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ABSTRACT
Background: Steatotic liver disease (SLD) is the most common liver disease worldwide, affecting 30% of the global population. 
It is strongly associated with the interplay of genetic and lifestyle-related risk factors. The genetic variant accounting for the 
largest fraction of SLD heritability is PNPLA3 I148M, which is carried by 23% of the western population and increases the risk of 
SLD two to three-fold. However, identification of variant carriers is not part of routine clinical care and prevents patients from 
receiving personalised care.
Methods: We analysed MRI images and common genetic variants in PNPLA3, TM6SF2, MTARC1, HSD17B13 and GCKR from 
a cohort of 45 603 individuals from the UK Biobank. Proton density fat fraction (PDFF) maps were generated using a water-fat 
separation toolbox, applied to the magnitude and phase MRI data. The liver region was segmented using a U-Net model trained 
on 600 manually segmented ground truth images. The resulting liver masks and PDFF maps were subsequently used to calculate 
liver PDFF values. Individuals with (PDFF ≥ 5%) and without SLD (PDFF < 5%) were selected as the study cohort and used to 
train and test a Vision Transformer classification model with five-fold cross validation. We aimed to differentiate individuals who 
are homozygous for the PNPLA3 I148M variant from non-carriers, as evaluated by the area under the receiver operating charac-
teristic curve (AUROC). To ensure a clear genetic contrast, all heterozygous individuals were excluded. To interpret our model, 
we generated attention maps that highlight the regions that are most predictive of the outcomes.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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Results: Homozygosity for the PNPLA3 I148M variant demonstrated the best predictive performance among five variants with 
AUROC of 0.68 (95% CI: 0.64–0.73) in SLD patients and 0.57 (95% CI: 0.52–0.61) in non-SLD patients. The AUROCs for the other 
SNPs ranged from 0.54 to 0.57 in SLD patients and from 0.52 to 0.54 in non-SLD patients. The predictive performance was gener-
ally higher in SLD patients compared to non-SLD patients. Attention maps for PNPLA3 I148M carriers showed that fat deposition 
in regions adjacent to the hepatic vessels, near the liver hilum, plays an important role in predicting the presence of the I148M 
variant.
Conclusion: Our study marks novel progress in the non-invasive detection of homozygosity for PNPLA3 I148M through the ap-
plication of deep learning models on MRI images. Our findings suggest that PNPLA3 I148M might affect the liver fat distribution 
and could be used to predict the presence of PNPLA3 variants in patients with fatty liver. The findings of this research have the 
potential to be integrated into standard clinical practice, particularly when combined with clinical and biochemical data from 
other modalities to increase accuracy, enabling easier identification of at-risk individuals and facilitating the development of 
tailored interventions for PNPLA3 I148M-associated liver disease.

1   |   Introduction

Steatotic liver disease (SLD) represents a spectrum of liver dis-
orders that includes metabolic dysfunction-associated steatotic 
liver disease (MASLD), alcohol-related liver disease (ALD), 
and metabolic dysfunction–alcohol-associated liver disease 
(MetALD). Notably, MASLD is rapidly emerging as a major 
cause of liver-related mortality and morbidity worldwide, af-
fecting approximately 30% of the adult population [1]. In the 
United States, the prevalence of MASLD is forecast to increase 
by 21%, from 83.1 million cases in 2015 to 100.9 million by 2030 
[2]. In addition, ALD is a major cause of chronic liver disease 
worldwide, accounting for 5.1% of all disease and injury globally 
[3, 4], while MetALD, which is characterised by the coexistence 
of metabolic dysfunction and significant alcohol consumption, 
represents a distinct clinical entity with its own implications for 
disease progression and treatment [5, 6]. Additionally, MASLD 
can progress to metabolic dysfunction-associated steatohepati-
tis (MASH), potentially leading to cirrhosis and hepatocellular 
carcinoma (HCC) [7–9]. With this increasing prevalence of SLD, 
personalised prevention and treatment strategies have become 
crucial concerns.

Genetic factors play an important role in the development and 
progression of SLD, and genome-wide association studies have 
shown that specific single nucleotide polymorphisms (SNPs) 
have a pivotal impact on SLD and its development [10]. For exam-
ple, the presence of SNPs HSD17B13 rs72613567_T and MTARC1 
rs2642438_A reduces the risk of developing conditions such as 
liver cirrhosis and HCC [10–13]. On the other hand, the pres-
ence of SNPs GCKR rs1260326_T, TM6SF2 rs58542926_T and 
PNPLA3 I148M are associated with SLD progression [2, 12, 13]. 
Among them, the PNPLA3 I148M variant accounts for the larg-
est fraction of SLD heritability and is the most well-studied 
genetic risk factor for SLD development and progression [14]. 
Individuals with SLD who possess the PNPLA3 I148M vari-
ant, resulting in an isoleucine to methionine substitution at the 
amino acid position 148 (PNPLA3 I148M), have a 220% higher 
likelihood of developing fibrosis and a 248.8% higher likelihood 
of developing MASH compared to those without the variant [14]. 
Personalised care, in the case of PNPLA3 I148M, is especially in-
teresting as the variant is common: 23%, 49% and 17% in patients 
of European, Hispanic and African American ancestry, respec-
tively [12]. In a recent study of PNPLA3 I148M homozygotes, a 

hepatocyte-targeted N-acetylgalactosamine (GalNac)–conju-
gated small interfering RNA was able to reduce liver fat after 
1 month by 70% [15]. With these increasingly available therapeu-
tic options, it is apparent that easy, readily available screening 
options are necessary.

Determining whether a patient carries these SNPs is essential 
for creating personalised prevention strategies that are specif-
ically tailored to the individual's risk of disease progression 
[16]. However, the genetic testing for identification of SNPs, 
including PNPLA3 I148M, has not yet been integrated into 
routine clinical practice due to the additional cost, extensive 
acquisition time and lack of the required infrastructure for 
routine genetic testing in some hospitals. Recent studies, such 
as Veldhuizen et al. [17], have demonstrated the feasibility of 
using deep learning models for cardiovascular event predic-
tion from liver imaging. Additionally, Kather et al. [18] have 
demonstrated that deep learning models can capture imaging 
signatures associated with specific genetic variations on pa-
thology slides [19]. Building on this concept, we hypothesised 
that the PNPLA3 I148M variant may be detectable via subtle 
imaging signatures on liver MRI. This assumption is further 
supported by prior studies demonstrating that this variant is 
associated with distinct spatial patterns of hepatic fat accumu-
lation [20, 21].

Given these challenges, our research proposes an innovative 
approach to bridge this gap, which can be applied when pa-
tients are already undergoing liver MRI examination for other 
clinical reasons. MRI is a highly accurate and practical tech-
nique for detecting liver abnormalities and assessing fat con-
tent [22–24]. Its advantages include being non-invasive, free 
from radiation exposure, and highly precise in quantifying the 
proton density fat fraction (PDFF), a measurement of liver fat. 
These benefits make MRI a widely used tool in diagnosing and 
monitoring liver conditions. Incorporating the identification 
of carriers of high-risk genetic variants into routine MRI could 
facilitate early intervention and more targeted treatments. The 
analysis of MRI imaging data can be facilitated through the 
application of big data techniques and deep learning models. 
The latter has developed very rapidly in recent times and has 
shown extraordinary potential [22], while transformer mod-
els, specifically, have been proven to be a compelling option 
for visual tasks  [23]. We therefore hypothesised that genetic 
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variants associated with hepatic steatosis might lead to zonal 
changes in hepatic steatosis that can be used to identify vari-
ant carriers using liver MRI.

2   |   Methods

2.1   |   Study Cohort and Design

This study is based on the UK Biobank dataset, which includes 
comprehensive genetic and health information from circa half a 
million UK participants. They were recruited between 2006 and 
2010 from 22 assessment centres across Wales, Scotland, and 
England, providing a rich source of longitudinal data for research 
purposes [25]. In 2014, the UK Biobank project was expanded to 
include imaging for up to 100 000 participants, aiming to create 
the largest and most comprehensive collection of medical imag-
ing data globally upon completion. This initiative involves rig-
orous and standardised multimodal scanning across Stockport, 
Newcastle, Reading, and Bristol in the UK. The study includes vol-
unteers from the original UK Biobank cohort, aged 40 to 69 years 
[24]. The ethnicity of our study cohort was categorised into broad 
groups: White, Mixed, Asian, Black, and Other. While the UK 
Biobank classifies Chinese as a separate category, we included 
Chinese under the Asian category in this study. Participants who 
selected “Prefer not to answer” or “Do not know” for their ethnic-
ity were not considered in the ethnicity count. In this study, we 
specifically focus on liver MRI data, utilising a multi-echo spoiled 
gradient echo acquisition (Field ID 20254, n = 45 603).

Additionally, the UK Biobank also provides genotypic data 
for all participants. Variants were directly genotyped, not 
imputed. The dataset derived from two closely related geno-
typing arrays: The UK BiLEVE study involved 49 950 partic-
ipants, genotyped at 807 411 markers, while the remaining 
438 427 participants were genotyped on an array with 825 927 
markers, sharing approximately 95% of the marker content 
with the UK BiLEVE array. Marker-level quality control in-
volved statistical tests across batches and arrays, leading to 
~0.97% of genotype calls being set to missing. At the sample 
level, 968 samples (0.2%) with high missingness or abnormal 
heterozygosity and 652 individuals with sex discrepancies 
were flagged. The final dataset demonstrated high consis-
tency (99.87% concordance in duplicates, r2 = 0.93 with ex-
ternal allele frequencies) [26]. In this study, five SNPs that 
are associated with SLD progression were used as training 

and prediction labels, including PNPLA3 I148M, HSD17B13 
rs72613567_T, MTARC1 rs2642438_A, GCKR rs1260326_T 
and TM6SF2 rs58542926_T.

We proceeded as follows (Figure  1): firstly, we derived PDFF 
maps from the magnitude and phase MRI data (n = 45 603), 
based on a chemical shift-based water-fat separation method 
[28–30]. Unsuitable images (n = 514), including those with in-
correct positioning, intensity abnormalities and water-fat swaps, 
were identified and removed from the dataset. Subsequently, the 
liver region was extracted by a U-Net segmentation model [31]. 
As we are focusing on the homozygosity of genetic variants, 
all heterozygous carriers (n = 14 362) and individuals without 
PNPLA3 I148M labeling (n = 2245) were excluded (Figure  2). 
Finally, our study cohort consisted of n = 28 482 individuals. 
Those with a median PDFF value exceeding 5% [32] were cat-
egorised as the SLD group (n = 7943), while patients exhibiting 
a PDFF value below 5% were categorised as the non-SLD group 
(n = 20 539, Table 1). This stratification minimises potential bi-
ases, as PNPLA3 is already linked to an increased risk of SLD. 
By separately evaluating model performance in the SLD and 
non-SLD groups, we aim to discern whether the model's pre-
dictive capacity reflects underlying genotype-driven lipid dis-
tribution patterns rather than merely differentiating liver fat 
content. Finally, after benchmarking different machine learn-
ing algorithms (Figure  S1), we selected a Vision Transformer 
image classification model to classify these patients based on 
segmented liver magnitude images and genetic variant labels. 
For each SNP, we selected non-carriers and homozygous carri-
ers from the study cohort to create the SNP-based research co-
horts (Table 2).

2.2   |   MRI acquisition and Post-Processing

Images were acquired at the Biobank Imaging Centre at 
Cheadle (UK) using a Siemens 1.5 T MAGNETOM Aera scan-
ner. For each patient, six dynamic sequence acquisitions were 
performed, following a dynamic imaging protocol in which six 
sequential image series were acquired, spaced 1.6225 s apart. 
Each series includes images acquired at six different echo 
times. For each echo time, a magnitude image and its corre-
sponding phase image were captured as single transverse slices 
during end-expiration breath-hold, without the use of a con-
trast agent injection. The slices were positioned at the porta 
hepatis, with the following scan parameters: TR = 14 ms, TE = 1
.2/3 .2/5.2/7.2/9.2/11.2 ms, FA = 5°, bandwidth = 1565 Hz, voxel 
size 1.719 × 1.719 × 10.0 mm, 256 × 232 matrix.

For the present study, we utilised the first of six acquired dy-
namic sequences, comprising six magnitude images and six 
phase images, differentiated by varying TE values. PDFF 
maps were generated using the aforementioned MATLAB-
based fat-water imaging software, which employs a previously 
validated confounder-corrected mapping method, including 
correction for R2* effects and a multi-peak fat spectral model 
[28–30].

However, some images were not adequately suitable for the task 
due to issues with the original dataset's quality and the water-fat 

Summary

•	 Steatotic liver disease affects about 30% of people 
worldwide, and some people carry a gene variant 
called PNPLA3 I148M that increases the risk of devel-
oping this condition.

•	 In this study, we found that liver MRI scans combined 
with artificial intelligence can help predict whether a 
person carries this variant.

•	 This finding might help improve early diagnosis and 
stratified treatment in the future.
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separation reconstruction process. In this study, these unquali-
fied images were defined as follows: (i) As per the UK Biobank 
imaging enhancement protocol, the slices should be positioned 
at the porta hepatis [24]. However, some slices were positioned 
too high or too low, leading to the absence of the liver or the pres-
ence of only a small part of the liver in the image; (ii) Intensity 
abnormalities: The image intensity was either too high or too 
low, making it difficult to identify the liver region; (iii) Another 
problem is the water-fat swap. This artefact occurs during the 
water-fat separation reconstruction process, where the signals 
for water and fat are incorrectly swapped. As a result, regions 
that should appear as fat may appear as water, and vice versa. 
This misalignment can lead to substantial errors in image in-
terpretation, particularly in the accurate assessment of tissue 
composition.

To mitigate the issues associated with these unqualified images, 
we employed an automated filtering process using a ResNet50 
image classification model. To validate the model's accuracy, we 
recorded the predictions, examining the probability that each 
image is classified as a suitable image. Images, predicted with 

FIGURE 1    |    Deep learning-based workflow for predicting steatosis-associated SNPs using PDFF maps and liver segmentation on abdominal 
MRIs. (a) PDFF maps were obtained by utilising fat-water imaging software. However, during the image reconstruction process, water-fat swaps can 
occur, leading to incorrect mapping of water and fat signals. To address this, a ResNet [27] was trained to remove these artefacts and filter out un-
suitable images. (b) To calculate the liver PDFF value, we trained a U-Net to segment the liver region. We further refined the segmentations by sigma 
clipping to reduce the impact of blood vessels, cysts and other factors that could potentially affect the PDFF value. Finally, we calculated the median 
liver PDFF value. (c) Patients with median PDFF values greater than 5% constituted the study cohort. Homozygous carriers and non-carriers of each 
SNP were selected for the corresponding study cohort. The final scores were obtained on the test set after using five-fold stratified cross-validation 
and ensemble testing method. For genetic variants with high test scores, subgroup analyses were performed based on obesity, sex and age. This figure 
was created in BioRender. Chen, Y. (2024) BioRe​nder.​com/​w67o014. Reproduced by kind permission of UK Biobank.

FIGURE 2    |    Exclusion criteria of our study cohort.

https://biorender.com/w67o014
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probabilities below 0.8 were manually reviewed. Furthermore, 
we conducted an additional quality control step by manually 
evaluating 100 randomly selected samples from each of the 
probability ranges [0.8, 0.9] and [0.9, 1.0], to monitor the model's 
performance. Unsuited images identified through this process, 
along with an equal number of qualified images, were added to 

the training set as negative and positive samples, respectively. 
The model was then retrained to enhance its learning efficacy. 
This refinement continued iteratively until no further unqual-
ified images were detected. We eventually used 7 iterations, 
with the results evaluated by a medical imaging scientist (Y.C., 
2 years of experience) and reviewed by a senior radiologist (D.T., 

TABLE 1    |    Baseline characteristics of the study cohort.

Characteristic

SLD group Non-SLD group

p-valueN = 7943a N = 20539a

Demographics

Ethnicity 0.034b

Asian 127 (1.6%) 253 (1.2%)

Black 49 (0.6%) 170 (0.8%)

Mixed 33 (0.4%) 95 (0.5%)

Other 36 (0.5%) 113 (0.6%)

White 7674 (97%) 19 855 (97%)

Sex < 0.001b

Female 3001 (38%) 11 713 (57%)

Male 4942 (62%) 8826 (43%)

Age (years) 0.062b

40–50 2213 (28%) 5718 (28%)

51–60 3323 (42%) 8334 (41%)

61–70 2388 (30%) 6451 (31%)

BMI (kg/m2) 28.64 (26.27, 31.50) 25.09 (23.04, 27.50) < 0.001c

Clinical variables

PNPLA3 I148M < 0.001b

Homozygous Carrier 961 (12%) 1059 (5.2%)

Non-Carrier 6982 (88%) 19 480 (95%)

Obesity 2942 (37%) 2168 (11%) < 0.001b

PDFF Median 0.08 (0.06, 0.12) 0.03 (0.02, 0.04) < 0.001c

Type 2 Diabetes 960 (12%) 703 (3.4%) < 0.001b

Mortality 109 (1.4%) 220 (1.1%) 0.033b

Alcohol Consumption (g/d) 8.31 (1.60, 17.83) 8.23 (1.95, 13.80) < 0.001c

Laboratory variables

ALT (U/L) 25.05 (18.76, 33.90) 18.17 (14.25, 23.60) < 0.001c

AST (U/L) 25.60 (21.90, 30.60) 23.60 (20.40, 27.40) < 0.001c

GGT (U/L) 33.05 (23.20, 49.40) 22.10 (16.40, 32.40) < 0.001c

Cholesterol (mmol/L) 5.73 (4.99, 6.50) 5.66 (4.98, 6.38) < 0.001c

Triglycerides (mmol/L) 1.86 (1.33, 2.63) 1.25 (0.92, 1.78) < 0.001c

Note: In the SLD group, 37% of patients are obese, compared to only 11% in the non-SLD group, indicating a significant difference. Additionally, the proportion of males 
in the SLD group is 62%, whereas it is only 43% in the non-SLD group, also showing a significant difference. This trend is consistent in the ALT levels and alcohol 
consumption, both of which also show statistically significant differences.
an (%); Median (IQR).
bP earson's Chi-squared test.
cW ilcoxon rank sum test.
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10+ years of experience). Finally, we compiled a dataset con-
sisting of 45 089 qualified images, discarding 514 unqualified 
images.

2.3   |   Liver Segmentation and PDFF Value 
Calculation

Liver segmentations were obtained using a U-Net-based seg-
mentation model. The training data was manually segmented 
by a medical imaging scientist (Y.C., 2 years of experience) 
and reviewed by a senior radiologist (D.T., over 10 years of 
experience).

The model was initially trained using 300 manually segmented 
images and then tested on 100 randomly selected samples. The 
predicted segmentations of these samples were visually evalu-
ated, and any inaccuracies were manually corrected. These cor-
rected segmentations were subsequently added to the training 
dataset for the next iteration of training. This iterative model 
refinement process continued until the predicted segmented 
liver segmentations aligned with the liver contours, as verified 
through visual inspection. A total of 309 corrected segmenta-
tions were added to the training dataset. The final model was 
trained with 609 manually segmented images, while the valida-
tion set comprised 68 manually segmented images.

Upon successful training and validation, the model was em-
ployed to perform liver segmentation across the entire study 
cohort. Subsequently, these liver segmentation images were 
overlaid on the corresponding PDFF maps to derive liver PDFF 
maps. To enhance the reliability of the liver PDFF values, we 
employed sigma clipping (iteration = 5) on the segmented re-
gions. We excluded air cavities (upper threshold, sigma = 2), 
blood vessels, and cysts (lower threshold, sigma = 2) based on 
the R2* map and outlier values in the PDFF map (upper thresh-
old, sigma = 1.1), as these structures could potentially skew the 
PDFF readings. The median pixel value of the post-processed 
liver PDFF maps was then calculated to establish the liver PDFF 
value for each patient.

2.4   |   Predictive Model Training and evaluation

For this study, we selected the sixth image in the sequence 
(TE = 11.2 ms) to train our deep learning classification model. 
The 11.2 ms echo time places the image in an out-of-phase con-
dition, which provides the clearest distinction between SLD and 
non-SLD, by partial cancellation of water and fat signals respec-
tively, thereby enhancing the visibility of fat within the liver [33]. 
This increased contrast is particularly beneficial for accurately 
identifying and assessing the extent of steatosis, making it an 
optimal choice for this study. To ensure compatibility with the 
Vision Transformer model, a bounding box that minimally en-
closes the liver region was drawn, based on the liver segmenta-
tion. Lastly, extra padding was added, transforming the rectangle 
into a square bounding box. The region within the bounding box 
was extracted and subsequently resized to 224 × 224 pixels, em-
ploying cubic interpolation. The cubic interpolation is preferred 
in this case as it provides smoother and more accurate results 
compared to linear interpolation, especially when scaling small 

images to larger sizes by considering the surrounding pixel val-
ues in a 4 × 4 neighbourhood.

The images were processed using the Vision Transformer 
(ViT-base-patch16-224) model, available from the Hugging 
Face model repository [34]. The model was originally pre-
trained on ImageNet-21 k, a dataset containing 14 million im-
ages across 21 000 classes, and later fine-tuned on ImageNet, 
which comprises 1 million images and 1000 classes [35]. The 
outcome variable for our analysis was defined in a binary 
manner: individuals were classified as positive if they were 
homozygous for the PNPLA3 I148M variant, and as negative 
if they were non-carriers. All heterozygous individuals were 
removed from the dataset to establish a clear distinction be-
tween groups (Figure 2). Due to the imbalance between pos-
itive and negative samples, all cohort data were partitioned 
according to the following protocol: we employed a stratified 
method to randomly extract 15% of the samples as an inter-
nal test set, ensuring consistent label distribution across the 
subsets. The internal test set was excluded from the training 
process. To maximise the utilisation of the dataset and reduce 
bias from random allocation, the remaining 85% of the data 
underwent a five-fold stratified cross-validation. The optimal 
model from each fold was subsequently used to evaluate the 
internal test set through an ensemble testing method. All re-
ported results in this study reflect the outcomes on the test 
sets, and the 95% confidence intervals were calculated using 
the bootstrap method.

To visualise the model's focus areas, attention maps were gen-
erated during the test phase by extracting weights from the 
final attention head of the last layer of the Vision Transformer 
model. These maps were resized to match the input image di-
mensions and overlaid on the original images to highlight the 
regions of interest. Further, we identified common samples 
across all folds and averaged their attention maps to obtain a 
consistent representation. The averaged attention maps were 
used to mitigate the variability introduced by the different 
folds and provide a clearer understanding of the model's at-
tention mechanism.

2.5   |   Ethical Considerations

The study was performed in accordance with the Declaration 
of Helsinki. All participants provided informed consent, and 
the UKB project received ethical approval from the National 
Health Service National Research Ethics Service (Ref 11/
NW/0382).

2.6   |   Statistical Analysis

Our main analyses were conducted using Python 3.10.13 
(https://​www.​python.​org/​) for programming, and R version 
4.3.2 (https://​www.​r-​proje​ct.​org/​) for result visualisation. For 
the Matlab-based fat-water imaging software we used Matlab 
R2023b (The MathWorks, Natick, MA). To assess model perfor-
mance, we used the area under the receiver operating charac-
teristic curve (AUROC) as our evaluation metric. Confidence 
intervals were calculated using the bootstrap method, with 95% 

https://www.python.org/
https://www.r-project.org/
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confidence intervals. Predicted positive and negative samples 
were determined using a dynamic threshold by maximising 
Youden index. For all tables, p-values were calculated using 
Wilcoxon rank sum test for continuous variables and Pearson's 
chi-squared test for discrete variables. The significance level for 
all statistical tests was set at 0.05.

3   |   Results

3.1   |   Vision Transformer Models predict PNPLA3 
I148M among well-known Steatosis-Associated 
SNPs on Liver MRIs in SLD

We hypothesised that genetic variants associated with he-
patic steatosis might lead to zonal changes in hepatic ste-
atosis, which can be used to identify variant carriers using 
liver MRIs. Therefore, we evaluated the performance of our 
Vision Transformer model in predicting the homozygosity of 
five SNPs in all patients, patients with SLD and patients with-
out SLD (Table  1). The model's performance was quantified 
using the AUROC for each SNP (Figure 1). Notably, PNPLA3 
I148M exhibited the highest predictive accuracy in the SLD 
group with an AUROC of 0.68 (0.64–0.73). This trend was also 

consistent in the all-patients group and non-SLD group, with 
homozygosity for PNPLA3 I148M still exhibiting the highest 
predictive accuracy with an AUROC of 0.61 (0.57–0.64) and 
0.57 (0.52–0.61), respectively. The results for all variants in-
dicated that the prediction performance is generally higher in 
the SLD group compared to the non-SLD group (Figure S2). 
Only homozygosity for the PNPLA3 I148M variant in the SLD 
group achieved an AUROC of 0.68, indicating that the model 
was able to learn some relevant information associated with 
this variant in the SLD population.

Additionally, the PNPLA3 I148M variant demonstrated a sensi-
tivity of 0.72 and a specificity of 0.58 within the SLD group, while 
maintaining the same sensitivity of 0.72 but showing a markedly 
lower specificity of 0.43 in the non-SLD group. These findings 
indicate that, although the homozygosity for the variant was 
equally detected in both groups, the ability to correctly identify 
non-carriers is reduced in the non-SLD population. This dispar-
ity in specificity may suggest that the PDFF value influences 
the accuracy of variant detection. To investigate the potential 
influence of confounding factors, we further divided the SLD 
group into subgroups based on BMI, sex and age (Figure  3c). 
In younger patients and in females, the AUROC for predicting 
PNPLA3 I148M was highest [36] (Figure 3c).

FIGURE 3    |    Visualisation of prediction-contributing areas of PNPLA3 I148M carriers on liver MRIs in SLD group. (a) We selected true positive 
samples from the predictions of PNPLA3 I148M model by inference on the test set. Each sample includes the liver segmentation based on the mag-
nitude image, an attention map highlighting the regions contributing to the prediction, and the distribution of hepatic fat in these areas. (b) AUROC 
and confusion matrix of PNPLA3 I148M model using the ensemble testing method. (c) The heatmap of AUROCs, resulting from the subgroup anal-
ysis based on obesity (BMI > 30), sex and age. This plot shows one of six attempts using different random seeds for data splitting. For each subgroup, 
we presented the AUROC from the current attempt, along with the minimum and maximum values (min-max) observed across all attempts. This 
figure was created in BioRender. Chen, Y. (2024) BioRe​nder.​com/​g20c852. Reproduced by kind permission of UK Biobank.

https://biorender.com/g20c852
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3.2   |   Model Predicts PNPLA3 I148M Variants 
Instead of Traditional Risk Factors of Obesity 
and Type 2 Diabetes

To test whether our model was merely detecting general risk fac-
tors, we used our original model, which was trained by PNPLA3 
I148M label, to predict various risk factor labels, such as obesity 
(BMI ≥ 30) and Type 2 diabetes. For obesity, the model yielded 
an AUROC of 0.35, and for Type 2 diabetes, an AUROC of 
0.47—both values substantially lower than the AUROC of 0.68 
observed for PNPLA3 I148M homozygosity. Considering the po-
tential combined influence of these risk factors on the model's 
performance, we created two additional composite labels. The 
first composite label was defined as positive if either the dia-
betes label or the obesity label was positive, while the second 
composite label was defined as positive only when both obesity 
and diabetes were present. When predicting these new labels, 
the model achieved AUROCs of 0.37 and 0.39, respectively 
(Table S1). These results consistently indicate that our model is 
capturing genotype-specific imaging signatures rather than re-
lying on general indicators of hepatic steatosis or risk factors like 
obesity and Type 2 diabetes.

3.3   |   Higher PDFF and ALT Levels are Associated 
With Successful PNPLA3 I148M Variant Detection 
on Liver MRIs

Subsequently, we focussed on PNPLA3 I148M and conducted 
an analysis of the common True Positive (TP) and False 
Negative (FN) samples of all folds predicted by the PNPLA3 
I148M model during cross-validation to understand which 
patients' characteristics lead to better predictability. Our 

findings indicate that the median PDFF value for TP samples 
was 11% versus 8% in the FN samples (p = 0.004), and the me-
dian ALT value is 28 vs. 22 U/L in the FN samples (p = 0.045) 
(Table  3). For TP samples, specifically homozygous carriers 
of the PNPLA3 I148M variant, higher PDFF values are asso-
ciated with a greater likelihood of the model correctly clas-
sifying them as positive. Additionally, there was a notable 
difference in BMI between TP and FN samples, with 84% of 
the TP samples being non-obese individuals, compared to 65% 
in the FN samples (p = 0.039, Table 3). These findings suggest 
that higher PDFF and ALT values are important indicators for 
identifying individuals with the PNPLA3 I148M variant, thus 
strengthening our hypothesis that the prediction is based on 
zonal changes in hepatic fat (Table 3).

3.4   |   Sensitivity Analysis Using Decomposed 
Signals and Alcohol Consumption Status

To analyse whether the prediction in these specific areas 
is based on steatosis as opposed to fibrosis, we conducted a 
sensitivity analysis. Here, we split the images into the water 
only signals, fat only signals, the PDFF map and the R2* map 
(can be used as a marker of fibrosis), which yielded AUROCs 
of 0.67 (0.63–0.72), 0.67 (0.63–0.73), 0.65 (0.61–0.70), 0.57 
(0.52–0.62), respectively. These results indicate that the water 
and fat signals contribute most strongly to predicting PNPLA3 
I148M status, whereas the R2* map contributes minimally 
(Figure 4).

We further performed a sensitivity analysis excluding individ-
uals with excessive alcohol consumption, defined as > 60 g/
day for male and > 50 g/day for female, based on the 2024 

TABLE 3    |    Comparison of true positive and false negative predicted PNPLA3 I148M carriers.

Variable False negative, N = 31a True positive, N = 51a p-valueb

PDFF Median 0.076 (0.061, 0.098) 0.113 (0.069, 0.201) 0.004

Age (years), n (%) 0.37

40–50 7 (23%) 10 (20%)

51–60 14 (45%) 30 (60%)

61–70 10 (32%) 10 (20%)

BMI (kg/m2), Median (IQR) 0.039

Not obese (< 30) 20 (65%) 43 (84%)

Obese (≥ 30) 11 (35%) 8 (16%)

Sex, n (%) 0.55

Female 13 (42%) 18 (35%)

Male 18 (58%) 33 (65%)

ALT (U/L), Median (IQR) 21.615 (15.910, 30.525) 27.570 (22.340, 36.533) 0.045

Alcohol consumption (g/d), Median (IQR) 7.314 (2.900, 11.043) 6.857 (2.271, 14.100) > 0.99

Died during follow up, n (%)

No 31 (100%) 51 (100%)
aMedian (IQR); n (%).
bp-value, Continuous variables: Wilcoxon rank-sum test. Categorical variables: Pearson's Chi-squared test.
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EASL-EASD-EASO Clinical Guidelines on the management of 
MASLD [37]. Using the UK Biobank 24-h alcohol intake data, we 
identified n = 100 male and n = 21 female in the SLD group who 
exceeded this threshold, and n = 431 individuals with missing 
values (Table S2). After excluding these individuals and retrain-
ing our model, the AUROC in the SLD group remained stable 
at 0.67 (0.63–0.70). The result showed a slight decrease but re-
mained stable, indicating that the model's ability to distinguish 
PNPLA3 I148M homozygous carriers from non-carriers is not 
primarily driven by alcohol-related hepatic fat accumulation.

3.5   |   Predictive Patterns of PNPLA3 I148M on 
Liver MRIs

To finally understand if our predictions were based on steato-
sis, we further visualised attention maps of those TP samples to 
identify the key regions contributing to the model's predictions 
(Figure 3a). Interestingly, when comparing the attention maps 
with the liver fat distribution images, we found that regions with 
high fat content were not always the most influential contribu-
tors to the prediction results. Some areas with relatively high fat 
content still exhibited no predictive value. Instead, the attention 
maps highlighted regions with high liver fat content, which were 
mainly in the central part of the liver and particularly in areas 

adjacent to blood vessels, especially around the terminal vessels 
(Figure 3a). This suggests that the model's predictive power is 
influenced by the specific location of liver fat. It is possible that 
these regions provide more information to distinguish between 
PNPLA3 I148M variant homozygous carriers and non-carriers 
compared to areas with generally high PDFF values.

4   |   Discussion

In this study, we demonstrate that a deep learning model applied 
to liver MRI images distinguishes PNPLA3 I148M homozygous 
carriers from non-carriers in a SLD cohort. In individuals with 
SLD, defined as a PDFF of 5% or higher, our model achieved an 
AUROC of 0.68 (0.64–0.73), whereas the performance in the 
full-cohort group and non-SLD group was lower at an AUROC 
of 0.61 (0.57–0.64) and 0.57 (0.52–0.61), respectively. Among the 
five steatosis-associated genetic variants evaluated, PNPLA3 
I148M consistently exhibited the highest discriminative ability. 
These results suggest that the PNPLA3 I148M variant is asso-
ciated with specific imaging signatures that reflect genotype-
related patterns of hepatic fat distribution.

Since AUROC is a metric that measures the ability of a 
model to distinguish between positive and negative classes, it 

FIGURE 4    |    Comparative analysis of image modalities for detecting PNPLA3 I148M homozygosity on liver MRIs. To investigate the specific pat-
terns that distinguish PNPLA3 I148M homozygosity in the liver region, we extended our analysis beyond the original magnitude images to include 
the water-signal-only image, fat-signal-only image, PDFF map, and R2* map. (a) The model using water-signal-only image achieved an AUROC of 
0.67 (0.63–0.72), exhibiting the ability to detect negative samples but showing less effectiveness in identifying positive samples. (b) The model, using 
a fat-signal-only image, demonstrated an AUROC of 0.67 (0.63–0.73). Compared to the water-signal-only image, this model showed improved perfor-
mance in detecting positive samples, although its ability to identify negative samples slightly decreased. (c) The model, using the PDFF maps, reached 
an AUROC of 0.65 (0.61–0.70). This model further enhanced the detection of positive samples. However, it frequently predicted false positives, likely 
due to a bias towards predicting positive samples. (d) The model using R2* map, which reflects the rate of signal decay influenced by local magnetic 
field inhomogeneities and often related to iron content in the liver, achieved an AUROC of 0.57 (0.52–0.62). This model produced a high number 
of false positives and exhibited a relatively low AUROC, suggesting that the R2* map patterns are not valuable for this specific task. Overall, both 
the fat-signal-only and water-signal-only images contain patterns that can distinguish PNPLA3 I148M homozygous carriers from non-carriers. The 
performance of these models is comparable to that of the magnitude images. This figure was created in BioRender. Chen, Y. (2024) BioRe​nder.​com/​
j91q961.

https://biorender.com/j91q961
https://biorender.com/j91q961
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summarizes the trade-off between true positive and false posi-
tive rates across different threshold settings. An AUROC of 0.5 
indicates that a model's ability to distinguish between positive 
and negative samples is no better than random guessing. When 
a model's AUROC falls below 0.6, it suggests that the model has 
learned little to no useful information from the training data. In 
the SLD cohort, our deep learning model distinguished PNPLA3 
I148M homozygous carriers from non-carriers with an AUROC 
of 0.68 (0.64–0.73), compared to an AUROC of 0.57 (0.52–0.61) 
in the non-SLD cohort. This difference indicates that the imag-
ing signatures associated with PNPLA3 I148M are likely reflect-
ing a unique pattern of hepatic fat distribution, which are more 
prominent in individuals with steatosis. Furthermore, when 
comparing across five steatosis-associated genetic variants, only 
PNPLA3 I148M yielded a notably higher AUROC. These obser-
vations suggest that the model is capturing specific genotype-
associated imaging patterns rather than merely detecting 
general risk factors for hepatic steatosis, thereby reinforcing the 
established association between PNPLA3 I148M and increased 
liver fat accumulation. Although it may still be suboptimal for 
allowing direct implementation in clinical practice without con-
firmation by genetic testing, the relatively narrow confidence 
interval of 0.64–0.73, however, suggests that the estimate is rea-
sonably precise, meaning the true AUROC is likely to fall within 
this range, but there is still some variability.

The findings of our study highlight the moderate potential 
of Vision Transformer models to predict the presence of the 
PNPLA3 I148M variant on liver MRI, achieving an AUROC of 
0.68. The superior predictive accuracy observed for PNPLA3 
I148M in the SLD group highlights the variant's pivotal role in 
liver fat accumulation, which aligns with existing literature, 
emphasising the influence of PNPLA3 on liver fat accumulation 
and consequently on fibrosis [12, 14]. This association suggests 
that routine liver MRI of SLD patients could be used to identify 
a population that might benefit from PNPLA3 I148M screen-
ing, hence identifying individuals at higher risk of developing 
more severe liver disease phenotypes. This is particularly useful 
as carriers of PNPLA3 I148M are common (23% in Europeans, 
49% in Hispanics and 17% African-americans [12]) and targeted 
therapies for people with fibrotic MASH homozygous for this 
variant are under evaluation in early phase clinical studies [15]. 
If untreated, PNPLA3 I148M homozygosity can lead to a three 
to four-fold increased risk of MASH, cirrhosis and up to a 12 
times elevated risk of HCC [38]. Several studies have robustly 
associated this variant with an increased risk of fat accumula-
tion, liver inflammation and fibrosis [12, 39]. Additionally, the 
homozygosity for this variant profoundly impacts liver fibrosis 
severity, highlighting its role in disease progression [40].

Our analysis of the TP and FN samples provides further insights 
into the factors influencing predictive success. The significantly 
higher PDFF and ALT values in TP samples compared to FN 
samples indicate that higher hepatic fat levels lead to better pre-
dictions. This finding is consistent with previous studies that 
have identified elevated liver fat content and liver enzyme levels 
as being linked to PNPLA3 as indicative of hepatic steatosis and 
fibrosis [12, 41]. Furthermore, the difference in BMI distribu-
tion between TP and FN samples suggests that non-obese in-
dividuals with the PNPLA3 I148M variant may exhibit distinct 
metabolic or imaging characteristics that facilitate accurate 

identification (Table 3). This is particularly interesting as lean 
MASLD remains insufficiently understood [42]. Therefore, in-
tegration of clinical features, including for example, BMI and 
aminotransferases into MRI-based assessment may further im-
prove the ability to identify people homozygous for the PNPLA3 
variants, who may benefit from targeted clinical management.

We observed imaging patterns in liver MRIs that may help 
differentiate PNPLA3 I148M homozygous carriers from non-
carriers with moderate discriminative performance. These pat-
terns are related to regions of elevated liver fat, adjacent to blood 
vessels, especially around the terminal vessels. An explanation 
might be derived from the different functionalities of the ves-
sels. The vessels in the liver hilum primarily consist of the portal 
vein, which brings all digested foods and metabolites from the 
gut to the liver, whereas the capillary network of the terminal 
vessels is densely distributed within the liver tissue, enabling 
the transfer of oxygen, nutrients, and metabolic products from 
the blood to the hepatocytes. Here, an interaction with PNPLA3 
I148M might lead to more fat deposition in the areas surround-
ing the terminal vessels.

PNPLA3 encodes the patatin-like phospholipase domain-
containing protein 3, which plays a crucial role in lipid re-
modelling and affects triglyceride hydrolysis [12]. The I148M 
variant results in decreased enzymatic activity and determines 
the ability to inhibit ATGL/PNPLA2, therefore impairing lipid 
metabolism and leading to increased triglyceride accumulation 
in hepatocytes [14, 43]. While the effects of the PNPLA3 I148M 
variant occur in all hepatocytes, regions adjacent to terminal 
vessels, which have a rich blood supply and high metabolic ac-
tivity, may show distinct patterns. These regions are exposed 
to higher insulin concentrations, as PNPLA3 expression is in-
duced by insulin and cleared via insulin receptor (INSR) in he-
patocytes [44]. Therefore, we hypothesise that the intracellular 
triglyceride storage, caused by the PNPLA3 I148M variant, may 
form visible, specific patterns in these metabolically active re-
gions that can be captured by MRI and detected by our model. 
This hypothesis needs to be validated in further studies.

One of our study's limitations is that the reached conclusions 
may not be applicable to non-European individuals and to pa-
tients with SLD and advanced liver fibrosis, when the amount of 
steatosis tends to decrease in parallel with disease progression. 
Looking ahead, the quality of MRI images strongly influences 
the prediction outcomes, especially when using images directly 
for prediction. For future research, we recommend utilising 
higher-resolution MRI 2D images or even 3D liver data, as these 
provide more detailed information. Models, trained on these 
more comprehensive datasets, may achieve higher prediction 
accuracy by learning from the additional information.

Further, we assessed model performance using a five-fold 
cross-validation approach, ensuring that 15% of the data was 
randomly selected in a stratified manner and set aside as an in-
ternal independent test set, maintaining the same distribution 
as the training set. Due to the unavailability of an external co-
hort for validation, this internal test set was used to assess the 
model's generalizability. We recognise this as a limitation of our 
study and recommend that future work include external valida-
tion in an independent cohort to further confirm these findings. 
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Furthermore, integrating radiomics data, extracted from liver 
regions, alongside imaging data, could further enhance predic-
tion performance. The integration of radiomics and imaging 
data would yield a comprehensive set of features, leading to 
more robust and accurate predictive models.

5   |   Conclusion

Our research represents a novel advancement in the non-
invasive identification of PNPLA3 I148M associated with 
SLD using deep learning models applied to MRI images. The 
ability to non-invasively predict the presence of the PNPLA3 
I148M variant using MRI images can enhance early detec-
tion and risk stratification. The accuracy of this approach 
is expected to improve further when combined with tabular 
data, like diagnoses or serum values. With further indepen-
dent validation, this method has the potential for immediate 
integration into clinical practice, offering real-time selection 
of a high-risk population for genetic risk assessment during 
routine imaging.
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