
Complete Genome Sequence of Starkeya sp. Strain ORNL1, a
Soil Alphaproteobacterium Isolated from the Rhizosphere of
Populus deltoides

Mircea Podar,a Joel Turner,a Leah H. Burdick,a Dale A. Pelletiera

aBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

ABSTRACT Starkeya sp. strain ORNL1 is an alphaproteobacterium isolated from the
rhizosphere of an Eastern cottonwood tree. Starkeya spp. are physiologically versa-
tile, using a wide range of nutritional and energetic resources and serving important
ecological roles in carbon and sulfur cycling. The 6.3-Mb chromosome of Starkeya
sp. strain ORNL1 was completely sequenced and will help in understanding nutrient
cycles.

Starkeya is a genus of alphaproteobacteria classified into the family Xanthobacter-
aceae, most closely related to Ancylobacter (1, 2). Its type species, Starkeya novella,

was isolated from soil in the mid-1930s and was originally classified as Thiobacillus (1,
3). A second formally described species, S. koreensis, was isolated from rice straw (4). S.
novella has been studied extensively, being able to grow as a facultative chemoau-
totroph, both consuming and producing CO2 (5–7), utilize a variety of C1 substrates
(methanol, formate, formamide) (8, 9), and oxidize sulfur compounds (9, 10).

Here, we report the complete genome sequence of a putative novel species of
Starkeya, strain ORNL1, isolated from the microbial rhizosphere of an Eastern cotton-
wood tree (Populus deltoides) in Oak Ridge, Tennessee. We used flow cytometry to
deposit single bacterial cells from a microbially enriched rhizosphere fraction onto
Reasoner’s 2A (R2A) agar (11, 12). Colonies that developed upon incubation at 28°C
were identified taxonomically by small-subunit (SSU) rRNA gene amplification and
direct Sanger sequencing using the universal primers 27F and 1492R (13). Default
parameters were used for all software used for sequence data analysis unless otherwise
specified. Sequences were assembled and manually trimmed based on quality in
Geneious R11 (14), and close relatives were identified by MegaBLAST (15) against the
NCBI rRNA database. The sequences and their top relatives were aligned with ClustalW
2.1 (16) in Geneious, and the alignment was manually edited to remove heterogeneous
ends. One colony was identified as representing a Starkeya sp., sharing 98% pairwise
sequence identity with the rRNA sequences of S. novella and S. koreensis. Phylogenetic
analysis using FastTree 2.1.11 (17) indicated that the novel isolate, designated Starkeya
sp. strain ORNL1, is most closely related to S. novella (Fig. 1).

For PacBio genomic sequencing, Starkeya sp. strain ORNL1 was grown in liquid R2A
medium at 30°C for 2 days. Genomic DNA was purified using the Quick-DNA fungal/
bacterial miniprep kit (Zymo Research) and fragmented to an average size of 10 kb
using g-TUBEs (Covaris, Woburn, MA). A sequencing library was constructed using a
SMRTbell template prep kit 1.0 (Pacific Biosciences, Menlo Park, CA) and sequenced on
a Pacific Biosciences Sequel instrument. The sequences were filtered based on quality
and assembled using the software HGAP4 in PacBio SMRTLink 7.0, using a target
genome size of 6 Mbp, a minimum subread length of 500, a minimum concordance of
85%, and a seed coverage of 30-fold, with the “aggressive” option on. In all, 64,603
filtered subreads (N50, 10,183 nucleotides [nt]) were assembled into three polished
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contigs totaling 6,326,767 nt, with a mean coverage of 350-fold and a G�C content of
66%. We predicted the genes using Prokka (18) and performed de novo assembly in
Geneious 11 (14), together with PacBio spanning sequence reads. All three contigs were
self-assembled, and based on gene calls, we identified overlapping assembly ends that
enabled closing of the genome as a single, circular chromosome of 6,286,188 bp. Gene
prediction and functional annotation were performed using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) 4.8 (19), which identified 5,826 protein coding
sequences, 48 tRNAs, 2 rRNA operons, and 13 other noncoding or regulatory RNAs
(ncRNAs). We also generated a metabolic model in KBase (20), accessible at https://
narrative.kbase.us/narrative/55377, together with its RAST annotation. The average
nucleotide identity (ANI) of 83% relative to S. novella, calculated with FastANI 0.1.2 (21),
suggests that Starkeya sp. strain ORNL1 may represent a novel species, provisionally
referred to as Starkeya rhizosphaerae ORNL1. Its genome is significantly larger than that
of S. novella (4.7 Mbp) and will aid in understanding adaptation to the rhizosphere
microbiome community, as well as uncovering potential broader metabolic versatility
in this group of bacteria.

Data availability. The Starkeya sp. strain ORNL1 genome sequence has been
deposited in GenBank under the accession number CP048834. The version described in
this paper is the first version, CP048834.1. The PacBio reads have been deposited in the
SRA under the accession number SRX7858655.
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FIG 1 Phylogenetic tree (FastTree) of Starkeya sp. strain ORNL1 and related bacteria based on SSU rRNA genes.
Reference sequences were obtained from GenBank; accession numbers are in parentheses. The alignment was
edited by removing heterogeneous-length ends. The tree was rooted with Xanthobacter. Numbers at the nodes
indicate support values.
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