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Abstract

Background: Spounavirinae viruses have received an increasing interest as tools for the control of harmful bacteria
due to their relatively broad host range and strictly virulent phenotype.

Results: In this study, we collected and analyzed the complete genome sequences of 61 published phages, either
ICTV-classified or candidate members of the Spounavirinae subfamily of the Myoviridae. A set of comparative analyses
identified a distinct, recently proposed Bastille-like phage group within the Spounavirinae. More importantly, type 1
thymidylate synthase (TS1) and dihydrofolate reductase (DHFR) genes were shown to be unique for the members of
the proposed Bastille-like phage group, and are suitable as molecular markers. We also show that the members of this
group encode beta-lactamase and/or sporulation-related SpolllE homologs, possibly questioning their suitability as
biocontrol agents.

Conclusions: We confirm the creation of a new genus—the “Bastille-like group”—in Spounavirinae, and propose that
the presence of TS1- and DHFR-encoding genes could serve as signatures for the new Bastille-like group. In addition,
the presence of metallo-beta-lactamase and/or SpolllE homologs in all members of Bastille-like group phages makes

questionable their suitability for use in biocontrol.
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Background

Spounavirinae is a subfamily of the Myoviridae, and its
members possess a large isometric head (75-100 nm)
with a long contractile tail (140-220 nm) [19]. An in-
creasing interest in the Spounavirinae members can be
noted, due to their broad host range and strictly virulent
lifestyle [25]. According to the current ICTV (Inter-
national Committee on Taxonomy of Viruses) classifica-
tion, the Spounavirinae subfamily comprises two genera
(the Spouna [SPO1]-like viruses with modified DNA and
shorter tails, and the Twort-like viruses with larger tails
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and unmodified DNA) and a group of orphan phages
(unassigned-group) [18, 19].

Bacteria of the genus Bacillus are ubiquitous in nature.
The genus includes one of the best characterized model
organisms, B. subtilis, as well as medically significant hu-
man pathogens B. cereus (which causes food poisoning)
and B. anthracis (the causative agent of anthrax) [13, 29].
Phages have been isolated for all members of this genus,
providing a unique opportunity to investigate the diversity
of phages that infect different hosts within a bacterial
genus [13]. As of the date of manuscript submission, 34
large genome Bacillus Spounavirinae (Myoviridae with
genome above 127 kb) have been sequenced and depos-
ited in the NCBI GenBank database, of which only phage
SPOL1 has been assigned a genus under the current recog-
nized ICTYV classification [18]. The remaining phages are
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considered orphan phages and their taxonomic position is
subject of discussion [3, 10, 20]. Recently, a “Bastille-like
group” within the Spounavirinae clade was proposed, con-
taining eight Bacillus phages [3].

Undoubtedly, more Spounavirinae phages (or more
specifically, Bastille-like phages) will be isolated and
there is a need to establish a more defined taxonomic
system in order to explore the evolutionary relationships
and genetic linkages in these types of phages. The first
taxonomic overhaul of the group of phages previously
named “SPO1-like phages” occurred some years ago and
resulted in the creation of the Spounavirinae subfamily
with two other groups of phages [19]. The availability of
many new phage genome sequences will enable a more
concise classification, as well as the identification of
many genetic markers.

In this study we collected and analyzed the complete
genome sequences of 61 published phages either ICTV-
classified or candidate members of the Spounavirinae sub-
family. We confirm the presence of a distinct cluster
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(Bastille-like group, now with 26 Bacillus phage mem-
bers) in the subfamily, which prompts for a re-assessment
of the taxonomic situation. More importantly, we report
Bastille-like group-specific sequences that could serve as a
“signature” for identification of members of the proposed

group.

Results

Comparative genomics identifies new members of

Bastille-, SPO1- and Twort-like viruses in the Spounavirinae
subfamily

CLANS analysis

When the genomes of 61 phages (8 ICTV-classified
Spounavirinae phages and 53 unclassified Spounavirinae)
were compared using CLANS, three distinct groups were
observed (Fig. 1). The first group consists of 26 phages in-
cluding eight recently-proposed Bastille-like group phages
(Bastille, B4, B5S, BCP78, BCU4, BPS13, W.Ph. and phiA-
GATE) [3]. The second group (26 members) includes the
entire ICTV-recognized Twort-like viruses (A511, G1,
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Fig. 1 CLANS analysis of a total of 61 phages, eight ICTV classified Spounavirinae phages (SPO1, Twort, A511, P100, G1, K, phiEC24C, and LP65),

and 53 unclassified Spounavirinae candidates (Myoviruses with genome size of >127 kb in NCBI database). Edge weights were calculated from the
P values of the BLASTN high-scoring segment pairs (e-value cut-off =1e-5). The network was visualized after 25000 runs using the CLANS software
package [32]. All analyzed sequences are listed in methodology.
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P100, Twort, and K) in addition to other un-classified
phages (GH15, JD007, AG20, phiEF24C, Remus, Romulus
and others). The SPO1-like group represents the third
group (SPO1, CampHawk, Shanette, CP-51 and JL) and is
more distantly related to the other two groups. Phages A9,
LP65, Lb388-1 and SP10 were considered as singletons

(Fig. 1).

Dot plot analysis

Whole genome nucleotide (Additional file 1: Figure S1A)
and amino acid sequence (Additional file 1: Figure S1B)
dot plot analysis of the 61 phages also revealed 3 clusters
and singletons similar to the CLANS analysis result. More
detailed analysis showed that similarity at amino acid level
was clearly more obvious than at nucleotide level among
Bastille-like group phages (Fig. 2). Similar results were re-
ported previously [13].

Phylogenetic study using single gene products
In order to construct a phylogenetic tree using single gene
products, putative major capsid proteins and tail sheath
proteins were identified from all 61 phages. When the
Maximum Likelihood algorithm was used, three clusters
identical to CLANS analysis were observed (Fig. 3a and b).
Large terminase subunit and DNA polymerase sequences
were also used for phylogenetic analysis [10, 24, 28]. Inter-
estingly, two genes were not found in the Staphylococcus
phages Remus and Romulus and it was previously reported
that they were fragmented by mobile elements [34]. Thus,
when the phylogenetic tree was drawn for the proteins in
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the remaining 59 phages, the clusters did not correspond to
the observed CLANS cluster pattern (data not shown).

Phamerator analysis identified candidate signature genes

that are specific for Bastille-like group phages

A Phamerator database was created using the 61 large
genome Spounavirinae phages with minimum, maximum
and mean genome length of 127065 bp (A9), 165238 bp
(BigBertha) and 147716 bp, respectively (Additional file 2).
When the chosen parameters were applied to the dataset,
the 61 Spounavirinae phage genomes containing a total of
13996 gene products were assembled into 3200 phamilies
(phams) of which 1464 phams are orphams (45.75 %), or
phams with only one gene product. The largest pham
(pham 1971) contained 96 members. The mean pham size
was 4.37 gene products.

In order to select gene products that were conserved
in the Bastille-like group phages, phams were identified
that only include gene products from Bastille-like phages.
These included pham 363 (found in 27 members [Phage
Bobb has two; see below]; containing thymidylate synthase
domain), pham 365 (26; deoxynucleoside monophosphate
kinase domain), pham 369 (26; dihydrofolate reductase
[DHFR] domain), pham 473 (21; DNA segregation ATPase
FtsK/SpolllE domain), pham 484 (23; metallo-beta-
lactamase domain), pham 518 (26; holin domain), pham
558 (25; CRISPR/Cas system-associated transcriptional
regulator CasRa domain) (Fig. 4 and Additional file 3).

Among those Bastille-like group specific phams, pham
369 was chosen for further studies as no other group
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Fig. 2 Nucleotide (a) and amino acid sequence (b) dot plot analysis of 26 Bastille-like group phages in Spounavirinae. Dot plots were generated
using Gepard [9] and whole amino acid sequence of phages were retrieved from Phamerator [33]
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Fig. 3 Comparative phylogenetic analysis of major capsid proteins (a) and tail sheath proteins (b) of 61 Spounavirinae phages using MEGA v6 [27]
and Muscle programs and the Maximum Likelihood (ML) method. Bootstrapping was set to 1000 and the unrooted tree was collapsed at a less
than 50 % bootstrap value. B, Bacillus; Br, Brochothrix; E, Enterococcus; L, Lactobacillus; L, Listeria; S, Staphylococcus
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of phages in the database contain a DHFR gene in their
genome. In addition, pham 363 was also chosen for fur-
ther studies due to high similarities among the members
in the pham. Pham members shared more than 43 % iden-
tity and E-values lower than 2.80 x 107®® (See below for
more details).

We also analyzed the other Bastille-like specific phams
(pham 365, pham 518 and pham 558). However, we con-
cluded that these three phams are not suitable as the sig-
nature gene for the group. It is because members of pham
365 exhibit relatively low similarities (minimum amino
acid sequence identity 24.2 %; E-value 3.13 x 107'®) among

the members and have differently annotated gene names
(dephospho-CoA kinase, ANMP kinase and adenylate
kinase). In the case of pham 518 (a common phage
gene product, holin) and pham 558 (transcriptional
regulator), homologous proteins are found in non-Bastille
group phages and phylogenetic analysis failed to observe a
unique cluster for the Bastille-like group (data not shown).

Pham 473 (minimum of 41.4 % identity and an E-value
of 0) and pham 484 (minimum of 28.8 % and an E-value
of 3.7 x 10~*%) were characterized further due to their sig-
nificance in phages as agents in biocontrol (See below)
(Fig. 4c and d).
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(See figure on previous page.)

Fig. 4 Phamily circles connecting 27 type 1 thymidylate synthase (TS1) gene products in 26 phages (pham 363, a), 26 dihydrofolate reductase
(DHFR) gene products in 26 phages (pham 369, b), 21 DNA segregation ATPase FtsK/SpolllE gene products in 21 phages (pham 473, ¢) and), 23
metallo-beta-lactamase gene products in 23 phages (pham 484, d). Phamilies were created when gene products exhibited E-values smaller than
1% 107°° or greater than 32.5 % identity with at least one other gene product in the pham. Phage Bobb encodes two thymidylate synthase
homologs (gp221 and gp223) that belong to pham 363 (See Fig. 5 and the text for more details)

Four types of thymidylate synthase homologs (TS) are
found in Spounavirinae, and a TS1 (Type 1 thymidylate
synthase homolog) can be used as a signature gene for
the Bastille-like group phages

Pham 363 contains 27 gene products from 26 different
phages. Phage Bobb has two genes in the pham; see below.
These genes encode a Type 1 thymidylate synthase (TS1)
(Fig. 4) and are only found in the 26 Bastille-like group
phages. Percent identities and E-values among the 26 gene
products are 43.2 t0100 % and 2.80 x 10~%® to 0.0 respect-
ively. When the 26 gene products in pham 363 were
BLAST-searched, high percent identity hits (50-53 %)
from TS gene products in Bacillus spp. (B. cereus, B. thur-
ingiensis and B. mycoides) were identified.

Bacillus phage Bobb contains two members of pham
363, gp221 and 223 (Figs. 4a and 5). This was unusual,
since all the other members of the Bastille-like group en-
code a single thymidylate synthase homolog. Interestingly,
protein sequence analysis showed that gp223 (207 aa.
long) and gp221 (101 a.a. long) exhibit 90.1 and 91.8 %
identities with N- and C-terminus of phage phiAGATE

TS1 (305 a.a long), respectively (Fig. 5). In addition, gp222
present in between gp223 and gp221 in phage Bobb en-
codes intron endonuclease homolog that contains the
N-terminal catalytic domain for GIY-YIG intron endo-
nuclease I-Tevl, I-Bmol, I-Banl, I-BthII proteins and a
C-terminal YIG family of class I homing endonucleases
C-terminus (GIY-YIG_Cterm) (see Discussion for more
details). These data suggest that gp221 and gp223 were
originally introduced as one complete TS1.

Pham 153 contains one member (Type 2 thymidylate
synthase, TS2), gp166 of Brochothrix phage A9 (Additional
file 4). Gp166 of A9 exhibits 36 % amino acid identity with
thymidylate synthase of Aneurinibacillus aneurinilyticus.
On the other hand, gp166 showed a maximum amino
acid sequence identity of 35 % (E-value 1.0 x 10-*¢) with
Bacillus TS.

Pham 2633 has only one gene member (gp203; Type 3
thymidylate synthase, TS3) and is found in Enterococcus
faecalis phage phiEF24C, a member of Twort-like group
phages. Gp203 in phiEF24C exhibits 36-48 % amino
acid identities with TS proteins from Enterococcus spp.
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(E. raffinosus, E. avium and E. malodoratus) and Aneurini-
bacillus aneurinilyticus. On the contrary, gp203 showed
31-43 % (93 % query coverage) identity with Bacillus TS
proteins.

Pham 1677 has six genes (Type 4 thymidylate synthase,
TS4) that are found in all five members of SPO1-like
phages (SPO1 gp141, CampHawk gp138, CP-51 gp086, JL
gp159 and Shanette gp160) as well as in SP10 (gp188), a
member of Twort-like group. They contain a TS domain
and are annotated as TS (CampHawk and JL), deoxyuridy-
late hydroxymethyltransferase (SPO1 and SP10), putative
replication protein (CP-51) or hypothetical protein (Shan-
ette) in the NCBI database. The members of this pham
share 46.4-100 % identity and E-values from 1.4 x 107
to 0.0. Phage TS4 proteins are less similar to Bacillus TS
(33 % identity with 51 % query coverage), and maximum
similarities were found with deoxyuridylate hydroxy-
methyltransferase of Lactobacillus murinus (32 % identity
with 93 % query coverage).

When the amino acid sequences of TS from Spounaviri-
nae phages and bacteria were phylogenetically analyzed,
four types of TS were clearly observable; TS1 containing
TS from Bastille-like group phages and Bacillus spp., TS2
from Brochothrix phage A9, TS3 from phiEF24C and En-
terococcus spp., and TS4 from SPO1-like group phages,
SP10 and other bacteria such as Rhizobium rhizogenes,
Lactobacillus muriums, Yersinia mollaretii and Paenibacil-
lus macerans (Fig. 6).

A putative dihydrofolate reducatase (DHFR) homolog is
unique to Bastille-like group phages and serves as additional
signature gene for the group
Pham 369 contains 26 gene products (Fig. 4b) which are
found in, and are restricted to, all 26 Bastille-like group
phages. BLASTP analysis using 26 gene products in
pham 369 against 35 non-Bastille-like group phages did
not return any protein with significant homology. Global
identities and E-values among the 25 gene products (except
phage B4; See below) are 38.9-100 % and 3.87 x 1077 —
5.95 x 1071, respectively. When the 25 gene products in
pham 369 were BLAST-searched, significant hits of DHFR
proteins from Bacillus spp. (B. cereus, B. thuringiensis and
B. mycoides) were identified (34—41 % amino acid identity).
B4 gp21 encoded a putative DHFR, however, the gene
size (71 amino acids long) as annotated in the published
genome was much smaller than the average size (164.9
amino acids) of DHFR proteins from other members of
the Bastille-like phages. When the B4 genome was com-
pared with B5S due to their high similarity [24], both
phages share 100 % nucleotide identity in the DHER re-
gion. We further observed that the difference in DHFR
gene sizes was due to the choice of start codon (ATG
and TTG for B4 and B5S, respectively) used in predicting
the ORFs in both cases. Accordingly, the open reading
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frame of B4 DHFR was modified and used for preparing
Fig. 7 The new gp21 of phage B4 shares a minimum global
identity and E-value of 47.3 % and 2.71 x 10", respect-
ively, to the DHEFR in the other Bastille-like phages.

All the members of Bastille-like group phages encode
metallo-beta-lactamase and/or SpolllE homologs

The proteins in pham 473 were found in only 21 mem-
bers of Bastille-like group phages. These genes encode a
SpollIE homolog with a minimum identity of 40.0 %
among the pham members (Fig. 4c). BLASTP analysis
indicated that the SpollIE of the phages in the Bastille-like
group shared at least 29 % identity (E-value 2 x 1077 and
82 % query cover) with DNA translocase stage III sporula-
tion protein of B. cereus.

Metallo-beta-lactamase gene products (pham 484)
were identified in 23 members of the Bastille-like group
with a minimum amino acid identity of 28.8 % (E-value
of 4x107*%). Bioinformatic analysis revealed that the
metallo-beta-lactamase protein of Bastille-like group mem-
bers shared at least 25 % identity (E-value of 1 x 10~° and
93 % query coverage) with metal-dependent hydrolase of B.
thuringiensis. Pham 484 was also found in Bacillus phage
SP10 (gp217) (Fig. 4c) and shares between 28.8 % and
36.8 % identity with the Bastille-like group phages.

In addition to pham 484, pham 672 contained metallo-
beta-lactamase domain that was found only in Bacillus
phage Mater (gp126), a member of Bastille. BLAST ana-
lysis indicated that gpl126 of phage Mater shares 46 %
amino acid sequence identity, an E-value 1x107°°, and
95 % coverage with beta-lactamase of the facultative an-
aerobic, endospore-forming Paenibacillus mucilaginosus
(formerly Bacillus mucilaginosus) [22].

Putative SpolllE and beta-lactamase homologs are found
close each other, 10 (B5S and Hoody T) to 30 ORFs
(Spock) apart and are located within the nucleotide me-
tabolism, replication and transcription modules containing
putative RNA polymerase sigma factor, chromosome seg-
regation protein, RNA ligase, and plasmid segregation
protein (Fig. 7; data not shown). With respect to TS1 and
DHER region, putative SpollIE and beta-lactamase genes
were transcribed in the opposite orientation (Fig. 7a).

Discussion

The Spounavirinae are currently composed of the Spouna-
like virus (SPO1-like) group (SPOL1), the Twort-like virus
group (G1, A511, P100, K and Twort) and unassigned
phages (phiEF24C and LP65). Recently, Barylski et al
(2014) [3] proposed a third group, Bastille-like viruses,
containing eight members. In addition to eight ICTV-
recognized Spounavirinae phages, we collected the ge-
nomes of all 53 putative subfamily members currently
published as described in Materials and Methods. When
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(See figure on previous page.)

Fig. 6 Evolutionary relationship of thymidylate synthases. The thymidylate synthase genes were compared by Muscle multiple sequence
alignment, and a phylogenetic tree was generated with MEGA v6 [27] using the Maximum Likelihood (ML) method. Bootstrapping was set to
1000 and the unrooted tree was collapsed at a less than 50 % bootstrap value. A, Aneurinibacillus; B, Bacillus; Br, Brochothrix; E, Enterococcus; L,

Lactobacillus; R, Rhizobium; P, Paenibacillus; S, Staphylococcus; Y, Yersinia
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their genome relatedness was analyzed at nucleotide as
well as protein levels, three groups were clearly observed.

The SPO1-like group contains 5 members (SPO1, CP-51,
CampHawk, Shanette and JL) that infect either B. cereus or
B. subtilis. The Twort-like group, includes 26 members (in-
cluding phage Twort, K, G1, P100, A511, AG20, phiEF24C,
Remus, Romulus, GH15, JD007 and others) with different
hosts (Staphylococcus, Listeria, Lactobacillus and Entero-
coccus). The novel third group (Bastille-like) includes 26
Bacillus phages. Finally four phages, A9, SP10, Lb338-1 and
LP65, remain orphan phages in the subfamily. Revisiting
the data presented in other publications, which followed
the current ICTV-approved classification [20], also sup-
ports the presence of a third distinct group among the
Spounavirinae. Together with the previous publication on
the possible existence of the third group [3], this convincing
evidence prompts for a revision of the grouping within the
Spounavirinae subfamily.

The Bastille-like group phages were isolated from soil,
sewage or food using B. cereus (12 phages), B. thuringiensis
(10 phages), B. subtilis (1 phage), B. megatrium (2) or B.
pumilus (1 phage) as host, in different geographical loca-
tions (Table 1). They feature a head diameter of 95 + 10 nm
and tail length of 185 + 30 nm. Their genome sizes range
from approx. 127 kb to 165 kb, with G + C content between
37 % and 50 %. Among the Bacillus phages isolated so far,
members of this novel Bastille-like group represent about
29 % with an increasing number in isolations recently [13].
However, despite their growing population, there is little
data on host range, genome structure, and receptors of
these phages. These data would be required for more
complete classification (Table 1).

The creation of a Phamerator database using 61 pub-
lished large-genome Spounavirinae helped to identify the
Bastille-like group-specific gene products, which are TS1
and DHFR homologs. These gene products are found in all
26 members of the group but not in other groups of the
subfamily. While TS1 exhibits high similarity (at least 50 %)
with Bacillus TS, other TS types (TS2, TS3 and TS4) con-
tain higher similarities with non-Bacillus TS, indicating dif-
ferent origins of TS1 and the other types of TS. In addition,
DHFR homologs are not found in other phages analyzed in
this study than the members of the Bastille-like group in
the database. We propose that TS1 and DHEFR can be used
as signature genes that can distinguish Bastille-like group
from other groups in Spounavirinae.

Thymidylate synthase (TS) is a folate-binding enzyme
which catalyzes the transfer of one carbon unit to dUMP
using 5,10-methylene-5,6,7,8-tetrahydrofolate (CH,H,fo
late) as a cofactor to produce dTMP and 7,8-dihydrofolate
(Hafolate) [7]. dUMP hydroxymethylase (dUMP-HMase)
also catalyzes one carbon transfer from CH,Hgfolate to
dUMP but produces hydroxymethyl-dUMP and 5,6,7,8-
tetrahydrofolate (Hyfolate) [22]. Due to their functional
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differences, TS (but not dUMP-HMase) activity requires
replenishment of H, folate which is catalyzed by dihydro-
folate reductase (DHFR) [7].

Previously, dUMP HMase was suggested as the signa-
ture gene for SPO1-like phages which synthesizes hydro-
xymethyluracil (HMU) instead of thymidine [19]. In this
study we found that dUMP-HMase may not be exclusive
to the SPO1-like phages as it appears to present in non-
SPO1-like phage, SP10. Although SP10 is outside the
SPO1-like group phages its genome appears to be modi-
fied as reported previously [36]. Therefore the presence of
dUMP-HMase may still be a signature of dHMU-modified
phage genomes.

A more detailed analysis indicated that TS1 proteins
in Bastille-like phages are 289-311 amino acids long, which
is significantly smaller than TS3 (315 amino acids long) or
TS4 (382—-407 amino acids long) (data not shown) but
within the range of TS2 (304 amino acids long). In addition,
while all TS1 genes in Bastille-like phages and in bacteria
(B. cereus, B. mycoides, B. thuringiensis) were annotated
as thymidylate synthase, those in TS4 were annotated
differently in the database. While TS4 in phages such
as CampHawk and JL, and Paenibacillus macerans has
been annotated as a thymidylate synthase, in other phages
(SPO1, SP10) and Yersinia mollaretii is was proposed as a
dUMP hydroxymethylase (data not shown). Moreover,
TS4 in Shanette, CP-51 and Lactobacillus murinus were
annotated replication protein, and hypothetical protein,
respectively. This finding again underlines the importance
of developing universal guidelines for genome annotation.
Interestingly, all the Bastille-like group phages (but no
other Spounavirinae phages) contain a dihydrofolate re-
ductase near the TS1. These data collectively suggest that
TS4 is different from TS1 and might contain dUMP
HMase activity. In addition, Enterococcus phage phiEF24C
and Brochothrix phage A9 also does not encode a DHFR
gene in its genome. Clearly, more studies will be required
for clarification of the functional differences between TS1
and TS4 (Fig. 7).

Bacteriophage genomes usually exhibit a modular struc-
ture in which related-genes form a module, which might
be transferred together from one phage to another [5, 35].
Thus, it is likely that closely related-phages have a similar
gene arrangement. The TSI-DHEFR region in all the
Bastille-like phages exhibits a nearly identical gene arrange-
ment (Fig. 7). The TS1-DHER region is preceded by puta-
tive terminase and endolysin genes, approximately 10 and
12 OREFs in the same orientation, respectively. In addition,
TS1 is followed by the dihydrofolate reductase gene, two to
six ORFs apart, in the same orientation (Fig. 7a). On the
other hand, putative recombinase (gp150) and putative
DNA-binding protein (gpl178) are found upstream and
downstream of TS2 (gp166), respectively, in phage A9. The
genes upstream of gp203 and the TS3 region in phiEF24C



Table 1 Characteristics of Bastille-like group phages.

Phage name Original host Isolation Map Sample of isolation Genome size Head diameter Tail length GC% Predicted ORFs tRNAs Accession number Ref.
BCP8-2 B. cereus S. Korea fermented food 159071 95 210 394 220 18 KJ081346 [28]
B4 B. cereus S. Korea mud sample 162596 85 213 377 277 0 JN790865 [22]
B5S B. cereus S. Korea ND 162598 ND ND 377 272 0 IN797796 [17]
BCP78 B. cereus S. Korea fermented food 156176 ND ND 39.9 227 18 IN797797 [37]
BCU4 B. cereus S. Korea ND 154371 ND ND 399 223 19 JN797798 7]
BPS10C B. cereus S. Korea ND 159590 ND ND 38.7 271 0 NC_023501 (38]
BPS13 B. cereus S. Korea ND 158305 ND ND 3838 268 0 JN654439 [38]
Bastille B. cereus Canada ND 153962 90 200 38.1 280 7 JF966203 [20]
Bcpl B. cereus USA landfill soil 152778 ND ND 398 227 17 KJ451625 [12]
JBP9O1 B. cereus S. Korea fermented food 159492 95+5 170+5 39.7 201 19 KJ676859 [24]
W.Ph. B. cereus Switzerland ND 156897 90 203 36.5 274 0 HM144387 [20]
Bc431v3 B. cereus Egypt sewage 158621 854+3 180+3 40.0 238 21 JX094431 [10]
phiAGATE B. pumilus Poland water samples 149844 91.16+3.71 16541 +8.67 50.0 210 4 NC_020081 [3]
BigBertha B. thuringiensis USA soil sample 165238 ND ND 378 291 0 NC_022769 [39]
CAMO003 B. thuringiensis USA ND 160541 ND ND 380 296 8 KJ489397 -
Evoli B. thuringiensis USA ND 159656 ND ND 38.1 293 8 KJ489398 -
Hakuna B. thuringiensis USA ND 158100 ND ND 38.7 294 0 NC_024213 -
HoodyT B. thuringiensis USA ND 159837 ND ND 380 299 8 KJ489400 -
Megatron B. thuringiensis USA ND 158750 ND ND 388 291 0 NC_024211 -
Riley B. thuringiensis USA ND 162816 ND ND 378 290 0 NC_024788 -
Spock B. thuringiensis USA soil sample 164297 ND ND 376 283 0 NC_022763 -
Troll B. thuringiensis USA ND 163019 ND ND 378 289 0 NC_022088 -
Moonbeam B. megatrium USA soil sample 161239 ND ND 40.2 231 3 KM236246 [40]
Mater B. megatrium USA Soil sample 164302 ND ND 395 222 6 KM236245 [1]
phiNIT1 B. subtilis Japan ND 155631 ND ND 42.1 219 4 NC_021856 -
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include putative ribonucleotide reductases in the same
orientation, while putative terminase and endolysin genes
are 17 and 22 ORFs apart in an opposite orientation (data
not shown). In addition, the region downstream of gp203
does not contain a DHFR encoding gene (Fig. 7b). TS4
genes are located in the middle of the DNA replication/
transcription module, usually encoding such enzymes as
DNA polymerase, Sigma factors, RNA polymerase, nucle-
ase and primase (data not shown). These data suggest that
TS1 in the Bastille-like group originated from the same
source, which might be different from the source of TS2,
TS3 and TS4 genes.

Based on results obtained from CLANS (Fig. 1), dot
plot (Fig. 2), phylogenetic analysis using single gene
products (Fig. 3a and b), and CoreGenes analysis of the
proteome (data not shown), Bacillus phage Bobb is con-
sistently classified as a member of the Bastille-like group.
Interestingly, two TS-encoding genes (gp221 and gp223)
were detected in its genome. Further analysis suggested
that gp221 and gp223 could be a part of a gene separated
by insertion of gp222, an intron endonuclease homolog
(Fig. 5). A similar genotype was reported by Bechhofer
et al. (1994) [4] when they discovered an intron in the
thymidylate synthase homolog of a broad host range
Bacillus phage beta 22. The origin of these intron endo-
nuclease homologs in both bacteria and phages has not
been fully elucidated. Nevertheless, either gp223 or a com-
bined protein of gp223 and gp221 was clustered together
with other Bastille-like group phages in phylogenetic tree,
validating TS1 as a signature gene in the group.

Bastille-like and SPO1-like group phages share the same
hosts, Bacillus spp. Thus, the clear distinction of the two
groups based on TS1-DHEFR region is very intriguing.
Other phylogenetic studies such as nucleotide sequence-
based CLANS and single protein sequence-based phylo-
genetic trees separate Bastille-like and SPO1-like groups.
Therefore, it might be suggested that the acquisition
of the two signature genes is as old as the divergence
of the two Spounavirinae groups. In addition, it could
provide a possible explanation for the diversities in the
Bastille-like group phages which was further devel-
oped by vertical gene transfer followed by mutations
in the region.

Although all the Bastille-like phages encode TS1 and
DHER with significant identities to the TS1 and DHFR
of Bacillus cereus, the gene arrangement inside the TS1-
DHER region is different. No phage contained TS1 and
DHER genes right next to each other, as observed in most
bacteria including Bacillus spp. (data not shown). There
are one (phiAGATE and phiNIT1) to five putative ORFs
(Bastille and others) in between the genes (Fig. 7). Taken
together, these data suggest that not only vertical gene
transfer but also horizontal gene transfer might take place
in this region [15, 16].
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TS and DHEFR are found in the genome of Bacillus
spp. and not all the Bacillus phages have these genes.
On the other hand, TS and DHEFR are commonly found
in all Bastille-like group phages and appear to be a part of
the phage genome for a long time. This could imply that
these genes somehow play an important role in lifecycle
or physiology of Bastille-like phages. Currently, however,
the function(s) and the meaning of the products encoded
by these two genes in phage genome are unknown and are
certainly of great interest for further studies.

Due to relatively broad host range and strictly virulent
phenotype, Spounavirinae viruses received an increasing
interest as tools to control harmful bacteria [6]. It is gener-
ally accepted that phages intended for biocontrol should
not feature genes which encode putative virulence factors
or may possibly enhance the pathogenic profile of the
target bacteria [14]. Phage genome analysis has allowed
for convenient detection of phages encoding or lacking
putative virulence factors. In this study, we found that
all the members of Bastille-like group phages encode a
metallo-beta-lactamase protein and/or a SpolIIE homolog,
which might play a role in host virulence or pathogenesis.

Recently, Colomer-Lluch et al (2011) reported that
phage-encoded antibiotic resistance genes can confer
resistance to bacteria depending on the strain and envir-
onmental factors [8]. In addition, a number of phages,
including Bacillus phage SP10, were reported to affect
sporulation efficiency of the host [31]. Putative sporulation-
related genes in some of the members of Bastille-like
phages were reported previously [10, 23, 30]. However,
no experiments have proven that phage-encoded gene
products are directly related to bacterial sporulation.
More studies are required to clarify the role of these
genes in the phage genomes. Despite the lack of clear
evidence that identifies the role of these phage gene prod-
ucts in host virulence, their presence makes the use of
these phages questionable as biocontrol agents.

Previously, the genomes of two members of the proposed
SPO1-like group phages, JL and Shanette, were also
reported to encode tellurium resistance protein [12].
Interestingly, none of the Twort-like phages have so far
been reported to contain genes encoding for antibiotic re-
sistance or host survival. These data suggest that, while
the functional identity of these genes needs to be verified
experimentally for the future, Twort-like phages might be
better candidates as biocontrol agents.

Conclusions

In summary, we analyzed 61 complete genome sequences
of Spounavirinae phages and confirmed the creation of the
“Bastille-like group” in the subfamily. Furthermore TSI-
and DHFR-encoding genes were identified to be unique in
Spounavirinae, which could serve as signatures for the new
Bastille-like group.
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Methods

Data collection

Sixty-one prospective Spounavirinae phages were recruited
and included in the analysis (33 NCBI taxonomy-classified
[ID: 857473], 27 Bacillus Myoviridae phages with a genome
size greater than 127 kb, and one Lactobacillus phage
Lb338-1).

As of the date of manuscript submission, the NCBI
taxonomy-classified Spounavirinae includes 33 members
whose full genomic information is available. This contains
eight ICTV classified Spounavirinae phages (Bacillus phage
SPO1 [GenBank Accession Number NC_011421], Staphylo-
coccus phages Twort [NC_007021], G1 [NC_007066] and K
[KF766114], Listeria phages A511 [NC_009811] and P100
[DQO004855], Enterococcus phage phiEF24C [AP009390]
and Lactobacillus phage LP65 [NC_006565]). It also
includes 25 ICTV-unclassified phages (four Bacillus
phages Bastille [NC_018856], BCP8-2 [KJ081346.1], CP-51
[NC_025423], Bc431v3 [NC_020873]; 19 Staphylococcus
phage Sb-1 [NC023009], 676Z [JX080302], A35 [JX080301],
A5W [EU418428], Fi200W [JX080303], ISP [FR852584],
MSA6 [JX080304], P4W [JX080305], SA5 [JX875065],
Staph1N [JX080300], GH15 [NC019448], J]D007 [NC_019
726], MCE-2014 [NC_025416], P108 [NC_025426], phiSA012
[NC_023573], S25-3 [NC_022920], S25-4 [NC_022918],
Remus [NC_022090], and Romulus [NC_020877]; one
Listeria phage AG20 [NC_020871]; one Brochothrix
phage A9 [NC_015253]).

In addition, 27 complete genome sequences of can-
didate Spounavirinae Bacillus phages were collected
from NCBI database. This includes B5S [JN797796],
Spock [NC_022763], B4 [JN790865], Riley [NC_024788],
Troll [NC_022088], BigBertha [NC_022769], Hoody T
[NC_024205], Evoli [NC_024207], CAMO003 [NC_024216],
W.Ph. [NC_016453], BPS13 [NC_018857], BPS10C [NC_
023501], Megatron [NC_024211], Hakuna [NC_024213],
JBP901 [KJ676859.1], Bcpl [NC_024137], BCP78 [NC_
018860], BCU4 [JN797798], phiNIT1 [NC_021856], Mater
[KM236245], Moonbeam [KM236246], phiAGATE [NC_
020081], Bobb [NC_024792], SP10 [NC_019487], Cam-
pHawk [NC_022761], Shanette [KC595513], and JL
[KC595512].

As of the date of manuscript submission, there are three
more complete genome sequences of Bacillus phages
(Grass [NC_022771], G [NC_023719] and 0305phi8-36
[NC_009760]) available in NCBI database whose genome
is bigger than 127 kb. However, they were excluded from
the analysis because of either the lack of information (the
family of phage Grass is not specified) or significantly big-
ger genome size (approx. 219 and 498 kb for 0305phi8-36
and G, respectively).

Furthermore, Lactobacillus phage Lb338-1 was included
in all the analysis since it has been reported as an SPO1-
like phage [1, 19].
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Phylogenetic analysis

The CLuster Analysis of Sequences (CLANS) software
package [11] was used to compare all 61 members using
BLASTn as described previously [3]. It uses the Fruch-
terman and Reingold graph layout algorithm to generate
graphs after performing all-against-all BLAST searches,
and calculating pairwise attraction values based on the
P-values of high scoring segment pairs (HSPs) [11]. Dot
plots of protein sequences were generated using Gepard
[21]. We also constructed maximum likelihood (ML)
trees using protein sequences from the 61 phages (puta-
tive major capsid protein, tail sheath protein, large ter-
minase subunit and DNA polymerase) as described
previously [10]. Bootstrapping was set to 1000 and the
unrooted tree was collapsed at a less than 50 % boot-
strap value. The tree was drawn using Mega v6.0 [32].

Phamerator database analysis

The Phamerator database was created as described previ-
ously [9]. It uses BLASTP [2] and ClustalW [33] to
compare each putative protein from all phages in the
user-created database [27]. The percent identities and
BLASTP E-value scores are used to sort proteins into
phamilies (phams) based on user-defined cutoffs for
each score [9]. Conserved domains in each protein are
then identified. The database used in this study consists of
61 large genome phages as described above. Proteins were
grouped into phamilies (phams) when they exhibited a
BLASTP E-value lower than 1.0 x 107°° or greater than
32.5 % identity with at least one other protein [9, 27].
Conserved domains in each protein were identified
using RPS-BLAST [26]. Pham circles were drawn with
Phamerator program.

Availability of supporting data

The dataset supporting the results of this article is included
within the additional files (Additional file 1, the complete
dot plot analysis; Additional file 2, Phamerator database
containing the 61 phage genomes; Additional files 3 and 4,
the spreadsheet exported from the Phamerator database to
show all phage gene products, the phams, and the con-
served domains found in those phams).

Additional files

Additional file 1: Figure S1. Nucleotide (A) and amino acid sequence
(B) dot plot analysis of 61 Spounavirinae phage genomes.

Additional file 2: The Phamerator database for this study
(61phages).

Additional file 3: Cluster table of phamerator analysis.
Additional file 4: Pham table of phamerator analysis.
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