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This research paper presents a quantitative approach to sensing mammographic density (MD) using
single-sided portable Nuclear Magnetic Resonance (NMR). It focuses on three main techniques: spin–lat-
tice relaxation (recovery) time (T1), spin–spin relaxation (decay) time (T2), and Diffusion (D) techniques
by testing whether or not the aforementioned techniques are in agreement with the gold standard and
with each other when used for scanning breast tissue specimens with a variety of mammographic den-
sities (MDs). The high mammographic density (HMD), intermediate MD, and low mammographic density
(LMD) regions of each slice were identified according to the mammogram images. Subsequently, the
grayscale values for these regions were quantified. One region was measured from the first sample while
the remaining ones were measured from the second sample. The same areas were then exposed to por-
table NMR, and the sequences used as following: the stimulated echo sequence for diffusion (D), the Carr-
Purcell-Meiboom-Gill (CPMG) sequence for T2, and saturation recovery sequence for T1. The correlations
between the grayscale values and NMR techniques were strongly correlated. The Pearson correlation
coefficient, R, of T1 (%) versus grayscale value, D (%) versus grayscale value, and T2 (%) versus grayscale
value, was 0.91, 0.91, and 0.93, respectively. Furthermore, the relative water content of the breast slices
based on T1, T2, and diffusion (D) measurements were strongly in agreement with each other. The Pearson
correlation coefficient, R, of D (%) versus T1 (%), D (%) versus T2 (%), and T1 (%) versus T2 (%), was 0.984,
0.966, and 0.9868, respectively. The three pulse sequences can be employed in a portable NMR device
to deliver continuous quantitative measurements of MD in breast tissue samples. As a result, the method
demonstrated to be acceptable for determining the distribution of MDs among breast tissue samples
without the need for additional qualitative analysis.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Breast cancer (BC) is caused by numerous risk factors that occur
in isolation (Britt et al., 2020; Tourell et al., 2018). The most popu-
lar ones include, high post-menopausal body mass index (BMI),
ageing (Tyrer et al., 2004), oral contraceptives, less breast feeding,
congenital factors (family history of the disease), high mammo-
graphic density (MD), exposure to ionizing radiation, and early
menstrual occurrences (early menarche) at the age of 11 years
and below (Tamam et al., 2021; Bell, 2020; National Health and
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Medical Research Council, 2018, Brinton et al., 2018; Sulieman
et al., 2019). Sung et al estimated that the incidence of breast can-
cer is 2.3 million new cancer cases representing 11.7% of all cancer
incidence worldwide (Sung et al., 2021). For women aged 50–69,
BC screening is suggested every one to two years. For high-risk
females, an MRI of the breast is also indicated (Niell et al., 2017).
Regardless of ethnicity, it was revealed that roughly 30% of patients
under the age of 30 have fatty breasts, and around 25% of patients
over 70 have DB. Breast density was higher in groups younger than
50 years old, while older ladies had a tendency to have reduced
breast density (Salem et al., 2017; Liu et al., 2014). However, elim-
ination of breast cancer risk is possible through awareness
improvement, effective health services and reduction of the stress
(Karim et al., 2019). MD is considered as the strongest indicator of
BC risk (Cil et al., 2010). It is defined as the level of radiodense
fibroglandular deposits in breast tissues (Shang et al., 2021;
Kopans, 2009). The hyper- intense region on a mammographic
image is indicative of high MD, with high levels of fibroglandular
tissue (FGT) (Tourell, et al., 2018; Bell, 2020). Most of the women
within the age bracket of 40–75 years exhibit high levels of MD.
This means that they are more likely to be at risk of breast cancer
than women in other age groups (Huang, 2018). It is important to
accurately estimate an individual’s MD at the early stages of man-
ifestation to facilitate risk evaluation and prognosis of BC
(Collaborative Group on Hormonal Factors in Breast Cancer,
2012). Research reveals that the risk exposure of an Australian
woman to BC over their entire lifetime is in every 8 or about
12.5% (AIHW, 2017). This figure is comparable to that of the United
Kingdom (12.5%) and that of the United States of America (12%). On
average, approximately 500,000 deaths arising from BC complica-
tions have been reported recently from the 14 million detected
cases of BC; an indication of the severity of the global BC contrac-
tion (Ghosh et al., 2011; National Cancer Institute, 2017). Studies
conducted in the recent past have shown that MD has a direct
impact on the progression and spread of BC cells (Aiello et al.,
2005; Eriksson et al., 2013a). The radio-dense regions on a mam-
mogram (high MD regions) correlate to FGT (collagen stroma)
zones and display a white appearance. On the contrary, radio-
lucent zones (low MD regions) are rich in adipose tissues and are
dark in appearance (Ghosh et al., 2011). Research suggests that col-
lagens and proteoglycans are key determinants of MD (Ghosh et al.,
2011; Huo et al., 2015). Breast density has a significant impact on
the sensitivity of mammograms for the identification of BC. Mam-
mogram sensitivity ranges from 80 to 98 percent for women with
fatty breasts while the sensitivity drops to 30–65 percent for
women with thick breasts (Butler, 2015). Typically, the Breast
Imaging Reporting and Data System (BI-RADS) is a viable tool for
classifying MD in breast tissues. For example, dense tissues are
represented as BIRADS > 75% (Sickles, 2013). In such cases, the util-
ity of mammography diminishes as a breast cancer detection tool.
Based on the BI-RADs scale, women in the upper MD quartile have
about 5 times higher chances of exposure to BC compared to those
in the lower quartile (McCormack & Silva, 2006). It has been sug-
gested that dense tissue concentration in the breast is influenced
by single nucleotide polymorphism, estrogen fluctuations stereo-
typical during the menstrual cycle, and onset of menopause
(White et al., 1998; Stone et al., 2006). Other than physiological
factors, lifestyle factors that affect MD include alcohol abuse
(which increases MD), one’s diet, engagement in physical activities
(reduces MD), and lack of parity (increases MD). More so, the above
indicators suggest that MD evolves overtime (Brentnall et al.,
2015). As such, MD- related BC risk can be modified (Woolcott
et al., 2012). This can be achieved by monitoring MD iteratively
to reveal individual-specific risks to BC (Eriksson et al., 2013b).

Nuclear Magnetic Resonance (NMR) technique is based on the
fact that in living tissues have plenty of protons mainly in water
2448
and fat molecules whose nuclei contain positively charged protons
with a net spin and consequently, an intrinsic induced magnetic
field around them. The MRI image contrast is determined by
regions of low (hypointense – black) and high (hyper-intense/
white) signal intensities (Dale et al., 2015). The shades of grey
reflect regions of intermediate signal intensity. Image contrast is
attributed to three primary mechanisms: the proton density (PD)
of hydrogen within a tissue, T2, and T1. For example, in T2-
weighted image, tissues with considerable levels of the transverse
coherent magnetization components tend to create hyper-intense
regions on the image scan. In tandem, the NMR coil receives a high
amplitude signal output. In contrast, tissues with low or no levels
of coherent transverse magnetization at a time TE, tend to return a
low amplitude signal. Diffusion (D), T1 and T2 parameters in the
portable NMR can be used to improve the quantification of MD
as a risk factor for breast cancer. The time constants, T1 and T2
are derived from the high and low MD domains (LMD and HMD)
of digital slice mammography (Danieli & Blümich, 2013). T2 mea-
surements, unlike T1, reveal the water-to-fat (w/f) ratio of a breast
tissue (Ali et al., 2019), and the both techniques provide accurate
discrimination between HMD and LMD regions in the breast tissue
samples (Tourell et al., 2018). Indeed, Tourell et al. (2018) con-
cluded that the difference between the HMD and LMD regions of
both excised and full breast tissues was statistically significant,
where p < 0.001. The samples were obtained from BC patients
undergoing prophylactic mastectomy. In this study, the CPGM
decay curves for T2 were constructed using Inverse Laplace Trans-
formation (ILTs). The T2 spectra of both the LMD and HMD regions
revealed two distinct water and fat peaks, which were further
revealed statistically significant differences (p < 0.005) via t-
paired tests (Tourell et al., 2018). Recently, Huang et al. (2018)
measured samples of breast tissues with dissimilar MDs. The
investigators extracted volumetric MD image for 10 samples of
breast tissues through mCT. In this study, the saturation recovery
sequence for T1, CPMG sequence for T2, and stimulated sequence
for diffusion were applied on the samples with the aid of the por-
table PM25 model of the NMR. The continuous distribution of MDs
scale for the excised samples ranged between zero and 100%. The
‘‘gold standard” for the experiment was the mCT. HMD% measured
on the mCT scale showed impressive correlations with T1 and diffu-
sion data, where R was �0.92 and 0.96 respectively. Furthermore,
the linear correlation between NMR-assisted water diffusion and
T1 data was impressive; R was �0.94 while the correlation
between T2 and diffusion data was modest due to an overlap of
the water and fat peaks in the T2 spectra. If TE is poorly selected,
such that it becomes too short, then the fat and water peaks will
overlap in the spectra of T2 (Huang, 2018). However, by selecting
moderately long TE, the NMR probe could provide reliable MD
measurements. This study will investigate whether or not the three
techniques T1, T2, and diffusion (D) are in agreement with each
other as well as in agreement with the gold standard (Mammo-
gram images) when used for scanning breast tissue samples with
a range of mammographic densities (MDs). To establish the con-
currence, the conclusion will be derived from six charts (T1 (%) vs
grayscale value), (D (%) vs grayscale value), (T2 (%) vs grayscale
value), (T1 vs T2), (T1 vs D) and (T2 vs D), which will show how well
the accuracy reproducibility of three techniques compared to
mammogram images (gold stander) of the two samples.
2. Material and methods

2.1. Slice mammogram measurements

In this study, 2 slices of breast tissues mammogram images
were obtained from two different participants (women) undergo-



Fig. 1. Portable NMR Mouse (Tourell, et al., 2018). (a) The side view demonstrates
the permanent magnets N & S, direction of static magnetic field as well as the
direction of static gradient. The red circle represents the sensing region, while the
gray slice denotes the sample’s position; (b) is the top view of the instrument.
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ing prophylactic mastectomy with the view of preventing breast
cancer, or breast reduction surgery. The HMD, intermediate MD,
and LMD regions for the two mammogram images were labelled
by the radiologist at the Princess Alexandra Hospital. Subse-
quently, the grayscale values of the six regions in the two samples
were obtained using MATLAP software. The experimental parame-
ters for NMR probing are summarized in Table 1. The two slices
were frozen at �80 �C at Translation Research Institution (TRI)
before being transferred to portable NMR room. Subsequently,
the samples were left one hour at room temperature (24 �C) in
order to be deforested. The study has been approved by the Peter
MacCallum Human Research Ethics Committee (#08/21), Metro
South Hospital and Health Services, Queensland (HREC/16/
QPAH/107) and Mater Research (RG-16–028-AM02, MR-2016–
32), and administratively approved by QUT (#1600000261).

2.2. Single-sided NMR-mouse setup

The NMR measurements were performed using the single-sided
NMR (PM 25 - Magritek, Wellington, New Zealand). The setup
shown in Fig. 1 has a RF surface coil that stimulates and detects
the NMR signal. The magnetic field gradient (g) is permanently
installed in the orthogonal direction of the permanent horizontal
magnetic field (Bo). The magnetic field gradient is equivalent to
7.5 T.m�1 while Bo is 0.31 T. The portable single-sided NMR instru-
ment has a translation stage that calibrates the sensor to the
desired sensing depth. The effective depth of penetration of the
PM25 probe is 25 mm. The size of the horizontal sensing slice is
dependent on the coil’s dimensions; the thickness of the slice var-
ies depending on the amplitude of the applied magnetic field gra-
dient and the strength of the RF magnetic field (Ali, 2018). In this
setup (Fig. 1), the excitation frequency (RF) can be scaled to
achieve spatial localization of the samples.

2.3. Quantifying mammographic density (MD)

The stimulated echo sequence for diffusion (D), the Carr-
Purcell-Meiboom-Gill (CPMG) sequence for T2, and saturation
recovery sequence for T1 were applied sequentially for the same
six regions.

2.3.1. T1 Measurements
A saturation recovery sequence was applied to generate the full

T1 recovery curve for each region. This sequence provided a train of
90� RF pulses to counteract the strong inhomogeneity of the mag-
netic field and to zero the longitudinal magnetization components
(Catherine and John, 2019). Each T1 curve was sampled at 30 values
of the saturation recovery times TSR. Then, the Carr- Purcell-
Meiboom-Gill sequence was used to sense signals (Bluemich and
Perlo, 2008). The relative amount of water and fat signals for each
region were measured using a 2-parameter non-linear biexponen-
tial least-squares fit (LSF) of equation (2) below:

ðtÞ ¼ K þ S0e�t=T1aþ S1et=T1b ð1Þ
where S0 is the relative amount of water; T1 a is the recovery time of
water molecules;
Table 1
Experimental parameters.

Maximum depth of
penetration

25 mm (NMR-Mouse PM25)

Gold standard Mammogram
Number of scanned

regions
1 region at 5.9 mm depth from the first sample, 5
regions at 4.5 mm depth from the second sample

Output Distribution of MDs

2449
S1 is the amplitude of fat content, and T1 b is the recovery time
of fat molecules.

The data analysis was performed using Wolfram Mathematica
program, and the code was written by Momot (2019).

For each region, the following parameters were set for T1
sequence (Table 2).
2.3.2. T2 Measurements
2.3.2.1. Analytical framework. The Carr-Purcell-Meiboom-Gill
(CPMG) was used to obtain the CPMG decay for the six regions
along the two samples. However, the first and second scans failed
to resolve between water and fat peaks because the echo times
(TEs) were short, TE = 150 ms and 300 ms respectively. Then, the
same region was scanned again with TE = 700 ms which succeeds
to resolve the two peaks. This TE value was adopted for scanning
the remaining regions. The curves are shown in the results section.
For each region, the following parameters were set for T2 (Table 2):

Worth noting, The Inverse Laplace Transformation (ILT) was
used to reconstruct the T2 spectra which displayed the amplitudes
or peaks of fat and water. Equation (2) below shows T2 multicom-
ponent decay (Ali et al., 2019):

SðtjÞ ¼ gj

Xm
i¼1

AðTiÞexp � tj
Tj

� �
þ 2j ð2Þ

where 2j represents the noise; the amplitudes of relaxation peak are
represented by positive values of A(Ti), i = 1. . .m represents the # of
relaxation-time items in the time Ti, which is a time constant for
relaxation. A(Ti) was obtained by inverting the T2 curve. This was
achieved by employing the least-square algorithm to minimize x2

as shown below in equation (3) (Ali et al.,2019).

min x2
� � ¼

Xn
i¼1

gj �
Xm
i¼1

AðTiÞexp � tj
Ti

� �2

ð3Þ

Given that noise is an inherent property of the NMR signal, the
smoothing parameter a was normalized as shown in equation (4)
(Ali et al., 2019):

min x2
� � ¼

Xn
i¼1

gj �
Xm
i¼1

AðTiÞexp � tj
Ti

� �2

þ 1
r

Xm
i¼1

ð2AðTiÞ

� AðTi¼1Þ � AðTiþ1Þ2 ð4Þ
The code that was initially written by Venkataramanan et al.

(2002) was used to solve equation (3) in MATLAB program. The
procedure above was repeated for all the T2 distributions for each
region in the two samples to minimize their sensitivity to noise.



Table 2
Parameter settings for the T1 technique.

Saturation recovery sequence CPMG block

Eacho time (TE) (ms) Repetition time (ms) Max recovery time (ms) Number of echos Number of complex points Number of scan Dwell time (ms)

60 2000 3000 64 16 4 0.5
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The corresponding area fractions of the two peaks (fat and water)
in each of the T2 distributions were analyzed as shown in equation
(6) (Ali et al., 2019):

AFW ¼ AW

AW þ AW
ð5Þ

where AFW is area fraction for water; AW is the amplitude of the
water (first peak), and AW is the amplitude of the fat (second peak)

Similarly,

AFF ¼ AF

AF þ AF
¼ 1� AFW ð6Þ

where AFF is area fraction for fat; AF is the amplitude of the fat (sec-
ond peak), and AW is the amplitude of the water (first peak).

2.3.2.2. Diffusion measurements. A stimulated echo sequence was
applied, while the CPMG block was coupled for detection. The dif-
fusion intervalDwas set at 10 ms, while dwas varied from 0.05 ms
to 1 ms with 32 step points. Subsequently, the diffusion curve (sig-
nal versus d) was plotted for each region. The relative apparent
amounts of fat and water were quantified via a two-parameter
biexponential least-squares fit of the following equation:

S ¼ S0 � e�y2g2d2ðD�d=3Þ�D þ S1 � e�y2g2d2ðD�d=3Þ�D ð7Þ
where S0 and S1 represent the amplitudes of water and fat, respec-
tively, D is the diffusion interval, while d denotes the path for lon-
gitudinal magnetization. Signals corresponding to fast and slow
molecular diffusion are linked to water and fat components, in their
respective order.

The data analysis was performed using Wolfram Mathematica
program, and the code was written by Momot (Momot, 2019).

For each region, the following parameters were set (Table 4).

2.4. Statistics

For each graph, the Pearson correlation coefficient was calcu-
lated, and their P values were obtained as well.

3. Results

After setting the various parameters shown in Table 1 through
Table 3 for the specified techniques, the relative amounts of water
based on three techniques as well as the grayscale values were
obtained for the 6 regions (Table 5). Figs. 2–7, show plots of T1 data
versus grayscale values, Diffusion results versus grayscale values,
T2 versus grayscale values, Diffusion versus T1, and Diffusion ver-
sus T2, and T1 versus T2, respectively, alongside their Pearson cor-
relation coefficients. The regions of interest for the above images
were highlighted as shown in Fig. 10 A and B. The graphical repre-
sentative measurements are shown Fig. 11 for T1 and the Diffusion
(D) techniques, respectively. From Table 5, the results of region 6
Table 3
Parameter settings for the T2 measurements.

Eacho time (TE) (ms) Repetition time (ms) Number of eachos

700 7000 1500
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refer to the first sample while the other regions data have been
obtained from the second sample. In Fig. 11, the amplitude of the
first four points represent the amount of water (fast diffusion). In
contrast, the other points represent the amplitude of fat (slow dif-
fusion). Fig. 2 shows a graphical plot of T1 data (%) versus grayscale
value. The Pearson Correlation Coefficient, R is 0.91 at 95% confi-
dence interval, and p value = 0.0097 which is <0.05; therefore,
the correlation is statistically significant. Fig. 3 shows a graphical
linear plot of Diffusion (%) versus grayscale value. The Pearson Cor-
relation Coefficient, R is 0.91 at 95% confidence interval, and the p
value is 0.004 which is <0.05; therefore, the correlation is statisti-
cally significant. Fig. 4 shows a graphical linear plot of T2 (%) versus
grayscale data. The Pearson Correlation Coefficient, R � 0.93 at 95%
confidence interval, and the p value is 0.009 which is < 0.05; there-
fore, the correlation is statistically significant. Fig. 5 illustrates a
graphical linear plot of Diffusion (%) versus T1 (%). The Pearson Cor-
relation Coefficient, R � 0.97 at 95% confidence interval, and the p
value is 0.004 which is <0.05; therefore, the correlation is statisti-
cally significant. Fig. 6 illustrates a graphical linear plot of T2 (%)
versus Diffusion (%). The Pearson Correlation Coefficient, R � 0.95
at 95% confidence interval, and the p value is 0.004 which is
<0.05; therefore, the correlation is statistically significant. Fig. 7
above illustrates a graphical linear plot of T2 (%) versus T1 (%).
The Pearson Correlation Coefficient, R � 0.99 at 95% confidence
interval, and the p value is 0.0001 which is <0.05; therefore, the
correlation is statistically significant (see Figs. 8 and 9).
4. Discussion

Breast MRI is used for early BC detection and patients with high
BC risk. It has a higher temporal and spatial resolution and a better
signal-to-noise ratio (NSR) than other imaging modalities such as
mammography, positron emission tomography (PET), and ultra-
sonography. In addition, breast MRI has no risk of ionizing radia-
tion exposure and enables simultaneous assessment of both
breasts (Iranmakani, et al., 2020).

From the experimental results, it can be observed that the Pear-
son Correlation coefficients, R, of T1 (%) versus Grayscale value, dif-
fusion (%) versus Grayscale value, T2 (%) versus Grayscale value, T1
(%) versus diffusion (%), T2 (%) versus diffusion (%), and T2 (%) ver-
sus T1 (%), was 0.91, 0.91, 0.93, 0.97, 0.95, 0.99 respectively at 95%
confidence interval. In all cases, R > 90% and p < a, implying that
the correlations are statistically significant. This means the water
content based on spin–lattice relaxation time T1, spin–spin relax-
ation time T2 and diffusion are in agreement with each other as
well as in agreement with the gold standard. The amount of water
based on diffusion increases proportionately with an increase in
the water content based on T1 and T2 techniques. Clearly, the water
content displayed an excellent quantitative correlation with the
tissue content over the range of MDs investigated where higher
MD in the mammogram images corresponds to higher water con-
Number of complex points Number of scan Dwell time (ms)

32 8 0.5



Table 4
Parameter settings for Diffusion (D) measurement.

Stimulated sequence CPMG block

Eacho time (TE) (ms) Repetition time (ms) Number of eachos Number of complex points Number of scan Dwell time (ms)

60 2000 64 32 8 0.5

Table 5
Summary of the results obtained from the six regions.

Region number T2 data (%) Diffusion data (%) T1 data (%) Grayscale Values

1 8.74 13.88 27.37 91.16
2 17.74 23.92 36.31 104.04
3 26.17 23.95 40.3 116.577
4 11.67 16.3 31.2 86.8
5 30.72 32.787 44.46 143.4
6 27.47 30.76 42.8 117

Fig. 2. T1 (%) versus grayscale value.

Fig. 3. Diffusion (%) versus grayscale value.

Fig. 4. T2 (%) versus grayscale value.

Fig. 5. Diffusion (%) versus T1 (%).

Fig. 6. T2 (%) versus Diffusion (%).
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tent in NMR measurements and vice versa. This means that the
accuracy reproducibility of MDs based on the three techniques
T1, T2 and diffusion are reliable.

Fig. 12 demonstrate the effect of echo Time on The resolution of
the ILP decay. Three scans with three different TE values were per-
formed on the first sample in order to observe the best TE value
that would resolve the water and fat peaks in the ILP spectrum.
The ILP decay curve with TE = 700 ms was adopted for subsequent
T2 scans since it displayed no overlaps between the water and fat
peaks (Fig. 12). As such, it is evident that the selected of echo time
(TE) of 700 ms was long enough to show distinctive water and fat
peaks for the breast samples under investigation. In contrast,
Huang et al. (2018) could not discriminate between the water
2451
and fat peaks due to the short CPMG echo time adopted (60 ms)
leading to an overlap of water and fat peaks in the ILPs of T2 spec-
tra. This, indeed, reduces the accuracy of calculating the amplitude



Fig. 7. T2 (%) versus T1 (%).

Fig. 8. Mammogram image of the first sample of breast tissue.

Fig. 9. Mammogram image of the second sample of breast tissue.
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of water peaks in T2 spectra. Consequently, the superiority of the
present measurements is a direct result of the choice of the
sequence parameters.

Evidently, all the experimental T1 curves are bioexponental;
they reveal the amount of water and fat in the breast tissue. In con-
trast, the study conducted by Tourell et al. (2018) did not reveal the
amplitudes of the two components since the T1 curves were mono-
exponential. The measurements were based on the apparent T1 of
HMD and LMD regions. However, the current study has success-
fully determined the amplitudes of the two components. From
the analysis, the water/fat ratio can be deduced from T1 measure-
ments, or the three techniques altogether.

In the water and fat peaks in T2 spectra, it is possible to discrim-
inate between the LMD, HMD, and intermediate MD regions of the
excised samples. The HMD regions represent relatively larger
amount of water molecules. This means that the transverse coher-
ent magnetization components of protons in water molecules are
highest in the HMD regions, followed by the intermediate MD,
and then, the LMD regions. These differences are reflected in the
water and fat peaks of the T2 spectra. The analysis has also revealed
that the water-to-fat ratio increases as the MD of excised breast
samples increases. Overall, the experimental analysis has quantita-
tively shown that the pulse sequences can be used in the portable
NMR instrument to provide quantitative measurements of MD on a
continuous scale throughout the breast tissue sample. The mea-
surements revealed more intricate details of breast tissue compo-
sition than the ones based on paired LMD/HMD classifications as
reported by Tourell et al. (2018). Among the limitations of the cur-
rent study is that it measured MD from the excised samples of par-
ticipants undergoing prophylactic mastectomy, and hence, it is
unclear whether the outcomes provide representative measure-
ments for patients in both the upper and lower MD quartile of
the BI-RADs scale. Further, the ILP might have introduce numerical
errors while reconstructing the T2 distributions, thereby reducing
the accuracy of T2 measurements. This problem was recently
reported by Ali et al. (2019). Possibly, the L-bend was not always
identifiable due to the effect of noise in the data. Most likely, the
T2 distributions were either under- or over-smoothened, especially
where sub-optimal ILT values were observed. Such errors stem
from the ILT framework employed, which should be investigated
in future studies. Nevertheless, this research is novel in the sense
that it represents the first time when T1, T2, and NMR diffusion
are employed sequentially for each region of interest to quantita-
tively measure the distribution of MDs in breast tissue samples.

5. Conclusion

This research has demonstrated that the three techniques (T2,
T1, and NMR-aided diffusion) are fairly in agreement with one
other in quantifying HMD, intermediate MD, and LMD regions of
breast tissue sample. Certainly, these regions, which represent
changes in MD, are useful quantitative indicators of breast cancer
progression stages. Furthermore, the outcomes lend support to
the utilization of NMR probes to quantify MD affordably and con-
veniently. The method is also safe since it is free from ionizing radi-
ation. The impressive correlation between the measurements
indicate the fundamental essence of selecting the portable-NMR
parameters for measuring MD. The results have important implica-
tions in clinical settings and more so, to breast cancer patients. For
instance, they can be used in the early prediction of MD and sub-
sequent risk analysis of breast cancer. The study could also be



Fig. 10. Regions of interest of the (a) first and (b) second samples.

Fig. 11. Graphical representative measurement for the Diffusion (D) technique.

Fig. 12. ILP decay with TE = 700 ls (region 6).

M. Alqurashi, K.I. Momot, A. Aamry et al. Saudi Journal of Biological Sciences 29 (2022) 2447–2454
extended to predicting the utility of hormonal therapy with the
view of preventing breast cancer.
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