemographic factors, and environmen-
tal measures from multiple data sources. We used 4 tree-based machine learning techniques to identify the most critical 
neighborhood-level factors in predicting the neighborhood-level prevalence of stroke, and compared their predictive per-
formance for variable selection. We further quantified the effects of the identified determinants on stroke prevalence using 
a Bayesian linear regression model. Of the 5 most important predictors identified by our method, higher prevalence of low 
physical activity, larger share of older adults, higher percentage of non-Hispanic Black people, and higher ozone levels were 
associated with higher prevalence of stroke at the neighborhood level. Higher median household income was linked to lower 
prevalence. The most important interaction term showed an exacerbated adverse effect of aging and low physical activity on 
the neighborhood-level prevalence of stroke.

CONCLUSIONS: Tree-based machine learning provides insights into underlying drivers of neighborhood cardiovascular health by 
discovering the most important determinants from a wide range of factors in an agnostic, data-driven, and reproducible way. 
The identified major determinants and the interactive mechanism can be used to prioritize and allocate resources to optimize 
community-level interventions for stroke prevention.

Key Words: cardiovascular health ■ neighborhood ■ prevention ■ tree-based machine learning ■ variable selection

Stroke is a major chronic disease costing the 
US healthcare system billions of dollars a year.1 
Identifying modifiable risk factors for stroke is im-

portant for developing effective prevention strategies. 
Existing epidemiological studies on stroke primarily 
focused on individual-level risk factors, such as de-
mographic factors (eg, age, race/ethnicity), socio-
economic factors (eg, income, education), and health 
behaviors (eg, diet, physical activity).2–5 Air pollution 
exposures have also been shown to adversely affect 

the cardiovascular system and increase stroke-related 
healthcare use.2,6 These individual-level factors have 
been incorporated into intervention programs to pre-
vent and control stroke.7–9

In addition to individual-based interventions, tar-
geted neighborhood-level interventions have been 
shown to be more cost-effective in preventing stroke.10 
However, little attention has been paid to neighbor-
hood-level factors that may be associated with stroke, 
despite the fact that growing evidence supports that 
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the condition of a neighborhood significantly affects 
the inhabitants’ health.11,12 Consequently, there is a 
lack of understanding of the underlying mechanisms 
between neighborhood characteristics and the preva-
lence of stroke at the neighborhood level.

To fill these research gaps, this study aims to identify 
a crucial set of risk factors that have important effects 
on the neighborhood-level prevalence of stroke with 
methodological rigor. We implemented several state-
of-the-art tree-based machine learning techniques on 
new neighborhood-level health data combining infor-
mation from multiple sources. We modeled the rela-
tionship between neighborhood-level predictors and 
the neighborhood-level prevalence of stroke, treating 
each census tract as the unit of analysis. We consid-
ered 24 factors that have been linked to cardiovascular 

health outcomes at the individual patient level from 4 
major domains, unhealthy behaviors, prevention mea-
sures, sociodemographic indicators, and environmen-
tal measures.3–5,13 We then used principled variable 
selection algorithms based on our machine learning 
model outputs to identify most important predictors 
and compared the relative importance of selected 
predictors in an agonistic way. We further compared 
the predictive performance of the tree-based methods 
considered and demonstrated their operating char-
acteristics for variable selection. Finally, we quantified 
how the identified major predictors may have influ-
enced the prevalence of stroke at the neighborhood 
level. Results from this study will provide insights into 
developing tailored community-based stroke-preven-
tion strategies.

METHODS
Data Source
We generated a large neighborhood health data by 
integrating public domain information at the census 
tract level from the Centers for Disease Control and 
Prevention, the Census Bureau, and the Environmental 
Protection Agency in the United States. We used 
census tract as a proxy of neighborhood. The first 
data set included the prevalence of health outcomes, 
prevention, and health behavior measures from the 
Centers for Disease Control and Prevention’s 500 
Cities Data for 28 004 census tracts.14 This data set is 
publicly available on its website, https://chron icdata.
cdc.gov/brows e?categ ory=500+Cities. The sec-
ond data set focused on sociodemographic meas-
ures using the 2011–2015 American Community 
Survey,15,16 publicly available at https://www.census.
gov/data/devel opers/ data-sets/acs-5year.html. We 
also included environmental exposure data from 
the Environmental Protection Agency’s 2015–2016 
Environmental Justice Screening database,17 pub-
licly available at https://www.epa.gov/ejscr een/downl 
oad-ejscr een-data. This study used publicly available 
ecological data and is not considered a human sub-
ject study; therefore, the study was exempted from 
obtaining approval of the institutional review board 
for ethics committee and individual informed con-
sent. The analysis codes that support the findings of 
this study are available from the corresponding au-
thor upon reasonable request.

We included 24 potential predictors from 4 do-
mains: (1) unhealthy behaviors (eg, no leisure-time 
physical activity, obesity), (2) prevention measures 
(eg, lack of health insurance), (3) sociodemographic 
indicators (eg, race/ethnicity, income level), and (4) 
environmental measures (eg, ambient air pollution). 
Both stroke and predictors were measured at the 

CLINICAL PERSPECTIVE

What Is New?
• A new large-scale neighborhood health data 

set at the census tract level was created from 
multiple sources; principled variable selec-
tion algorithms exploiting tree-based machine 
learning techniques were used to identify key 
neighborhood-level predictors for the neighbor-
hood-level prevalence of stroke.

• Our approach identified a parsimonious set of 
most important predictors without much loss of 
prediction accuracy.

• Higher prevalence of low physical activity, larger 
share of older adults, higher percentage of 
non-Hispanic Black people, and higher ozone 
levels were associated with higher prevalence 
of stroke at the neighborhood level; higher me-
dian household income was linked to lower 
prevalence.

What Are the Clinical Implications?
• The identified major determinants can help pri-

oritize and allocate resources for community-
level stroke interventions.

Nonstandard Abbreviations and Acronyms

BART Bayesian additive regression trees
gbm gradient boosting machines
LR linear regression
OOB out-of-bag
RF random forests
RMSE root mean squared error
VIPs variable inclusion proportions
XGBoost extreme gradient boosting
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neighborhood level (no person-level data were used). 
Table  1 details all 24 variables, their data sources 
and their descriptive distributions. We excluded 1307 
census tracts with no information on key variables. 
Among the 1307 census tracts, 137 had missing data 
on sociodemographic variables, 875 did not have 
health measures, and 295 had no environmental in-
formation. Our final analysis data set included 26 697 
census tracts.

Tree-Based Machine Learning Methods
We considered 4 tree-based machine learning meth-
ods, Bayesian additive regression trees (BART),18 
gradient boosting machines (gbm),19 extreme gradi-
ent boosting (XGBoost)20 and random forests (RFs).21 
We compared their performance in predicting the 
neighborhood-level prevalence of stroke, implemented 
variable selection using each of the 4 methods, and 
provided insights into the key determinants selected 
by each method. We briefly introduce each method 
considered.

Bayesian Additive Regression Trees

BART is a nonparametric Bayesian approach using 
regression trees. A regression tree T approximates 
the covariate-outcome relationship by recursive bi-
nary partitioning of the predictor space based on the 
importance of each predictor to the outcome. The 
tree T consists of the tree structure and all the deci-
sion rules sending a variable either left or right and 
leading down to a bottom node. Each of the bot-
tom nodes represents the mean response of the 
subgroup of observations that fall in that node. The 
tree T can then be used as a prediction model. Tree-
based regression models are adept at fitting interac-
tions and nonlinearities. An ensemble of regression 
trees have heightened modeling flexibility and bet-
ter prediction accuracy.22 BART is a “sum-of-trees” 
ensemble, relying on a fully Bayesian probabilistic 
model. A regularization prior is placed to 3 compo-
nents of each tree—the tree structure itself, the tree 
parameters given the tree structure, and the error 
variance—so that each tree is constrained to con-
tribute only a small part to the “sum-of-trees” model, 
which is remarkably stable and avoids overfitting. An 
iterative Bayesian back-fitting Markov chain Monte 
Carlo algorithm generates samples from the poste-
rior of each of the 3 components, which can then be 
used for prediction. Recently, BART has gained pop-
ularity in the statistical machine learning community 
for its superior predictive performance against sev-
eral competing machine learning methods, including 
RFs, boosted models, and neural nets, in a variety of 
study settings.18,23,24

Boosting (gbm and XGBoost)

Boosting is an ensemble approach to improve the 
predictive performance of a single regression tree 
T.19,25 Boosting grows the trees slowly and sequen-
tially each time taking into account information from 
previously constructed trees. In this process, boost-
ing boosts a weak learner into a strong learner. 
Friedman et al25 connected boosting to a forward 
stagewise additive model that minimizes a loss func-
tion. This new statistical perspective brought forth a 
highly adaptable algorithm, gradient boosting ma-
chines. Friedman further incorporated the bagging 
technique21 to form “stochastic gradient boosting.” 
The key steps of a gradient boosting algorithm are 
as follows: (1) Initialize the algorithm with the best 
guess of the response, for example, observed re-
sponse proportion; (2) compute the residual, or gra-
dient, and fit a tree model to the residuals to minimize 
the exponential loss; (3) add the current tree model 
to the previous one; and (4) iterate steps (2) and (3) 
for a prespecified number of times. This technique is 
commonly referred to as gbm. Boosting has 3 tun-
ing parameters, the number of trees, the shrinkage 
parameter, and the number of splits in each tree. 
XGBoost is further developed to optimize the boost-
ing trees algorithms.20 The underlying algorithm 
of XGBoost extends the classic gbm algorithm. By 
employing multithreads and imposing regularization, 
XGBoost is able to use more computational power 
and generate more accurate prediction.

Random Forests

The RF model is another ensemble technique to 
improve the predictive accuracy of a single regres-
sion tree T. The key ideas of the RF approach are 
bagging—short for bootstrap aggregation—and 
randomly selecting a smaller set of predictors to be 
considered for each split.21 Bagging uses bootstrap-
ping together with the single decision tree algorithm 
to build an ensemble. Because of the bootstrap re-
sampling technique, bagging supplies out-of-bag 
(OOB) error for measuring predictive accuracy of 
the bagged model. At each iteration of bootstrap-
ping, certain samples are left out and not used for 
fitting the tree model in that iteration. These samples 
are called OOB samples and can be used to evalu-
ate the predictive performance of the tree model in 
that iteration. In this way, we can record B perfor-
mance measures from the B bootstrapped samples. 
Averaging the B measures over the entire ensemble 
yields the OOB error. Bagging generates a distri-
bution of trees that may share common structures, 
which induces tree correlations and consequently 
prohibits a bagged model from ideally reducing 
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variance of predicted outcomes. To reduce correla-
tion among bootstrapped trees and consequently 
improve the predictive performance of the ensemble, 
the RF technique considers a random subset of pre-
dictors for each split in the tree-building process on 
each bootstrap sample. A typical RF’s tuning param-
eters are the number of randomly selected predictors 
and the number of trees.

Variable Selection Using Tree-Based 
Methods
BART-Machine

We implemented a variable selection procedure, 
BART-Machine, developed in Bleich et al26 to uncover 
a parsimonious set of most critical predictors for the 
prevalence of stroke at the neighborhood level. This 
method performs favorably compared with variable se-
lection using importance scores of RF. BART-Machine 

uses the variable inclusion proportions (VIPs), that is, 
the proportion of times each variable is selected as 
a splitting rule divided by the total number of splitting 
rules in building the model, as the measure of varia-
ble importance, and then compares the VIPs on the 
basis of the observed data to the distributions of VIPs 
computed from 100 permutated data sets to decide 
whether a variable has a large enough VIP and should 
be regarded as important. This procedure identifies 
variables that have real important effects on the re-
sponse rather than appear to be important by chance 
alone. We described the BART-Machine algorithm in 
Figure 1.

Following the selection of major predictors, we 
examined interaction effects with a BART model. 
Variables were considered to interact in a tree only if 
they appeared together in a contiguous downward 
path from the top to the bottom of the tree. We com-
puted the total number of interactions for each pair of 

Figure 1. Variable selection algorithm using BART-Machine.
BART indicates Bayesian Additive Regression Trees; and VIP, variable inclusion proportions.
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predictors by summing across trees and Markov chain 
Monte Carlo iterations, from which relative importance 
of each interaction was evaluated.

Boosting and RFs

Both boosting (gbm and XGBoost) and RFs provide 
the variable importance scores. For RFs, we meas-
ured the importance magnitude of a predictor by re-
cording the improvement in the Gini index each time 
the predictor in a nonterminal node is selected for 
splitting. Then these individual improvement records 
for each predictor were averaged over the OOB sam-
ples of all the trees in the forest to quantify the overall 
relative importance of the predictors. For boosting, 
the important scores were calculated in a similar 
fashion and were scaled and referred to as relative 
influence scores. We used the variable importance 
score supplied by the RF algorithm and implemented 
an iterative procedure described in Jiang et al.27 
Dietrich et al.28 and Hu et al.29 for variable selection. 
Briefly, (1) compute an RF or boosting model using 
all of the 24 candidate predictors; (2) rank the predic-
tors by variable importance and remove the predic-
tor with the least importance score from the data; 
(3) compute a new RF or boosting model with the 
remaining data; (4) repeat steps (2) and (3) until only 
1 predictor remains; and (5) choose the set of predic-
tors with the smallest prediction error rate (OOB error 
for RF, cross-validation error for gbm and XGBoost).

Assessing Advantages of Machine 
Learning for Variable Selection
We first compared the predictive performance of the 
4 tree-based methods using repeated 5-fold cross 
validation on the basis of root mean squared error 
(RMSE).30 We then applied these machine learning 
methods for variable selection and further compared 
them with 2 alternative methods frequently used in 
public health research: main effects linear regression 
(LR) including all predictors, termed as LR-AllVar, 
and stepwise LR variable selection, referred to as 
LR-StepWise.31,32 LR-StepWise starts with all predic-
tors in the model and removed predictors based on 
P values until all remaining variables are statistically 
significant in the model; the best final model is cho-
sen with the smallest Akaike Information Criterion. 
For a fair comparison of the methods based only on 
their capability to identify most important predictors, 
we included variables (both individual variables and 
interaction terms) selected by tree-based methods in 
a LR model, and computed RMSE and RMSE reduc-
tion per predictor for each method. Thus, the differ-
ence in the performance metrics will be attributable 
to only the selected variables and not confounded 

by the predictive performance of different mod-
els. RMSE reduction per predictor is defined as 
(RMSEnull−RMSEmethod)/Number of Predictorsmethod, 
where RMSEnull is the RMSE from the null model 
(ie, intercept only model), and RMSEmethod corre-
sponds to the RMSE of each specific method. This 
performance metric answers the question of how 
much gain do we get for adding each predictor vari-
able suggested by a variable selection approach. 
Methods that give larger RMSE reduction per predic-
tor variable are preferred.26

Finally, to increase the interpretability, we quantified 
the associations between the identified major predic-
tors and interaction terms and stroke prevalence using 
a Bayesian linear regression model.33 All statistical anal-
ysis were performed using the R software version 3.6.1.

RESULTS
Comparison of Predictive Performance of 
Tree-Based Methods
We used repeated cross validation with 5 folds and 
200 replications to compare the prediction accuracy of 
the 5 tree-based method considered. Figure 2 displays 
boxplots of the cross-validated RMSEs for the 4 tree-
based methods. BART appeared to be the top per-
former with the lowest RMSE, followed by XGBoost. 
The RFs had the largest RMSE.

Variable Selection by BART-Machine
As shown in Figure  3, by keeping track of predictor 
inclusion frequencies, BART-Machine identified, for 
the prevalence of stroke at the neighborhood level, 5 
most important predictors: the proportions of people 
who do not have leisure-time physical activity, who are 
>65  years of age, and who are non-Hispanic Black; 

Figure 2. Comparison of Cross-validated (CV) root mean 
squared error (RMSE) for each of 4 tree-based methods.
BART indicates Bayesian additive regression trees; gbm, 
gradient boosting machines; and RF, random forests.
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median household income; and ozone levels in the air. 
The relative importance of these 5 variables based on 
the observed data exceeded their respective threshold 
values (the tips of the blue lines), determined from the 
“null” distributions for VIPs estimated from the permu-
tated data. The inclusion proportions estimated from 
the BART model fitted to the observed data suggest the 
observed relative importance of the predictors. The pro-
portion of residents who do not have leisure-time physi-
cal activity appeared to be the most important predictor, 
as it had the largest VIP, whereas ozone levels had the 
lowest rank among the 5 selected variables.

To understand the synergistic or antagonistic ef-
fects of the chosen predictors, we further investigated 
the importance of variable interactions. Figure 4 shows 
the top 10 interaction terms computed from the BART 
model for the neighborhood-level prevalence of stroke. 
The relative importance is most distinct for the inter-
action between the prevalence of leisure-time physical 
activity and the percentage of adults ≥65 years of age.

Comparing Operating Properties of BART, 
Boosting, and RFs in Variable Selection
We performed variable selection using the variable 
importance scores provided by boosting and RFs. 
Table 2 summarizes the RMSE, RMSE reduction per 
predictor, number of selected predictors, and the se-
lected predictors for each of the 6 methods consid-
ered (4 tree based and 2 LR based), as described 
in the section Assessing Advantages of Machine 
Learning for Variable Selection. All 4 tree-based 
methods had similar RMSEs with their respective 
selected predictors. BART selected the most par-
simonious set of predictors and therefore had the 
largest RMSE reduction per predictor. The common 

predictors selected by all methods were the propor-
tion of people who do not have leisure-time physical 
activity, the share of non-Hispanic Black people, the 
proportion of adults >65 years of age, median house-
hold income and interaction between the proportions 
of people who do not have leisure-time physical ac-
tivity and adults ≥65 years of age. Boosting and RFs 
tended to select more variables, some of which were 
highly correlated (see Table 2). Ozone was selected 
by BART-Machine only.

The operating properties of all 6 methods consid-
ered are also provided in Figure 5.

Quantifying Exposure-Outcome 
Associations
As machine learning methods are commonly limited 
by their “black-box” nature, to strengthen findings 
from our machine learning models, we further fitted a 
Bayesian linear regression to evaluate the effects of key 
predictors and their interactions on the neighborhood-
level prevalence of stroke. Because BART showed the 
best predictive performance and best operating prop-
erties in variable selection, we used the key determi-
nants identified by BART-Machine. Figure  6 displays 
the point estimates and 95% credible intervals for each 
main and interaction effect.

On average, a higher proportion of older residents 
and higher percentage of the population who are phys-
ically inactive in a neighborhood were associated with a 
higher prevalence of stroke at the neighborhood level. 
The neighborhoods with a larger share of non-His-
panic Black people tended to have higher percentage 
of stroke. An increase of $100 000 in median house-
hold income was on average associated with a reduc-
tion of 0.19% in the neighborhood-level prevalence of 

Figure 3. Visualization of the variable selection procedures for stroke.
The blue lines are the threshold levels for variable selection procedure described in Figure  1. The red line represents the cutoff 
determined by a more stringent rule. Variables passing this threshold are displayed as solid dots. Variables that exceed the blue lines 
but not the red line are represented as asterisks. We select variables with either an asterisk or a solid dot. Open dots correspond to 
variables that are not selected.
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stroke. Ozone levels had an adverse effect on the prev-
alence of stroke—every 10 ppb increase in ozone was 
on average associated with 0.06% higher prevalence 
of stroke at the neighborhood level. No leisure-time 
physical activity and age modified each other’s effect. 
The positive sign of the interaction estimate indicates 
a synergistic effect of combined senior population and 
prevalence of physical inactivity.

DISCUSSION
This study used the state-of-the-art tree-based ma-
chine learning approaches to identify and investigate 

major factors in predicting the neighborhood-level 
prevalence of stroke, leveraging a large-scale data set 
with information on unhealthy behaviors, prevention 
measures, sociodemographic status, and environ-
mental factors garnered from more than 20 000 cen-
sus tracts in 500 US major cities.

We identified key predictor variables for the preva-
lence of stroke at the neighborhood level. The results 
are consistent with known patient-level risk factors. 
Neighborhoods with a higher proportion of older res-
idents or physically inactive residents tended to have 
a higher prevalence of stroke. Ozone level was found 
to be adversely linked to the prevalence of stroke. 

Figure 4. The top 10 average interaction counts (termed as relative importance) for the 
neighborhood-level prevalence of stroke, averaged over 25 BART model constructions.
The segments atop the bars represent 95% confidence intervals. BART indicates Bayesian additive 
regression trees.

Table 2. RMSE Reduction, Number of Selected Predictors, and Selected Predictors by Each of 4 Tree-Based Methods

Methods RMSE
RMSE Reduction 

per Predictor
Number of 
Predictors Selected Predictors

BART 0.48 0.15 6 NO_PA, NON_HIS_BLACK, AGE65_OVER, MED_INCOME, 
OZONE, NO_PA×AGE65_OVER

XGBoost 0.48 0.11 8 NO_PA, NON_HIS_BLACK, AGE65_OVER, MED_INCOME, OBESITY, SMOKING, 
INSUF_SLEEP, NO_PA×AGE65_OVER

gbm 0.49 0.11 8 NO_PA, NON_HIS_BLACK, AGE65_OVER, MED_INCOME, OBESITY, SMOKING, 
AGE18_34, NO_PA×AGE65_OVER

RFs 0.47 0.09 11 NO_PA, OBESITY, AGE65_OVER, NON_HIS_BLACK, DENTAL, INSUF_SLEEP, 
SMOKING, MED_INCOME, COLON_SCREEN, LACK_INSURANCE

The Pearson correlation was −0.9 between DENTAL and LACK_INSURANCE (selected by RFs), 0.75 between SMOKING and INSUF_SLEEP (selected by 
XGBoost) and 0.84 between OBESITY and SMOKING (selected by gbm). LR-StepWise retained 20 out of 24 predictors. Neither of the two LR methods had 
the capability to identify interactions. BART indicates Bayesian additive regression trees; gbm, gradient boosting machines; LR, linear regression; RFs, random 
forests; RMSE, root mean squared error; and XGBoost, Extreme Gradient Boosting.
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Wealthier communities tended to have fewer strokes 
and neighborhoods with more non-Hispanic Black 
people were associated with higher prevalence of 
stroke. We also found that older population struc-
ture and the lack of leisure-time physical activity of a 
neighborhood together had a synergistic effect on the 
neighborhood-level prevalence of stroke. It is worth 
noting that not all risk factors for stroke at the individual 
level, such as smoking and obesity, were ranked as 
having high importance scores in predicting neighbor-
hood-level stroke outcomes. One possible explanation 
is that different studies considered different candidate 
sets of predictors. We used wide-ranging information 
across 4 domains. In addition, tree-based machine 
learning methods like BART and XGBoost may be 
less likely to select highly correlated predictors than 
traditional LR because of their tree boosting modeling 
process.

Our study has several important implications re-
lated to public health and policy. Identifying import-
ant predictors of and how they jointly exert influence 
on neighborhood cardiovascular health would allow 
public health researchers and policymakers to have a 
deeper understanding of the drivers of neighborhood 

population health. Prevention measures such as lack 
of leisure-time physical activity and environmental 
measures such as ozone level can provide important 
avenues for potential community-level interventions. 
For example, community-level interventions to en-
gage residents in exercising, to improve air quality, 
and to build exercise-friendly neighborhoods (eg, 
increasing walkability through parks and trails) may 
lead to fewer incidences of stroke in the communi-
ties. In addition, as the lack of physical activity exac-
erbated the effect of older age on stroke, indicated by 
the positive interaction effect, community-based ex-
ercise promotion interventions that are aging friendly 
or with older adults in mind may alleviate overall prev-
alence of stroke.

Discovering the subset of predictors that are most 
influential on the outcomes is challenging, especially 
when the number of relevant predictors is sparse rela-
tive to the total number of available predictors and the 
fundamental relationships are nonlinear. Existing stud-
ies that have attempted to assess the relationships be-
tween neighborhood characteristics and cardiovascular 
health outcomes (often at the individual level) are limited 
in the scope of data source and analysis approaches.34 

Figure 5. RMSE, number of predictors and RMSE reduction per predictor for each of 6 methods: BART-Machine, XGBoost, 
gbm, RF, stepwise LR variable selection and LR with all covariates.
BART indicates Bayesian additive regression trees; gbm, gradient boosting machines; LR, linear regression; RFs, random forests; 
RMSE, root mean squared error; and XGBoost, Extreme Gradient Boosting.
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Predictors are often restricted to a specific type (eg, be-
haviors) and selected a priori, risking “cherry picking.” 
As a result, these studies may overlook important de-
terminants affecting cardiovascular health.

We considered a wide range of potential predic-
tor variables from multiple sources for the neighbor-
hood-level prevalence of stroke, and compared the 
predictive performance of 4 tree-based machine learn-
ing techniques and evaluated their abilities in variable 
selection. The predictors selected were largely consis-
tent among the 4 methods. Moreover, BART-Machine 
identified an additional important environmental predic-
tor based on a principled permutation-based inferential 
approach. The feature of “upblackboxing” interactions 
supplied by the machine learning algorithm provided us 
with an opportunity to gain insights into the effects of 
the major predictor variables, which are often ignored 
in studies using machine learning algorithms. We com-
pared tree-based approaches to linear regression with 
all predictors and with stepwise variable selection. The 
tree-based approach, particularly BART-Machine, dis-
tinguished a subset of most influential variables and 
top interactions, whereas the LR-based procedure 
kept most variables (dropped only 4 variables) and was 
susceptible to selecting highly correlated variables. 
Coupled with the ranking of variable importance, our 
method can provide valuable guidance for targeted 
community-based interventions. Finally, we comple-
mented the machine learning modeling by conducting 
a Bayesian linear regression to quantify the effects of 
each major predictor and interaction on the neighbor-
hood-level prevalence of stroke.

The study has several limitations. First, behavioral 
measures available in the 500 Cities Data were small 
area estimations with their own uncertainties. Also, 
the prevalence of stroke only reflects the propor-
tion of population who are alive and have a history 
of stroke, which may not accurately and completely 
reflect stroke incidence and severity of the disease 
and are subject to survivor bias.35 However, the esti-
mates provide the best available data for these small 
areas, and the approach has been well validated.36 
Second, given the nature of the cross-sectional data 
and ecological design, the results do not bear causal 
interpretations.37 The identified neighborhood-level 
factors of neighborhood-level stroke prevalence can 
be potentially used to stimulate future research on 
causal relationships. Finally, while we included 24 
predictors from 4 domains based on existing litera-
ture, the list is not exhaustive. Nonetheless, the study 
demonstrated the utility of a novel machine learning 
approach in identifying and understanding major de-
terminants for stroke at the neighborhood level. Our 
results also have important implications in policymak-
ing and designing intervention programs to improve 
population health.
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