

Identification of Triple-Negative Breast Cancer Genes and a Novel High-Risk Breast Cancer Prediction Model Development Based on PPI Data and Support Vector Machines

Ming Li¹, Yu Guo¹, Yuan-Ming Feng^{1,2} and Ning Zhang^{1*}

¹ Department of Biomedical Engineering, Tianjin Key Lab of BME Measurement, Tianjin University, Tianjin, China, ² Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China

Triple-negative breast cancer (TNBC) is a special subtype of breast cancer that is difficult to treat. It is crucial to identify breast cancer-related genes that could provide new biomarkers for breast cancer diagnosis and potential treatment goals. In the development of our new high-risk breast cancer prediction model, seven raw gene expression datasets from the NCBI gene expression omnibus (GEO) database (GSE31519, GSE9574, GSE20194, GSE20271, GSE32646, GSE45255, and GSE15852) were used. Using the maximum relevance minimum redundancy (mRMR) method, we selected significant genes. Then, we mapped transcripts of the genes on the protein-protein interaction (PPI) network from the Search Tool for the Retrieval of Interacting Genes (STRING) database, as well as traced the shortest path between each pair of proteins. Genes with higher betweenness values were selected from the shortest path proteins. In order to ensure validity and precision, a permutation test was performed. We randomly selected 248 proteins from the PPI network for shortest path tracing and repeated the procedure 100 times. We also removed genes that appeared more frequently in randomized results. As a result, 54 genes were selected as potential TNBC-related genes. Using 14 out the 54 genes, which are potential TNBC associated genes, as input features into a support vector machine (SVM), a novel model was trained to predict high-risk breast cancer. The prediction accuracy of normal tissues and TNBC tissues reached 95.394%, and the predictions of Stage II and Stage III TNBC reached 86.598%, indicating that such genes play important roles in distinguishing breast cancers, and that the method could be promising in practical use. According to reports, some of the 54 genes we identified from the PPI network are associated with breast cancer in the literature. Several other genes have not yet been reported but have functional resemblance with known cancer genes. These may be novel breast cancerrelated genes and need further experimental validation. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to appraise the 54 genes. It was indicated that cellular response to organic cyclic compounds has an influence in breast cancer, and most genes may be related with viral carcinogenesis.

Keywords: triple-negative breast cancer, gene, proteins, protein-protein interaction network, SVM

OPEN ACCESS

Edited by:

Arun Kumar Sangaiah, VIT University, India

Reviewed by:

Jiangning Song, Monash University, Australia Zhi-Ping Liu, Shandong University, China

> *Correspondence: Ning Zhang zhni@tju.edu.cn

Specialty section:

This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics

> Received: 31 October 2018 Accepted: 19 February 2019 Published: 15 March 2019

Citation:

Li M, Guo Y, Feng Y-M and Zhang N (2019) Identification of Triple-Negative Breast Cancer Genes and a Novel High-Risk Breast Cancer Prediction Model Development Based on PPI Data and Support Vector Machines. Front. Genet. 10:180. doi: 10.3389/fgene.2019.00180

1

INTRODUCTION

Breast cancer is a malignant tumor that is highly prevalent among women worldwide. In recent years, the incidence rate has increased significantly. According to estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) status, breast cancer can be classified into four categories. Triple-negative breast cancer (TNBC), one of the more specialized types of breast cancer, is defined as the lack of expression of the ER and PR, as well as breast cancer that lacks HER-2 overexpression or gene amplification. TNBC is more common in young women, with large tumors, high lymphatic metastasis rate, and high clinical stage. The 5-year recurrence rate is high, and visceral metastases such as liver and lung metastasis are more common. Compared with other types of breast cancer, TNBC has characteristics of rapid tumor growth, early recurrence, easy metastasis, and so on (Prat et al., 2013). Up to now, the genes related to this disease are poorly understood.

Triple-negative breast cancer accounts for about 15–25% of all breast cancers. The identification of disease-related genes and prediction of high-risk breast cancer patients have become important problems. Genes that are highly associated with TNBC can be found using gene expression profiles. However, there are still some problems in the current methods of predicting protein function using high-throughput protein interaction data. It usually has a high false positive rate, and the reliability of functional prediction results is reduced (Li et al., 2012b; Oliver et al., 2015).

In recent years, the continuous accumulation of protein interaction data has made it possible to analyze and predict protein functions at the system level through the protein-protein interaction (PPI) network. Nabieva et al. (2005) proposed the "guilt-by-association rule" (GBA), which states that interacting proteins have the same or similar functions, which suggests that protein function can be predicted by protein interactions.

In this study, we identified TNBC-related genes by a computational method. A weighted functional PPI network was integrated, which can overcome the disadvantages of that by only using the gene expression profiles. We also previously successfully applied such an integrating method to gene function prediction and to the identification of novel genes of various kinds of diseases, such as influenza A/H7N9 virus infection (Ning et al., 2014), colorectal cancer (Li et al., 2012b), lung cancer (Li et al., 2013b), colorectal cancer (Li et al., 2013a), hepatitis B virus (HBV) infection-related hepatocellular carcinoma (Jiang et al., 2013), retinoblastoma (Li et al., 2012c), Ebola virus (Cao et al., 2017), etc.

MATERIALS AND METHODS

The whole process of our study is illustrated in **Figure 1**. Details are presented in the following sub-sections.

Dataset

Expression profiles from datasets GSE31519, GSE9574, GSE20194, GSE20271, GSE45255, and GSE15852 were obtained

from the GEO database¹. The dataset involves 319 sample chips with 101 normal breast tissue samples and 218 TNBC tissue samples (including 21 Stage II samples and 101 Stage III samples).

Breast Cancer Genes Identification and Prediction

In this study, the robust multi-array average (RMA) method in "limma" in R was used to normalize microarray data and to perform a log₂ transformation of chip data. In total, 12,437 genes were obtained. RMA uses a multi-chip model that requires standardization of all chips together. The expression value is estimated based on a stochastic model employed by the perfect match (PM) signal distribution. It is currently the most common chip data preprocessing method. RMA is commonly used in the literature. This method has also been used in many other biomedical research problems, such as when analyzing diabetic nephropathy (Cohen et al., 2008), the crosstalk between B16 melanoma cells and B-1 lymphocytes (Xander et al., 2013), colon cancer (Melo et al., 2013), etc.

The mRMR Method

We employed the mRMR method (Peng et al., 2005; Li et al., 2012a,b; Zhang et al., 2012; Zou et al., 2016b; Su et al., 2018) to rank the importance of all 12,437 genes examined. In such a procedure, each gene was regarded as a feature. The Maximum Relevance criterion selects features most important in discriminating TNBC samples and controls. The Minimum Redundancy criterion excludes redundant features among the selected ones. In an mRMR procedure, a value A-B is calculated for each feature, in which value A is represented for the relevance and value B for the redundancy of the feature. Then the features are ranked by their A-B values in descending order to reflect the importance to the target. The most important feature is ranked at the top (Peng et al., 2005; Li et al., 2012a,b; Zhang et al., 2012; Zou et al., 2016b).

Two ordered lists were generated by the mRMR method, one was called the MaxRel table, and the other was called the mRMR table. In the MaxRel table, all the features were ranked only by the Maximum Relevance criterion. In the mRMR table, they were ranked by the mRMR criterion, i.e., a feature with a smaller index in such a table could be more important since it has a better trade-off between the maximum relevance and the minimum redundancy. In this study, we selected the top 248 features from the mRMR table, with which the corresponding 248 genes were regarded as significantly differentially expressed genes from the expression profiles and were analyzed in the downstream procedures.

PPI Network From STRING

The STRING database (version 10.0)² (Franceschini et al., 2013) is a database for searching for known and predicted interactions between proteins. The related interactions mentioned herein include direct and indirect relationships between proteins. The interacting protein can be mapped to a weight network in STRING. In such a network, proteins are denoted as nodes and the interaction of every two proteins is given as an edge marked with a confidence score. If the confidence score is higher, they

¹http://www.ncbi.nlm.nih.gov/geo/ ²http://string.embl.de/

Frontiers in Genetics | www.frontiersin.org

may have more analogous functions (Kourmpetis et al., 2010; Ng et al., 2010; Szklarczyk et al., 2011). In this study, we used a *d* value instead of a confidence score (s) for the weight of each interaction edge. According to the equation d = 1,000-s, *d* was calculated. Therefore, the *d* value can be considered to represent the protein distances to each other; a smaller distance value indicates the protein pair has a higher interaction confidence score.

In this study, the human PPI data in the STRING database were selected as the data source, and there are 8,548,002 pairs of related interaction forces. The ID of the human species is 9,606.

Shortest Path Tracing

Interactions between every protein pair were analyzed in a graph. In this study, the R package "STRINGdb" was used to map the corresponding protein IDs of the top 248 genes selected by mRMR. The betweenness of a shortest path protein is the number of shortest paths across the protein. Then, the shortest path proteins were ranked by betweenness in descending order. The proteins whose betweenness was greater than 3,000 were picked out and their corresponding genes were treated as breast cancer-related genes. The Dijkstra algorithm served to find the shortest path in the graph *G* between two given proteins, which was implemented in the R package "igraph" (Csardi and Nepusz, 2006). In order to ensure the validity and precision of our results, we randomly chose 248 proteins in the PPI network for shortest path tracing and repeated the procedure 100 times, and a permutation test was performed. Then we removed 5 genes that appear more frequently in randomized results.

The C-SVC Algorithm

The support vector machine (SVM) method largely overcomes the dimensional disaster and local minimization of feature attributes in traditional machine learning and solves small samples. There are many advantages in non-linear and high-dimensional pattern recognition, which have received more and more attention in the fields of biomedicine and bioinformatics. Therefore, in the field of health care, an improved SVM algorithm for the diagnosis of breast cancer diseases was applied by Zhang et al. (2013). A new data feature dimension reduction method for lymphatic diseases was proposed by Azar et al. (2014). Auxiliary diagnosis has achieved a certain improvement in diagnostic efficiency (Yuan et al., 2010; Mokeddem et al., 2013).

The Cost Support Vector Classification (C-SVC) is a method of SVM classification. It introduces penalty parameter C for SVM classification.

$$\min_{w,b,\zeta} \frac{1}{2} w^T w + C \sum_{i=1}^n \zeta_i \tag{1}$$

subject to $y_i(w^T \phi(x_i) + b) \ge 1 - \zeta_i$,

$$\zeta_i \geq 0, \ i=1,\ldots,n$$

Its dual is:

$$\min_{\alpha} \frac{1}{2} \alpha^T \mathcal{Q} \alpha - e^T \alpha \tag{2}$$

subject to $y^T \alpha = 0$

$$0 \leq \alpha_i \leq C, i = 1, \ldots, n,$$

where *e* is the vector of all ones, C > 0 is the upper bound, *Q* is an *n* by positive semidefinite matrix, $Q_{ij} \equiv y_i y_j K(x_i, x_j)$, where $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ is the kernel. Here, training vectors are implicitly mapped into a higher (maybe infinite) dimensional space by the function:

$$\operatorname{sgn}\left(\sum_{i=1}^{n} y_{i} \alpha_{i} K\left(x_{i}, x_{j}\right) + \rho\right)$$
(3)

The C-SVC is capable of categorizing two types of breast tissue (Jiang and Yao, 2016).

Data Preprocessing for the Prediction Model

To test the accuracy of the C-SVC-based high-risk breast cancer prediction model, we divided the samples into two groups, one for normal tissue and breast cancer tissue, and the other for Stage II and Stage III breast cancers.

Scaling data according to the Equation (4):

$$y' = lower + (upper - lower) * \frac{y - min}{max - min}$$
(4)

where y is the data before scaling, y' is the scaled data; *lower* is the lower bound of the data specified in the parameter, *upper* is the upper bound of the data specified in the parameter; *min* is the minimum of all training data, and *max* is the maximum value of all training data.

The preprocessing of the data has a great influence on the final classification accuracy. This paper will compare the different preprocessing methods and finally choose the method with high classification accuracy to establish the model.

Parameter Optimization

The choice of a kernel function is important. In a specific problem, several kernel functions should be applied in order to choose the best one, obtaining the highest accuracy (Deng et al., 2016). Both the type of kernel function and other parameters such as penalty parameter C and γ in kernel functions impact the performance. Thus, we use the grid search method to select the appropriate parameters.

RESULTS

The Top 54 Genes on PPI Shortest Paths

After removing the five randomized genes from the intersection of the shortest path results for normal breast and TNBC tissues, a total of 54 genes associated with TNBC were obtained, as shown in **Table 1**. Similarly, we mapped the PPI networks of these 54 genes using the STRINGdb package in R, as shown in **Figure 2**.

Function Gene Enrichment Analysis

In this study, we transferred the disease-related genes into its corresponding EntrezID by using "org.Hs.eg.db" in R. Then, we analyzed the functional enrichment of the 54 candidate genes in KEGG pathways and GO terms using the R package "clusterProfilter." The GO enrichment analysis includes three categories: cellular component (CC), molecular function (MF), and biological process (BP). In our study, we only focus on BP enrichment due to its importance. These terms were ranked by the enrichment *p*-value. The Benjamin multiple testing correction method was used to regulate family-wide false discovery rate under a certain rate (e.g., ≤ 0.01) to correct the enrichment p-value (Benjamini and Yekutieli, 2001). Results of the GO enrichment analysis ranked by *p*-value were provided in Table 2 and result of the KEGG enrichment analysis ranked by p-value was provided in Table 3, respectively. The top 10 terms of the enrichment results are depicted in Figures 3, 4.

High-Risk Breast Cancer Prediction

In this study, we implemented the C-SVC algorithm in the Matlab 2015a environment. The radial basis function (RBF) kernel function was employed in this study since the function has been widely used in various bioinformatics prediction problems and usually yields the best results compared to other types of kernel functions (Li et al., 2011; Song et al., 2011; Khan et al., 2016). In this study, we also employed other kernel functions on the same prediction task and found that the RBF performed the best (data not shown). The grid search method was used and the results were verified by the ten-fold cross-validation method. The data in the experiment was divided into 10 sets of similar size, and 9 of them were used in turn as the training set. One set was used as the test to calculate the corrections and errors of the prediction. As a result, the normal tissue and TNBC tissue prediction accuracy reached 95.394%, and the Stage II and Stage III TNBC predictions reached 86.598%, as shown in Table 4. It is indicated that based on the 54 genes as features, the C-SVC algorithm can accurately predict normal tissue and TNBC, as well as the stage data for TNBC.

TABLE 1 | The 54 candidate breast cancer-related genes and betweenness.

MAGOH ENSP0000360525 1777 Kataoka et al., 2001 CBL ENSP00000264033 1548 Thien and Langdon, 2001 RPS3 ENSP000004033821 1380 Jang et al., 2004 FGFR1 ENSP00000380312 1286 Piroola et al., 2002 RHOA ENSP00000283253 1048 Gayther et al., 2003 CDK1 ENSP00000275493 815 Konishi et al., 2004 EGFR ENSP00000275493 815 Kobayashi et al., 2003 OCH1 ENSP00000360266 811 Curran and Franza, 1988 NOTCH1 ENSP00000277541 803 Nicolas et al., 2015 OGT ENSP00000266122 786 Alquobali et al., 2016 OGT ENSP00000269571 763 Blackwell et al., 2010 HF1A ENSP00000269671 763 Blackwell et al., 2011 HE2A ENSP00000278349 705 Kawai et al., 2003 RPS27A ENSP0000027849 765 Pohinson et al., 2014 REB2 ENSP00000278473 658 Xia et al., 2014 REA	hgnc_symbol	ensp	Betweenness	Reference
CBL ENSP0000264333 1548 Thien and Langdon, 2001 RPS3 ENSP00000433821 1380 Jang et al., 2004 FGFR1 ENSP00000433821 1286 Pirvola et al., 2002 RHOA ENSP00000348461 871 Gu et al., 2003 CDK1 ENSP00000275493 815 Kobayashi et al., 2004 EGFR ENSP00000275493 815 Kobayashi et al., 2003 JUN ENSP00000275493 815 Kobayashi et al., 2003 JUN ENSP00000275493 815 Kobayashi et al., 2003 JUN ENSP0000028626 811 Curran and Franza, 1988 NOTCH1 ENSP000003802824 786 Alquoballi et al., 2015 GGT ENSP0000038018 767 Zhang et al., 2017 ERB2 ENSP000003802649 705 Kawai et al., 2017 ESR1 ENSP00000382649 705 Kawai et al., 2017 ERB1 ENSP0000037899 582 Chhabra et al., 2017 CRE1 ENSP0000037899 582 Chhabra et al., 2017 CRE2 ENSP0	MAGOH	ENSP00000360525	1777	Kataoka et al., 2001
RPS3 ENSP00000433821 1380 Jang et al., 2004 FGFR1 ENSP00000333312 1286 Pirvola et al., 2002 RHOA ENSP0000028253 1048 Gayther et al., 2000 RAC1 ENSP0000028253 1048 Gayther et al., 2007 CDH1 ENSP00000267643 848 Konishi et al., 2007 CDH1 ENSP00000277541 803 Nicolas et al., 2005 JUN ENSP00000277541 803 Nicolas et al., 2003 NOTCH1 ENSP0000026752 786 Jolly et al., 2015 OPP1CB ENSP000002655 795 Jolly et al., 2013 GGT ENSP00000266122 786 Alquobali et al., 2010 CFTR ENSP0000026651 763 Blackwell et al., 2013 EBR2 ENSP00000266249 745 Robinson et al., 2017 ESR1 ENSP0000026249 745 Robinson et al., 2014 REA ENSP0000026442 565 Ding et al., 2014 REA ENSP000002633483 561 Slattery et al., 2016 CRFEB1 ENSP00000	CBL	ENSP00000264033	1548	Thien and Langdon, 2001
FGFR1 ENSP0000393312 1286 Pirvala et al., 2002 RHOA ENSP00000400175 1237 Strutt et al., 1997 EP300 ENSP00000283253 1048 Gayther et al., 2003 CDK1 ENSP00000378699 852 Santamaria et al., 2007 CDH1 ENSP00000275493 815 Kobayashi et al., 2003 JUN ENSP0000027541 803 Nicolas et al., 2003 HCFC1 ENSP0000027543 803 Nicolas et al., 2003 HCFC1 ENSP0000027541 803 Nicolas et al., 2015 OGT ENSP0000029652 795 Jolly et al., 2013 HERB2 ENSP00000296571 763 Blackwell et al., 2010 CFTR ENSP0000026649 765 Robinson et al., 2013 HBAC1 ENSP00000275417 658 Xia et al., 2004 RF27A ENSP0000026649 765 Kawai et al., 2014 RELA ENSP00000275417 658 Xia et al., 2014 RELA ENSP00000265442 6565 Ding et al., 2014 RELA ENSP00000354	RPS3	ENSP00000433821	1380	Jang et al., 2004
<i>RHOA</i> ENSP00000400175 1237 Strutt et al., 1997 <i>EP300</i> ENSP00000283253 1048 Gayther et al., 2003 <i>RAC1</i> ENSP00000378699 852 Santamaria et al., 2007 <i>CDK1</i> ENSP00000275493 815 Kobayashi et al., 2004 <i>EGFR</i> ENSP00000275493 815 Kobayashi et al., 2003 <i>JUN</i> ENSP00000380555 795 Jolly et al., 2015 <i>OGT</i> ENSP00000380524 786 Sodi et al., 2013 <i>CPC11</i> ENSP0000038084 767 Zhang et al., 2013 <i>ERB2</i> ENSP00000269571 763 Blackwell et al., 2010 <i>HIF1A</i> ENSP00000269249 745 Robinson et al., 2013 <i>ERB2</i> ENSP00000269249 745 Robinson et al., 2014 <i>HIF1A</i> ENSP00000272317 672 Wang et al., 2014 <i>HDAC1</i> ENSP00000276442 565 Ding et al., 2017 <i>CREB1</i> ENSP00000256442 565 Ding et al., 2014 <i>MAPK8</i> ENSP0000026335 553 Yang et al., 2016 <i>R</i>	FGFR1	ENSP00000393312	1286	Pirvola et al., 2002
EP300 ENSP0000263253 1048 Gayther et al., 2003 RAC1 ENSP00000378699 852 Santamaría et al., 2007 CDH1 ENSP00000275493 815 Konishi et al., 2005 JUN ENSP0000027541 803 Nicolas et al., 2003 HCFC1 ENSP0000027541 803 Nicolas et al., 2003 HCFC1 ENSP0000026822 786 Sodi et al., 2015 OGT ENSP0000028955 795 Jolly et al., 2013 ERB2 ENSP00000289571 763 Blackwell et al., 2010 HIF1A ENSP000003802649 745 Robinson et al., 2013 ERB2 ENSP00000382649 705 Kawai et al., 2010 HIAC1 ENSP00000382649 705 Kawai et al., 2013 PDAC1 ENSP000003824273 658 Xia et al., 2010 CRB1 ENSP00000383483 561 Slattery et al., 2014 MAPK8 ENSP00000383483 561 Slattery et al., 2013 OPTN ENSP00000283483 561 Slattery et al., 2014 MAPK8 ENSP00	RHOA	ENSP00000400175	1237	Strutt et al., 1997
FAC1 ENSP00000348461 871 Gu et al., 2003 CDK1 ENSP00000276499 852 Santamaria et al., 2007 CDH1 ENSP00000275493 815 Konishi et al., 2003 JUN ENSP00000380286 811 Curran and Franza, 1988 NOTCH1 ENSP0000039555 795 Jolly et al., 2015 OGT ENSP0000026122 786 Alquoball et al., 2009 CFTR ENSP00000269571 763 Blackwell et al., 2010 HIF1A ENSP0000026649 745 Robinson et al., 2013 ERB2 ENSP00000266249 745 Robinson et al., 2013 HDAC1 ENSP000003804273 658 Xia et al., 2010 CREB1 ENSP000003804273 658 Xia et al., 2010 CREB1 ENSP00000380442 565 Ding et al., 2014 MAPK8 ENSP00000380351 553 Xia et al., 2010 CREB1 ENSP00000380351 553 Yang et al., 2016 SRC ENSP00000256442 565 Ding et al., 2016 SRC ENSP00000256335 <td>EP300</td> <td>ENSP00000263253</td> <td>1048</td> <td>Gayther et al., 2000</td>	EP300	ENSP00000263253	1048	Gayther et al., 2000
CDK1 ENSP0000378699 852 Santamaria et al., 2007 CDH1 ENSP0000271693 815 Kobayashi et al., 2004 EGFR ENSP00000277541 803 Nicolas et al., 2003 JUN ENSP00000277541 803 Nicolas et al., 2003 HCFC1 ENSP00000277541 803 Nicolas et al., 2003 HCFC1 ENSP0000029655 795 Jolly et al., 2015 OGT ENSP00000296512 786 Alquoballi et al., 2009 CFTR ENSP000002969571 763 Blackwell et al., 2017 ERB2 ENSP0000026249 745 Robinson et al., 2013 HIF1A ENSP00000380273 658 Xia et al., 2004 HAC1 ENSP00000384273 658 Xia et al., 2010 CREB1 ENSP00000383453 561 Slattery et al., 2013 OPTN ENSP00000363445 565 Ding et al., 2014 MAPK8 ENSP000003635483 561 Slattery et al., 2015 SRC ENSP000003635435 553 Yang et al., 2016 MPS2 ENSP0000	RAC1	ENSP00000348461	871	Gu et al., 2003
CDH1 ENSP0000261769 848 Konishi et al., 2004 EGFR ENSP00000275493 815 Kobayashi et al., 2003 JUN ENSP00000309555 795 Jolly et al., 2015 OGTCH1 ENSP00000309555 795 Jolly et al., 2015 OGT ENSP00000309655 796 Alguobalil et al., 2009 CFTR ENSP00000269612 786 Alguobalil et al., 2010 HIF1A ENSP00000269571 763 Blackwell et al., 2011 ERB2 ENSP00000269249 745 Robinson et al., 2013 HDAC1 ENSP00000266249 705 Kawai et al., 2010 CRB1 ENSP000003862473 658 Xia et al., 2010 CRB1 ENSP00000386483 561 Slattery et al., 2013 OPTN ENSP000003863483 561 Slattery et al., 2013 OPTN ENSP0000038351 553 Yang et al., 2016 RPS2 ENSP0000038363 553 Yang et al., 2016 RPS2 ENSP0000038363 553 Yang et al., 2016 RPS2 ENSP00000383	CDK1	ENSP00000378699	852	Santamaría et al., 2007
EGFR ENSP00000275493 815 Kobayashi et al., 2005 JUN ENSP00000360266 811 Curran and Franza, 1988 NOTCH1 ENSP00000360255 795 Jolly et al., 2015 OGT ENSP00000360824 786 Sodi et al., 2017 PP1CB ENSP00000269571 763 Blackwell et al., 2013 ERBB2 ENSP00000269571 763 Blackwell et al., 2017 ESR1 ENSP00000269571 763 Blackwell et al., 2013 HIF1A ENSP0000026249 745 Robinson et al., 2013 HDAC1 ENSP00000272317 672 Wang et al., 2014 RELA ENSP00000382649 705 Kawai et al., 2010 CREB1 ENSP00000382731 658 Xia et al., 2010 CREB1 ENSP00000383483 561 Slattery et al., 2014 MAPK8 ENSP00000353483 561 Slattery et al., 2015 SRC ENSP0000035345 553 Yang et al., 2016 PS2 ENSP0000035482 508 You et al., 2014 MDR5 ENSP0000025	CDH1	ENSP00000261769	848	Konishi et al., 2004
JUN ENSP00000360266 811 Curran and Franza, 1988 NOTCH1 ENSP00000277541 803 Nicolas et al., 2003 HCFC1 ENSP00000362824 786 Sodi et al., 2015 OGT ENSP00000296122 786 Alquoballi et al., 2013 ERBB2 ENSP00000266571 763 Blackwell et al., 2011 ERBB2 ENSP0000026649 745 Robinson et al., 2013 HPAC1 ENSP00000272317 672 Wang et al., 2014 HLA ENSP00000272317 672 Wang et al., 2010 CREB1 ENSP00000256442 565 Ding et al., 2011 CREB1 ENSP00000256442 565 Ding et al., 2013 APKA8 ENSP000002603361 553 Yang et al., 2013 OPTN ENSP00000260336 558 Jeffrey et al., 2013 OPTN ENSP0000026036 558 Jeffrey et al., 2013 OPTN ENSP0000026336 558 Jeffrey et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP000002	EGFR	ENSP00000275493	815	Kobayashi et al., 2005
NOTCH1 ENSP0000277541 803 Nicolas et al., 2003 HCFC1 ENSP0000309555 795 Jolly et al., 2015 OGT ENSP00000269224 786 Sodi et al., 2015 PPP1CB ENSP00000269571 763 Blackwell et al., 2010 HIF1A ENSP00000239818 762 Ponente et al., 2011 ESR1 ENSP0000026249 745 Robinson et al., 2013 HDAC1 ENSP00000272317 672 Wang et al., 2014 RELA ENSP00000256442 665 Ding et al., 2017 CCNB1 ENSP00000256442 565 Ding et al., 2014 MAPK8 ENSP000002563483 661 Statery et al., 2015 SRC ENSP00000256348 563 Jaffrey et al., 2016 PFS2 ENSP00000266336 558 Jeffrey et al., 2016 RPS2 ENSP000003541885 549 Douglas, 1997 NFK81 ENSP00000354982 508 You et al., 2014 MT-CO3 ENSP00000354982 508 Lotz et al., 2014 WDR5 ENSP0000035439	JUN	ENSP00000360266	811	Curran and Franza, 1988
HCFC1 ENSP0000309555 795 Jolly et al., 2015 OGT ENSP00000296122 786 Alquoballi et al., 2009 CFTR ENSP00000296122 786 Alquoballi et al., 2013 ERBB2 ENSP00000269571 763 Blackwell et al., 2017 ESR1 ENSP00000206249 745 Robinson et al., 2013 HDAC1 ENSP00000272317 672 Wang et al., 2014 RELA ENSP00000256429 765 Kawai et al., 2007 CCNB1 ENSP00000256427 668 Xia et al., 2010 CREB1 ENSP0000025642 665 Ding et al., 2013 OPTN ENSP00000256348 661 Slattery et al., 2013 OPTN ENSP00000256336 558 Jeffrey et al., 2013 OPTN ENSP00000256336 558 Jeffrey et al., 2013 OPTN ENSP0000025674 512 Curran et al., 2002 MT-CO3 ENSP00000228050 508 Lotz et al., 2014 WDR5 ENSP00000228367 466 Gupta et al., 2014 WDR5 ENSP000003548	NOTCH1	ENSP00000277541	803	Nicolas et al., 2003
OGT ENSP0000362824 786 Sodi et al., 2015 PPP1CB ENSP00000296122 786 Alquoballi et al., 2009 CFTR ENSP00000269571 763 Blackwell et al., 2017 ERB2 ENSP0000266249 745 Robinson et al., 2013 HIF1A ENSP0000266249 745 Robinson et al., 2013 HDAC1 ENSP00000272317 672 Wang et al., 2014 RELA ENSP00000256442 565 Ding et al., 2014 RELA ENSP0000256442 565 Ding et al., 2014 MAPK8 ENSP00002563483 561 Stattery et al., 2015 SRC ENSP00000260303 553 Yang et al., 2016 OPTN ENSP0000026303 553 Yang et al., 2016 RPS2 ENSP00000354185 549 Douglas, 1997 NFKB1 ENSP00000354632 508 You et al., 2016 RPS2 ENSP00000354482 508 You et al., 2017 MT-CO3 ENSP00000354982 508 Lotz et al., 2014 MDF5 ENSP00000354982	HCFC1	ENSP00000309555	795	Jolly et al., 2015
PPP1CB ENSP00000296122 786 Alquoballi et al., 2009 CFTR ENSP00000269571 763 Blackwell et al., 2010 HIF1A ENSP00000268249 745 Robinson et al., 2013 ERB2 ENSP00000268249 745 Robinson et al., 2013 HDAC1 ENSP00000272317 672 Wang et al., 2014 RELA ENSP00000272317 672 Wang et al., 2010 CREB1 ENSP00000276442 665 Ding et al., 2014 MAPK8 ENSP00000256442 665 Ding et al., 2013 OPTN ENSP000002663036 558 Jeffrey et al., 2013 OPTN ENSP0000026574 512 Curan et al., 2007 CCAB1 ENSP000003535482 508 You et al., 2016 RPS2 ENSP00000354632 508 Jouglas, 1997 NFK81 ENSP00000354632 508 ArtPs4 MT-CO3 ENSP00000354632 508 ArtPs4 ATPS61 ENSP00000354632 508 Lotz et al., 2014 WDR5 ENSP0000036439 429	OGT	ENSP00000362824	786	Sodi et al., 2015
CFTR ENSP0000003084 767 Zhang et al., 2013 ERBB2 ENSP00000269571 763 Blackwell et al., 2017 ESR1 ENSP0000026249 745 Robinson et al., 2013 HDAC1 ENSP0000026249 745 Robinson et al., 2013 HDAC1 ENSP00000272317 672 Wang et al., 2003 RPS27A ENSP00000272317 672 Wang et al., 2010 CREB1 ENSP00000272317 672 Wang et al., 2010 CREB1 ENSP00000387699 582 Chhabra et al., 2017 MAPK8 ENSP00000350941 559 Zhang et al., 2013 OPTN ENSP0000036366 558 Jeffrey et al., 1999 ITGB1 ENSP00000354832 508 You et al., 2002 MT-CO3 ENSP00000354632 508 Lotz et al., 2014 MDR5 ENSP00000354632 508 Lotz et al., 2014 MDR5 ENSP00000354639 429 EnsP0000354639 429 ETRC ENSP000036439 429 EnsP0000364439 429 EnsP0000364439 <td< td=""><td>PPP1CB</td><td>ENSP00000296122</td><td>786</td><td>Alquobaili et al., 2009</td></td<>	PPP1CB	ENSP00000296122	786	Alquobaili et al., 2009
ERBB2 ENSP00000269571 763 Blackwell et al., 2010 HIF1A ENSP0000038018 762 Ponente et al., 2017 ESR1 ENSP0000026249 745 Robinson et al., 2013 HDAC1 ENSP00000362649 705 Kawai et al., 2003 RPS27A ENSP00000272317 672 Wang et al., 2014 RELA ENSP00000387699 582 Chhabra et al., 2007 CCNB1 ENSP0000035483 561 Slattery et al., 2015 SRC ENSP0000035041 559 Zhang et al., 2016 OPTN ENSP00000351 553 Yang et al., 2016 RPS2 ENSP00000354632 508 You et al., 2002 MT-ATP6 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2014 WDR5 ENSP00000354632 508 Lotz et al., 2014 WDR5 ENSP00000354982 508 C ATP5A1 ENSP00000365439 429 E BTRC ENSP00000365439 429 E </td <td>CFTR</td> <td>ENSP0000003084</td> <td>767</td> <td>Zhang et al., 2013</td>	CFTR	ENSP0000003084	767	Zhang et al., 2013
HIF1A ENSP00000338018 762 Ponente et al., 2017 ESR1 ENSP0000026249 745 Robinson et al., 2013 HDAC1 ENSP00000362649 705 Kawai et al., 2003 RPS27A ENSP00000387699 582 Chhabra et al., 2010 CREB1 ENSP00000387699 582 Chhabra et al., 2017 CCNB1 ENSP00000353483 561 Slattery et al., 2013 MAPK8 ENSP00000350941 559 Zhang et al., 2013 OPTN ENSP000003501 553 Yang et al., 2016 RPS2 ENSP00000351 553 Yang et al., 2002 MT-K8 ENSP0000035483 508 You et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2009 MT-CO3 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP000003786139 429 ENSP000003786 391 SHC1 ENSP00000378639 429 ENSP000003786 391 SHC1	ERBB2	ENSP00000269571	763	Blackwell et al., 2010
ESR1 ENSP0000206249 745 Robinson et al., 2013 HDAC1 ENSP0000362649 705 Kawai et al., 2003 RPS27A ENSP0000384273 658 Xia et al., 2010 CREB1 ENSP0000384273 655 Ding et al., 2014 MAPK8 ENSP0000256442 565 Ding et al., 2014 MAPK8 ENSP0000350941 559 Zhang et al., 2013 OPTN ENSP0000263036 558 Jeffrey et al., 1999 ITGB1 ENSP0000263036 558 Jeffrey et al., 2016 RPS2 ENSP000026574 512 Curran et al., 2002 MT-ATP6 ENSP0000035482 508 ATP5A1 ENSP0000035482 508 ATP5A1 ENSP00000351446 466 Dai et al., 2014 WDR5 ENSP0000035926 508 Lotz et al., 2014 RAN ENSP0000035926 408 PXN ENSP0000035926 408 PXN ENSP00000364389 391 SHC1 <t< td=""><td>HIF1A</td><td>ENSP00000338018</td><td>762</td><td>Ponente et al., 2017</td></t<>	HIF1A	ENSP00000338018	762	Ponente et al., 2017
HDAC1 ENSP0000362649 705 Kawai et al., 2003 RPS27A ENSP0000272317 672 Wang et al., 2014 RELA ENSP0000384273 658 Xia et al., 2010 CREB1 ENSP0000387699 582 Chhabra et al., 2007 CCNB1 ENSP0000353483 561 Slattery et al., 2014 MAPK8 ENSP0000350941 559 Zhang et al., 2013 OPTN ENSP0000263036 558 Jeffrey et al., 1999 ITGB1 ENSP000033351 553 Yang et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354982 508 Vou et al., 2014 WDR5 ENSP00000351446 466 Dai et al., 2014 WDR5 ENSP00000359206 508 Lotz et al., 2014 WDR5 ENSP00000359206 408 PXN PXN ENSP00000359206 408 PXN PXN ENSP0000036439 381 NCOR2 PXN ENSP0000037786 391 SHate al., 2016	ESR1	ENSP00000206249	745	Robinson et al., 2013
RPS27A ENSP0000272317 672 Wang et al., 2014 RELA ENSP0000384273 658 Xia et al., 2010 CREB1 ENSP0000256442 565 Ding et al., 2014 MAPK8 ENSP00000353483 561 Slattery et al., 2015 SRC ENSP0000263036 558 Jeffrey et al., 2013 OPTN ENSP0000033351 553 Yang et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2014 WDR5 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000351446 466 Dai et al., 2014 WDR5 ENSP00000262367 466 Gupta et al., 2014 WDR5 ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP0000359206 408 PXN PXN ENSP000037786 391 SHC1 SHC1 ENSP0000346389 381 NCOR2 NCOR2 ENSP0000346389 381 NCOR2 ENSP00000	HDAC1	ENSP00000362649	705	Kawai et al., 2003
RELA ENSP0000384273 658 Xia et al., 2010 CREB1 ENSP0000387699 582 Chhabra et al., 2007 CCNB1 ENSP0000256442 565 Ding et al., 2014 MAPK8 ENSP0000353483 561 Slattery et al., 2015 SRC ENSP0000263036 558 Jeffrey et al., 2013 OPTN ENSP0000033351 553 Yang et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2014 WDR5 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000351446 466 Dai et al., 2014 WDR5 ENSP00000359206 408 Parter PXN ENSP0000359206 408 PXN PXN ENSP000037786 391 Sp et al., 2017 CYC1 ENSP0000346389 381 NCOR2 PNSP0000346389 381 Sico et al., 2004 MEF2A ENSP0000346389 381 NCOR2 CNSP0000036438 </td <td>RPS27A</td> <td>ENSP00000272317</td> <td>672</td> <td>Wang et al., 2014</td>	RPS27A	ENSP00000272317	672	Wang et al., 2014
CREB1 ENSP00000387699 582 Chhabra et al., 2007 CCNB1 ENSP00000256442 565 Ding et al., 2014 MAPK8 ENSP00000353483 561 Slattery et al., 2015 SRC ENSP00000350941 559 Zhang et al., 2013 OPTN ENSP00000263036 558 Jeffrey et al., 1999 ITGB1 ENSP0000033351 553 Yang et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000348632 508 You et al., 2014 WDR5 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP0000376176 445 Yuen et al., 2017 CYC1 ENSP0000037786 391 Sp et al., 2017 CYC1 ENSP0000037786 391 SkC1 Lotz et al., 2004 MEF2A ENSP0000384018 362 Green et al., 2004 MEF2A ENSP00000364389 381	RELA	ENSP00000384273	658	Xia et al., 2010
CCNB1 ENSP00000256442 565 Ding et al., 2014 MAPK8 ENSP00000333483 561 Slattery et al., 2015 SRC ENSP00000360941 559 Zhang et al., 2013 OPTN ENSP00000263036 558 Jeffrey et al., 1999 ITGB1 ENSP0000033351 553 Yang et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2014 WDR5 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP0000028367 466 Gupta et al., 2014 WDR5 ENSP00000365439 429 BTRC ENSP00000365439 BTRC ENSP00000376176 445 Yuen et al., 2017 CYC1 ENSP0000037786 391 Slattery et al., 2004 MEF2A ENSP0000037786 391 Slattery et al., 2004 MEF2A ENSP00000384018 362 Green et al., 2006 CVCA ENSP000003	CREB1	ENSP00000387699	582	Chhabra et al., 2007
MAPK8 ENSP00000353483 561 Slattery et al., 2015 SRC ENSP00000350941 559 Zhang et al., 2013 OPTN ENSP0000026036 558 Jeffrey et al., 1999 ITGB1 ENSP0000033351 553 Yang et al., 2016 RPS2 ENSP00000341885 549 Douglas, 1997 NFKB1 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2014 WDR5 ENSP0000028050 508 Lotz et al., 2014 WDR5 ENSP00000262367 466 Gupta et al., 2013 HNRNPK ENSP00000351446 466 Dai et al., 2014 WDR5 ENSP00000365439 429 BTRC ENSP00000365439 BTRC ENSP00000359206 408 PXN ENSP0000037786 391 SHC1 ENSP0000037786 391 SHC1 ENSP0000346389 381 NCOR2 ENSP0000384018 362 Green et al., 2004 MEF2A LIN7A ENSP0000384038 336 <	CCNB1	ENSP00000256442	565	Ding et al., 2014
SRC ENSP00000350941 559 Zhang et al., 2013 OPTN ENSP00000263036 558 Jeffrey et al., 1999 ITGB1 ENSP00000303351 553 Yang et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2009 MT-CO3 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2014 WDR5 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000262367 466 Gupta et al., 2015 CREBBP ENSP00000262367 466 Gupta et al., 2014 RAN ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000359206 408 PXN PXN ENSP0000037786 391 SHC1 SHC1 ENSP00000346389 381 NCOR2 NCOR2 ENSP00000346389 381 NCOR2 NCOR2 ENSP00000368438 336 Kato et al., 2006 <td>MAPK8</td> <td>ENSP00000353483</td> <td>561</td> <td>Slattery et al., 2015</td>	MAPK8	ENSP00000353483	561	Slattery et al., 2015
OPTN ENSP0000263036 558 Jeffrey et al., 1999 ITGB1 ENSP0000033351 553 Yang et al., 2016 RPS2 ENSP0000026574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2009 MT-CO3 ENSP0000282050 508 Lotz et al., 2014 WDR5 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000262367 466 Gupta et al., 2014 WDR5 ENSP00000354146 466 Dai et al., 2015 CREBBP ENSP00000262367 466 Gupta et al., 2014 RAN ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000359206 408 PXN PXN ENSP00000317159 394 Han et al., 2016 CYC3 ENSP0000037786 391 SHC1 ENSP00000364389 SHC1 ENSP00000368438 362 Green et al., 2004 MEF2A ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000261681 331	SRC	ENSP00000350941	559	Zhang et al., 2013
ITGB1 ENSP0000303351 553 Yang et al., 2016 RPS2 ENSP00000341885 549 Douglas, 1997 NFKB1 ENSP00000226574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2009 MT-CO3 ENSP00000354982 508 ATP5A1 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000262367 466 Gupta et al., 2014 WDR5 ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000359206 408 PXN ENSP00000359206 408 PXN ENSP00000317159 394 Han et al., 2017 CYC1 ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000364438 362 Green et al., 2008 LIN7A ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000361027<	OPTN	ENSP00000263036	558	Jeffrey et al., 1999
RPS2 ENSP00000341885 549 Douglas, 1997 NFKB1 ENSP00000226574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2009 MT-CO3 ENSP00000354982 508 Lotz et al., 2014 WDR5 ENSP00000351446 466 Dai et al., 2015 CREBBP ENSP00000365439 429 ENSP00000365439 429 BTRC ENSP00000365439 429 ENSP00000359206 408 PXN ENSP00000365439 429 ENSP000003659206 408 PXN ENSP000003659206 408 ENSP00000371759 394 Han et al., 2017 CYC1 ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 Magner et al., 2004 MEF2A ENSP00000364383 336 Kato et al., 2008 LIN7A ENSP00000368438 336 Kato et al., 2016 PCNA ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000361027	ITGB1	ENSP00000303351	553	Yang et al., 2016
NFKB1 ENSP0000226574 512 Curran et al., 2002 MT-ATP6 ENSP00000354632 508 You et al., 2009 MT-CO3 ENSP00000354982 508 ATP5A1 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000262367 466 Dai et al., 2015 CREBBP ENSP00000365439 429 BTRC ENSP00000359206 408 PXN ENSP00000359206 408 PXN ENSP0000037159 394 Han et al., 2017 CYC1 ENSP0000037786 CYCS ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP0000036438 366 LIN7A ENSP00000368438 336 LIN7A ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000361027 331 Zhang and Fan, 2015 RAMOT ENSP0000036425 316 Langer et al., 2010 AMOT <td>RPS2</td> <td>ENSP00000341885</td> <td>549</td> <td>Douglas, 1997</td>	RPS2	ENSP00000341885	549	Douglas, 1997
MT-ATP6 ENSP00000354632 508 You et al., 2009 MT-CO3 ENSP00000354982 508	NFKB1	ENSP00000226574	512	Curran et al., 2002
MT-CO3 ENSP00000354982 508 ATP5A1 ENSP00000282050 508 Lotz et al., 2014 WDR5 ENSP00000262367 466 Gupta et al., 2014 RAN ENSP00000262367 466 Gupta et al., 2014 RAN ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000359206 408 PXN PXN ENSP0000028307 406 Sp et al., 2017 CYC1 ENSP00000317159 394 Han et al., 2016 CYCS ENSP00000346389 381 Magner et al., 2004 MEF2A ENSP00000346389 381 Magner et al., 2004 MEF2A ENSP00000384018 362 Green et al., 2008 LIN7A ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000281681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP000003643577 323 FoS ENSP00	MT-ATP6	ENSP00000354632	508	You et al., 2009
ATP5A1 ENSP0000282050 508 Lotz et al., 2014 WDR5 ENSP00000351446 466 Dai et al., 2015 CREBBP ENSP00000262367 466 Gupta et al., 2014 RAN ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000365439 429 BTRC ENSP00000359206 408 PXN ENSP0000028307 406 Sp et al., 2017 CYC1 ENSP00000317159 394 Han et al., 2016 CYCS ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000447488 347 Gruel et al., 2008 LIN7A ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000282441 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP000003648577 323 FOS ENSP0000036	MT-CO3	ENSP00000354982	508	
WDR5 ENSP00000351446 466 Dai et al., 2015 CREBBP ENSP00000262367 466 Gupta et al., 2014 RAN ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000359206 408 PXN ENSP00000359206 408 PXN ENSP00000359206 408 PXN ENSP00000359206 408 PXN ENSP000003717159 394 Han et al., 2017 CYC1 ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000447488 347 Gruel et al., 2008 LIN7A ENSP00000368438 336 Kato et al., 20016 PCNA ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP000003648577 323 FOS ENSP0000036245 316 <	ATP5A1	ENSP00000282050	508	Lotz et al., 2014
CREBBP ENSP0000262367 466 Gupta et al., 2014 RAN ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000365439 429 BTRC ENSP00000359206 408 PXN ENSP00000228307 406 Sp et al., 2017 CYC1 ENSP00000317159 394 Han et al., 2016 CYCS ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000447488 347 Gruel et al., 2008 LIN7A ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP00000363822 308 Subik et al., 2010 SUMO2	WDR5	ENSP00000351446	466	Dai et al., 2015
RAN ENSP00000376176 445 Yuen et al., 2013 HNRNPK ENSP00000365439 429 BTRC ENSP00000359206 408 PXN ENSP00000228307 406 Sp et al., 2017 CYC1 ENSP00000317159 394 Han et al., 2016 CYC3 ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000447488 347 Gruel et al., 2008 LIN7A ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2010 SUMO2 ENSP00000363822 308 Subik et al., 2010	CREBBP	ENSP00000262367	466	Gupta et al., 2014
HNRNPK ENSP0000365439 429 BTRC ENSP00000359206 408 PXN ENSP00000228307 406 Sp et al., 2017 CYC1 ENSP00000317159 394 Han et al., 2016 CYCS ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000447488 347 Gruel et al., 2016 PCNA ENSP00000368438 JNCOR2 ENSP00000384018 362 LIN7A ENSP00000368438 336 Kato et al., 2008 LIN7A ENSP0000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP000003634394 313 Khodarev et al., 2010 AR ENSP00000363822 308 Subik et al., 2010	RAN	ENSP00000376176	445	Yuen et al., 2013
BTRC ENSP00000359206 408 PXN ENSP00000228307 406 Sp et al., 2017 CYC1 ENSP00000317159 394 Han et al., 2016 CYCS ENSP00000307786 391 SHC1 ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000447488 347 Gruel et al., 2008 LIN7A ENSP00000368438 LIN7A ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000282441 MP75 ENSP00000282441 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP000003648577 323 FOS ENSP0000036245 316 Langer et al., 2010 AR ENSP00000363822 308 Subik et al., 2010	HNRNPK	ENSP00000365439	429	
PXN ENSP0000228307 406 Sp et al., 2017 CYC1 ENSP00000317159 394 Han et al., 2016 CYCS ENSP00000307786 391 SHC1 ENSP00000401303 383 Wagner et al., 2004 MEF2A ENSP00000346389 381 NCOR2 ENSP00000447488 362 Green et al., 2008 LIN7A ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000282441 331 Van Rossum et al., 2006 AMOT ENSP00000281681 331 Van Rossum et al., 2006 FOS ENSP00000366455 316 Langer et al., 2006 STAT1 ENSP0000036322 308 Subik et al., 2010 AR ENSP00000405965 297 Subramonian et al. 2014	BTRC	ENSP00000359206	408	
CYC1 ENSP00000317159 394 Han et al., 2016 CYCS ENSP00000307786 391	PXN	ENSP00000228307	406	Sp et al., 2017
CYCS ENSP00000307786 391 SHC1 ENSP00000401303 383 Wagner et al., 2004 MEF2A ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP000003447488 362 Green et al., 2008 LIN7A ENSP00000447488 347 Gruel et al., 2016 PCNA ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP00000354394 313 Khodarev et al., 2010 AR ENSP00000363822 308 Subik et al., 2010	CYC1	ENSP00000317159	394	Han et al., 2016
SHC1 ENSP0000401303 383 Wagner et al., 2004 MEF2A ENSP00000346389 381	CYCS	ENSP00000307786	391	
MEF2A ENSP00000346389 381 NCOR2 ENSP00000346389 381 NCOR2 ENSP00000384018 362 Green et al., 2008 LIN7A ENSP00000447488 347 Gruel et al., 2016 PCNA ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP00000354394 313 Khodarev et al., 2010 AR ENSP00000363822 308 Subik et al., 2010	SHC1	ENSP00000401303	383	Wagner et al., 2004
NCOR2 ENSP00000384018 362 Green et al., 2008 LIN7A ENSP00000447488 347 Gruel et al., 2016 PCNA ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP00000354394 313 Khodarev et al., 2010 AR ENSP0000036822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	MEF2A	ENSP00000346389	381	
Link Link Grue Grue Link Grue Grue <th< td=""><td>NCOR2</td><td>ENSP00000384018</td><td>362</td><td>Green et al. 2008</td></th<>	NCOR2	ENSP00000384018	362	Green et al. 2008
PCNA ENSP00000368438 336 Kato et al., 2002 YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP000003648577 323 FOS ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP00000363822 308 Subik et al., 2010 AR ENSP00000405965 297 Subramonian et al. 2014	I IN7A	ENSP00000447488	347	Gruel et al. 2016
YAP1 ENSP00000282441 335 Yu et al., 2013 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP0000036425 316 Langer et al., 2010 AR ENSP00000363822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	PCNA	ENSP0000368438	336	Kato et al. 2002
MARY Ends Good222 Tri Cood any 2010 MPP5 ENSP00000261681 331 Van Rossum et al., 2006 AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP00000361027 323 FOS ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP00000354394 313 Khodarev et al., 2010 AR ENSP00000363822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	YAP1	ENSP0000282441	335	Yu et al. 2013
AMOT ENSP00000361027 331 Zhang and Fan, 2015 RANGAP1 ENSP00000361027 323 FOS ENSP00000306245 316 Langer et al., 2006 STAT1 ENSP00000354394 313 Khodarev et al., 2010 AR ENSP00000363822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	MPP5	ENSP0000261681	331	Van Rossum et al. 2006
RANGAP1 ENSP00000348577 323 FOS ENSP0000036245 316 Langer et al., 2006 STAT1 ENSP00000354394 313 Khodarev et al., 2010 AR ENSP0000036822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	AMOT	ENSP0000361027	331	Zhang and Ean 2015
FOS ENSP00000306245 316 Langer et al., 2006 STAT1 ENSP00000354394 313 Khodarev et al., 2010 AR ENSP00000363822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	RANGAP1	ENSP00000348577	323	
STAT1 ENSP00000354394 S10 Langer et al., 2000 AR ENSP00000363822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	FOS	ENSP000000000077	316	Langer et al. 2006
AR ENSP00000363822 308 Subik et al., 2010 SUMO2 ENSP00000405965 297 Subramonian et al. 2014	STAT1	ENSP0000354394	313	Khodarev et al. 2000
SUMO2 ENSP00000405965 297 Subramonian et al. 2014	AR	ENSP00000363822	308	Subik et al. 2010
	SUMO2	ENSP00000405965	297	Subramonian et al., 2014

TABLE 2 | Results of the GO enrichment analysis.

Go term entry ID	Description	p-value	Count
GO:0071407	Cellular response to organic cyclic compound	1.217E-12	16
GO:0006979	Response to oxidative stress	9.108E-11	13
GO:0048511	Rhythmic process	1.467E-10	12
GO:0071396	Cellular response to lipid	1.897E-10	14
GO:0048732	Heart development	2.055E-10	14
GO:0009612	Gland development	2.349E-10	13
GO:0009314	Response to mechanical stimulus	3.549E-10	10
GO:0009314	Response to radiation	3.666E-10	13
GO:0038095	Fc-epsilon receptor signaling pathway	5.244E-10	9
GO:0000302	Response to reactive oxygen species	6.401E-10	10

TABLE 3 | Results of the KEGG enrichment analysis.

KEGG term entry ID Description		p-value	Count
hsa05200	Pathways in cancer	7.835E-13	20
hsa05167	Kaposi's 1.406E-10 sarcoma-associated herpesvirus infection		13
hsa05161	Hepatitis B	2.393E-10	12
hsa05168	Herpes simplex infection	3.262E-10	13
hsa05203	Viral carcinogenesis	9.155E-10	13
hsa04520	Adherens junction	1.430E-09	9
hsa05215	Prostate cancer	7.949E-09	9
hsa04024	cAMP signaling pathway	9.423E-09	12
hsa05205	Proteoglycans in cancer	1.249E-08	12
hsa01522	Endocrine resistance	1.915E-08	9

DISCUSSION

Genes Identified From PPI Shortest Paths

As can be seen from **Table 1**, some genes are associated with TNBC, such as *FGFR1*, *EGFR*, *NOTCH1*, *ERBB2*, *AR*, and so on.

Among these genes, *CBL*, *FGFR1*, *RHOA*, *EP300*, *RAC1*, *CDH1*, *EGFR*, *NOTCH1*, *ERBB2*, *HIF1A*, *HDAC1*, *CCNB1*, *SRC*, *ITGB1*, *NFKB1*, *CREBBP*, *PCNA*, *STAT*, and *AR* are reported to be related to TNBC.

The Migration and Invasion

We found that specific genes such as *CBL*, *RHOA*, *EP300*, *RAC1*, *CDK1*, and *CDH1* are involved in the migration and invasion of breast cancer.

CBL is a proto-oncogene, and it is indicated that *CBL* is associated with the development of leukemia. It has been found that this gene is mutated or translocated in many cancers (Choi et al., 2003). *CBL* encodes a protein which is one of the enzymes required to target substrate degradation through the proteasome. It has been found that the gene mutation or translocation occurs in many cancers, such as acute myeloid leukemia. So far, there

Dijkstra algorithm in the network. Finally, the 54 shortest path proteins were obtained, the related genes of which were considered as candidate genes. The PPI network of the 54 shortest path proteins is depicted, in which the nodes represent proteins, and the lines between nodes represent protein interactions.

are some studies suggesting that *CBL* is associated with breast cancer or TNBC. It is reported by Kales et al. that low expression of Cbl-c is associated with breast tumors (Kales et al., 2014). It is shown that this gene is involved in the invasion of cancer. The study by Crist et al. showed that a diminished regulatory capacity of Cbl-c is a recurrent event that may play a role in the invasive nature of colorectal cancer cells (Cristóbal et al., 2014). From these studies, it can be speculated that CBL is associated with invasiveness of TNBC.

In the Rho family, *RHOA* is a small GTPase protein. The overexpression of this gene is related to tumor cell proliferation and metastasis. It is shown that the RhoA pathway mediates the independent invasion of MMP-2 and MMP-9 in TNBS cell lines (Fagan-Solis et al., 2013). *RHOA* is the target of *miR-146a* to prevent cell invasion and metastasis in breast cancer (Liu et al., 2016). Lee et al. showed that *ODAM* expression maintains breast cancer cell adhesion and thus prevents breast cancer cells (Lee et al., 2015). The study by Kwon et al. showed that *SMURF1* acts in EGF-induced migration and invasion of breast cancer cells (Kwon et al., 2013). In conclusion, *RHOA* is involved in the invasion of TNBC cells.

EP300 (histone acetyltransferase p300) encodes the p300 transcriptional coactivator of the adenovirus E1A-associated cell. Studies by Cho et al. (2015) showed that p300 and *MRTF-A* synergistically enhance the expression of migration-associated genes in breast cancer cells. In addition, it is report that the EP300-G211S mutation correlates with a low mutation load in TNBC patients (Bemanian et al., 2017). Therefore, *EP300* is directly related to TNBC.

The *RAC1* gene encodes a protein belonging to the GTPase of the small GTP-binding protein RAS superfamily. It was found that *RASAL2* activates *RAC1* to promote TNBC (Feng et al., 2014). Studies by De et al. have shown that the caspase- β -catenin-RAC1 cascade suggests a link between *RAC1* and integrin-related metastasis in TNBC (De et al., 2017). In addition, studies by De et al. (2017) observed that two different mTORC2-dependent signaling pathways can be fused with *RAC1* to drive breast cancer metastasis. Therefore, *RAC1* may play an important clinical role for the treatment of TNBC.

CDH1, the gene encoding E-cadherin (E-cadherin), is a calcium-dependent cell adhesion protein belonging to the cadherin family. It is involved in the process of tumor

proliferation, invasion, and metastasis. Therefore, it is anticipated that gene function defects will promote the occurrence and development of cancer. It is shown that 1α , 25-dihydroxyvitamin D3 induces E-cadherin expression in TNBC cells through demethylation of the *CDH1* promoter (Lopes et al., 2012).

Posttranscriptional Regulation of Gene Expression

We found that *FGR1*, *MAGOH*, *RPS3*, and *CDK1* are all involved in posttranscriptional regulation of gene expression.

FGFR1 is one of the fibroblast growth factor (FGF) encoding genes. Cheng et al. suggested that upregulation of *FGFR1* expression in TNBC cells may be treated as a potential therapeutic target (Cheng et al., 2015). Vinayak et al. (2013) reported that FGF pathways have been implicated in breast tumorigenesis as a potential target for TNBC. In addition, there is some research indicating that it is related to breast cancer, as *FGFR1* was found to be associated with luminal A breast cancer (Zou et al., 2016a). FGFR is also helpful in the targeted therapy of breast cancer (Ye et al., 2014). Amplification of *FGFR1* also occurs in almost 10% of ER-positive breast cancers, particularly luminol type B breast cancer subtypes. In summary, *FGFR1* and TNBC are closely related.

MAGOH ranked first, indicating it plays an important role in TNBC. A protein encoded by the gene is the core component of the composite exon. There is some evidence showing that it is

associated with TNBC. This gene could possibly be treated as a potential specific gene for TNBC.

The *RPS3* gene encodes the 40S ribosomal protein S3 domain. Kim et al. have shown that the rpS3 protein is a marker of malignancy (Kim et al., 2013). It is reported that it is mainly associated with lung cancer. Slizhikova et al. (2005) have shown that this gene is a marker of human squamous cell lung cancer.

CDK1 is a set of Ser/Thr kinase systems corresponding to cell cycle progression. It was shown by Xia et al. (2014) that the *CDK1* inhibitor RO3306 potentiates BRCA-negative breast cancer cell responses to PARP inhibitors. *CDK1* inhibition may have a role in the adjuvant treatment of TNBC.

Additionally, some genes have also been reported to have a direct relationship with TNBC. In a nutshell, most of the specific genes found in this study have been reported to be associated with TNBC, while others are rarely reported to have a direct relationship with TNBC, suggesting that they could be new specific genes and potentially be new biomarkers for breast cancer prevention and treatment.

Candidate Gene Enrichment Analysis

We used the 'clusterProfilter' package in R for the enrichment analysis of the 54 candidate genes, ranking the GO terms and KEGG pathways by *p*-value in ascending order. In the present study, the *p*-value was calculated for each KEGG and GO term.

FIGURE 4 The KEGG enrichment analysis. The top 10 pathways from the KEGG enrichment analysis ranked by *p*-value, shown as a bar chart. The terms of the KEGG pathways are depicted on the *y*-axis. The shared number of pathways is shown as the length of histogram. The different colors represent the different *p*-values.

TABLE 4 | The performance of the high-risk breast cancer classification model.

	ACC	Precision	Recall	F-measure
Normal and TNBC	95.394%	88.889%	100%	94.118%
II and III	86.597%	80.952%	100%	89.474%

The experiment result shows its upper recall and precision rate. Its recall rate reaches 100%. The precision and F-measure are also above 80%.

In this study, we only focused on BP. The top 10 terms ranked by *p*-value are shown in **Figure 2**.

As shown in Figure 2, "cellular response to organic cyclic compound (GO:0071407)" was ranked first. It is well known that any process leading to changes in cell state or activity (changes in movement, secretion, enzyme production, gene expression, etc.) is the result of stimulation by organic cyclic compounds. It proved the importance of this BP in TNBC. Both "response to oxidative stress" (GO: 0006979) and "response to reactive oxygen species" (GO: 0000302) are related to the reaction of oxygen. "Rhythmic process" (GO:0048511), "cellular response to lipid" (GO:0071396), "heart development" (GO: 0007507), "gland development" (GO:0048732), and "glandular development" (GO:0048732) are also associated with TNBC. In addition, the two responses "response to mechanical stimulus" (GO: 0009612) and "response to radiation" (GO: 0009314) are also associated with TNBC, as well as the "Fc-epsilon receptor signaling pathway" (GO: 0038095). The above entry comment may provide some new ideas for TNBC.

The top 10 terms of KEGG enrichment ranked by *p*-value are depicted in **Figure 3**. It is clear that "pathways in

cancer" (hsa05200) is ranked at the top, demonstrating its importance in TNBC.

In addition, "Kaposi's sarcoma-associated herpesvirus infection" (hsa05167), "hepatitis B" (hsa05161), "herpes simplex infection" (hsa05168), and "viral carcinogenesis" (hsa05203) are associated with viral infection. Moreover, "adherens junction" (hsa04520), "prostate cancer" (hsa05215), "cAMP signaling pathway" (hsa04024), "proteoglycans in cancer" (hsa05205), and "endocrine resistance" (hsa01522) are also associated with the occurrence and development of TNBC. Huo et al. (2012) suggested that breast cancer and viral infection were statistically significant. From the enrichment analysis above it can be concluded that TNBC may be related to viral carcinogenesis.

Advantages of the Method and Extension

It is anticipated that our model may become a useful tool for studying cancers from the angle of genes and networks. It was observed by analyzing the results that the specific genes, the biological functions of the significant genes, and the pathways enriched would contribute to cancer diagnosis and cancer predictions. Furthermore, the current model can also be used to solve many other disease prediction problems, and we also have many similar applications in our previous studies, such as for Ebola (Cao et al., 2017) and for A/H7N9 (Zhang et al., 2014). These studies show promising results and prove the efficiency of the proposed methods. However, this method has limitations on diseases with insignificant genes, which may lead to bias in prediction results. Additionally, insufficient samples will also affect the results. Moreover, genes identified from computational methods should be verified by further experimental studies. In all, results may shed some light on the understanding of the mechanism of the tumorigenesis of breast cancer, providing new references for research into the disease and for the development of new strategies for clinical therapies as well as providing potential for future experimental validation.

CONCLUSION

In this study, we developed a novel method to identify TNBCrelated genes. This method integrated breast cancer gene expression data and PPI data. Many of the identified genes were reported to be related to TNBC in the literature. Most of these genes are related with invasion and metastasis. GO enrichment analysis indicated that the cellular response to organic cyclic compounds have an influence in breast cancer. KEGG pathway analysis indicated that most of these 54 genes may be related with viral carcinogenesis. We believe that these findings will provide some insights for breast cancer therapy and drug development.

We also developed a new SVM method based on the C-SVC for predicting high-risk breast cancer. The prediction accuracy of normal tissues and TNBC tissues reached 95.394%, and the predictions of Stage II and Stage III TNBC reached 86.598%.

Our method could be helpful for identifying novel cancerrelated genes and assisting doctors in medical diagnosis.

REFERENCES

- Alquobaili, F., Miller, S. A., Muhie, S., Day, A., Jett, M., and Hammamieh, R. (2009). Estrogen receptor-dependent genomic expression profiles in breast cancer cells in response to fatty acids. *J. Carcinog.* 8:17. doi: 10.4103/1477-3163.59539
- Azar, A. T., Elshazly, H. I., Hassanien, A. E., and Elkorany, A. M. (2014). A random forest classifier for lymph diseases. *Comput. Methods Programs Biomed.* 113, 465–473. doi: 10.1016/j.cmpb.2013.11.004
- Bemanian, V., Sauer, T., Touma, J., Vetvik, K. M., Noone, J. C., Kristensen, V. N., et al. (2017). Abstract LB-027: the EP300-G211S mutation is highly associated with a low mutational burden in triple-negative breast cancer patients. *Cancer Res.* 77(13 Suppl.):LB-027-LB-027. doi: 10.1158/1538-7445
- Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188. doi: 10.1186/ 1471-2105-9-114
- Blackwell, K. L., Burstein, H. J., Storniolo, A. M., Rugo, H., Sledge, G., Koehler, M., et al. (2010). Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol. 28, 1124–1130. doi: 10.1200/JCO.2008.21.4437
- Cabarle, F. G. C., Adorna, H. N., Jiang, M., and Zeng, X. (2017). Spiking neural p systems with scheduled synapses. *IEEE Trans. Nanobioscience* 16, 792–801. doi: 10.1109/TNB.2017.2762580
- Cao, H. H., Zhang, Y. H., Zhao, J., Zhu, L., Wang, Y., Li, J. R., et al. (2017). Prediction of the ebola virus infection related human genes using proteinprotein interaction network. *Comb. Chem. High Throughput Screen.* 20, 638–646. doi: 10.2174/1386207320666170310114816
- Cheng, C. L., Thike, A. A., Tan, S. Y. J., Chua, P. J., Bay, B. H., and Tan, P. H. (2015). Expression of FGFR1 is an independent prognostic factor in triple-negative breast cancer. *Breast Cancer Res. Treat.* 151, 99–111. doi: 10.1007/s10549-015-3371-x
- Chhabra, A., Fernando, H., Watkins, G., Mansel, R. E., and Jiang, W. G. (2007). Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. *Oncol. Rep.* 18, 953–958. doi: 10.3892/or.18.4.953
- Cho, M. H., Park, J. H., Choi, H. J., Park, M. K., Won, H. Y., Park, Y. J., et al. (2015). DOT1L cooperates with the c-myc-p300 complex to epigenetically derepress

Identification of TNBC genes and a novel high-risk breast cancer prediction model development based on PPI data and SVM method may have certain theoretical significance and practical value in the application of cancer diagnosis. Recently, link prediction paradigms have been applied in the prediction of disease genes (Zeng et al., 2017a,b), circular RNAs (Zeng et al., 2017c), and miRNAs (Liu et al., 2016). Additionally, computational intelligence such as neural networks (Cabarle et al., 2017) can be applied in this field.

DATA AVAILABILITY

The datasets generated for this study can be found in NCBI GEO, GSE31519, GSE9574, GSE20194, GSE20271, GSE32646, GSE45255, and GSE15852.

AUTHOR CONTRIBUTIONS

NZ conceived and supervised the project. YG and ML were responsible for the design, data preprocessing, computational analyses, and drafted the manuscript with revisions provided. Y-MF, NZ, and ML participated in the design of the study and performed the computational analysis. All authors read and approved the final manuscript.

CDH1 transcription factors in breast cancer progression. *Nat. Commun.* 6:7821. doi: 10.1038/ncomms8821

- Choi, J. H., Bae, S. S., Park, J. B., Ha, S. H., Song, H., Kim, J. H., et al. (2003). Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1. *Mol. Cells* 15, 245–255.
- Cohen, C. D., Lindenmeyer, M. T., Eichinger, F., Hahn, A., Seifert, M., Moll, A. G., et al. (2008). Improved elucidation of biological processes linked to diabetic nephropathy by single probe-based microarray data analysis. *PLoS One* 3:e2937. doi: 10.1371/journal.pone.0002937
- Cristóbal, I., Manso, R., Rincón, R., Caramés, C., Madoz-Gúrpide, J., Rojo, F., et al. (2014). Up-regulation of c-Cbl suggests its potential role as oncogene in primary colorectal cancer. *Int. J. Colorectal Dis.* 29:641. doi: 10.1007/s00384-014-1839-5
- Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network research. *Inter J. Complex Syst.* 1695, 1–9.
- Curran, J. E., Weinstein, S. R., and Griffiths, L. R. (2002). Polymorphic variants of NFKB1 and its inhibitory protein NFKBIA, and their involvement in sporadic breast cancer. *Cancer Lett.* 188, 103–107. doi: 10.1016/S0304-3835(02)00460-3
- Curran, T., and Franza, B. R. Jr. (1988). Fos and Jun: the AP-1 connection. *Cell* 55, 395–397. doi: 10.1016/0092-8674(88)90024-4
- Dai, X., Guo, W., Zhan, C., Liu, X., Bai, Z., and Yang, Y. (2015). WDR5 expression is prognostic of breast cancer outcome. *PLos One* 10:e0124964. doi: 10.1371/ journal.pone.0124964
- De, P., Carlson, J. H., Jepperson, T., Willis, S., Leyland-Jones, B., and Dey, N. (2017). RAC1 GTP-ase signals wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers. *Oncotarget* 8, 3072–3103. doi: 10.18632/oncotarget. 13618
- Deng, X., Lan, Y., Hong, T., and Chen, J. (2016). Citrus greening detection using visible spectrum imaging and C-SVC. *Comput. Electron. Agric.* 130, 177–183. doi: 10.1016/j.compag.2016.09.005
- Ding, K., Li, W., Zou, Z., Zou, X., and Wang, C. (2014). CCNB1 is a prognostic biomarker for ER+ breast cancer. *Med. Hypotheses* 83, 359–364. doi: 10.1016/j. mehy.2014.06.013
- Douglas, R. E. Jr. (1997). RPS2 Proposal submission software: testing and distribution of periodically updated software. *Bull. Am. Astron. Soc.* 29:1238.

- Fagan-Solis, K. D., Schneider, S. S., Pentecost, B. T., Bentley, B. A., Otis, C. N., Gierthy, J. F., et al. (2013). The RhoA pathway mediates MMP-2 and MMP-9independent invasive behavior in a triple-negative breast cancer cell line. *J. Cell. Biochem.* 114, 1385–1394. doi: 10.1002/jcb.24480
- Feng, M., Bao, Y., Li, Z., Li, J., Gong, M., Lam, S., et al. (2014). RASAL2 activates RAC1 to promote triple-negative breast cancer progression. J. Clin. Invest. 124, 5291–5304. doi: 10.1172/JCI76711
- Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., et al. (2013). STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. *Nucleic Acids Res.* 41, D808–D815. doi: 10.1093/nar/gks1094
- Gayther, S. A., Batley, S. J., Linger, L., Bannister, A., Thorpe, K., Chin, S. F., et al. (2000). Mutations truncating the EP300 acetylase in human cancers. *Nat. Genet.* 24, 300–303. doi: 10.1038/73536
- Green, A. R., Burney, C., Granger, C. J., Paish, E. C., El-Sheikh, S., Rakha, E. A., et al. (2008). Prognostic significance of steroid receptor co-regulators in breast cancer: co-repressor NCOR2/SMRT is an independent indicator of poor outcome. *Breast Cancer Res. Treat.* 110, 427–437. doi: 10.1186/bcr1947
- Gruel, N., Fuhrmann, L., Lodillinsky, C., Benhamo, V., Mariani, O., Cédenot, A., et al. (2016). LIN7A is a major determinant of cell-polarity defects in breast carcinomas. *Breast Cancer Res.* 18:23. doi: 10.1186/s13058-016-0680-x
- Gu, Y., Filippi, M. D., Cancelas, J. A., Siefring, J. E., Williams, E. P., Jasti, A. C., et al. (2003). Hematopoietic cell regulation by rac1 and rac2 guanosine triphosphatases. *Science* 302, 445–449. doi: 10.1126/science.1088485
- Gupta, A., Patnaik, M. M., and Naina, H. V. (2014). MYST3/CREBBP rearranged acute myeloid leukemia after adjuvant chemotherapy for breast cancer. Case Rep. Oncol. Med. 2014:361748. doi: 10.1155/2014/361748
- Han, Y., Sun, S., Zhao, M., Zhang, Z., Gong, S., Gao, P., et al. (2016). CYC1 predicts poor prognosis in patients with breast cancer. *Dis. Markers* 2016:3528064. doi: 10.1155/2016/3528064
- Huo, Q., Zhang, N., and Yang, Q. (2012). Epstein-Barr virus infection and sporadic breast cancer risk: a meta-analysis. *PLoS One* 7:e31656. doi: 10.1371/journal. pone.0031656
- Jang, C. Y., Lee, J. Y., and Kim, J. (2004). RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis. *FEBS Lett.* 560, 81–85. doi: 10.1016/S0014-5793(04)00074-2
- Jeffrey, S. S., Birdwell, R. L., Ikeda, D. M., Daniel, B. L., Nowels, K. W., Dirbas, F. M., et al. (1999). Radiofrequency ablation of breast cancer: first report of an emerging technology. *Arch. Surg.* 134, 1064–1068. doi: 10.1001/archsurg.134. 10.1064
- Jiang, L., and Yao, R. (2016). Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm. *Build. Environ.* 99, 98– 106. doi: 10.1016/j.buildenv.2016.01.022
- Jiang, M., Chen, Y., Zhang, Y., Chen, L., Zhang, N., Huang, T., et al. (2013). Identification of hepatocellular carcinoma related genes with k-th shortest paths in a protein-protein interaction network. *Mol. Biosyst.* 9, 2720–2728. doi: 10.1039/C3MB70089E
- Jolly, L. A., Nguyen, L. S., Domingo, D., Sun, Y., Barry, S., Hancarova, M., et al. (2015). HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain. *Hum. Mol. Genet.* 24, 3335–3347. doi: 10.1093/hmg/ddv083
- Kales, S. C., Nau, M. M., Merchant, A. S., and Lipkowitz, S. (2014). Enigma prevents Cbl-c-mediated ubiquitination and degradation of RETMEN2A. *PLoS One* 9:e87116. doi: 10.1371/journal.pone.0087116
- Kataoka, N., Diem, M. D., Kim, V. N., Yong, J., and Dreyfuss, G. (2001). Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. *EMBO J.* 20, 6424–6433. doi: 10.1093/emboj/20.22.6424
- Kato, T., Kameoka, S., Kimura, T., Nishikawa, T., and Kobayashi, M. (2002). C-erbB-2 and PCNA as prognostic indicators of long-term survival in breast cancer. *Anticancer Res.* 22, 1097–1103.
- Kawai, H., Li, H., Avraham, S., Jiang, S., and Avraham, H. K. (2003). Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor α. *Int. J. Cancer* 107, 353–358. doi: 10.1002/ijc.11403
- Khan, A., Bilal, M., Ahmed, M., Wahab, N., Ullah, R., and Khan, S. (2016). Analysis of dengue infection based on raman spectroscopy and support vector machine (svm). *Biomed. Opt. Express* 7, 2249–2256. doi: 10.1364/BOE.7.002249

- Khodarev, N., Ahmad, R., Rajabi, H., Pitroda, S., Kufe, T., McClary, C., et al. (2010). Cooperativity of the MUC1 oncoprotein and STAT1 pathway in poor prognosis human breast cancer. *Oncogene* 29:920. doi: 10.1038/onc.2009.391
- Kim, Y., Kim, H. D., Youn, B., Park, Y. G., and Kim, J. (2013). Ribosomal protein S3 is secreted as a homodimer in cancer cells. *Biochem. Biophys. Res. Commun.* 441, 805–808. doi: 10.1016/j.bbrc.2013.10.132
- Kobayashi, S., Boggon, T. J., Dayaram, T., Jänne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. *N. Engl. J. Med.* 352, 786–792. doi: 10.1056/NEJMoa044238
- Konishi, Y., Stegmüller, J., Matsuda, T., Bonni, S., and Bonni, A. (2004). Cdh1-APC controls axonal growth and patterning in the mammalian brain. *Science* 303, 1026–1030. doi: 10.1126/science.1093712
- Kourmpetis, Y. A., Van Dijk, A. D., Bink, M. C., van Ham, R. C., and ter Braak, C. J. (2010). Bayesian Markov Random Field analysis for protein function prediction based on network data. *PLoS One* 5:e9293. doi: 10.1371/journal.pone.0009293
- Kwon, A., Lee, H. L., Woo, K. M., Ryoo, H. M., and Baek, J. H. (2013). SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. *Mol. Cells* 36, 548–555. doi: 10.1007/s10059-013-0233-4
- Langer, S., Singer, C. F., Hudelist, G., Dampier, B., Kaserer, K., Vinatzer, U., et al. (2006). Jun and Fos family protein expression in human breast cancer: correlation of protein expression and clinicopathological parameters. *Eur. J. Gynaecol. Oncol.* 27, 345–352.
- Lee, H. K., Choung, H. W., Yang, Y. I., Yoon, H. J., Park, I. A., and Park, J. C. (2015). ODAM inhibits RhoA-dependent invasion in breast cancer. *Cell Biochem. Funct.* 33, 451–461. doi: 10.1002/cbf.3132
- Li, B. Q., Hu, L. L., Chen, L., Feng, K. Y., Cai, Y. D., and Chou, K. C. (2012a). Prediction of protein domain with mRMR feature selection and analysis. *PLoS One* 7:e39308. doi: 10.1371/journal.pone.0039308
- Li, B. Q., Huang, T., Liu, L., Cai, Y. D., and Chou, K. C. (2012b). Identification of colorectal cancer related genes with mRMR and shortest path in proteinprotein interaction network. *PLoS One* 7:e33393. doi: 10.1371/journal.pone.00 33393
- Li, B. Q., Zhang, J., Huang, T., Zhang, L., and Cai, Y. D. (2012c). Identification of retinoblastoma related genes with shortest path in a protein–protein interaction network. *Biochimie* 94, 1910–1917. doi: 10.1016/j.biochi.2012. 05.005
- Li, B. Q., Huang, T., Zhang, J., Zhang, N., Huang, G. H., Liu, L., et al. (2013a). An ensemble prognostic model for colorectal cancer. *PLoS One* 8:e63494. doi: 10.1371/journal.pone.0063494
- Li, B. Q., You, J., Chen, L., Zhang, J., Zhang, N., Li, H. P., et al. (2013b). Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network. *Biomed Res. Int.* 2013, 1–8. doi: 10.1155/ 2013/267375
- Li, Y., Zhang, Y., and Jiang, L. (2011). Modeling chlorophyll content of korean pine needles with NIR and SVM. *Procedia Environ. Sci.* 10, 222–227. doi: 10.1016/j. proenv.2011.09.038
- Liu, Q., Wang, W., Yang, X., Zhao, D., Li, F., and WANg, H. (2016). MicroRNA-146a inhibits cell migration and invasion by targeting RhoA in breast cancer. *Oncol. Rep.* 36, 189–196. doi: 10.3892/or.2016.4788
- Lopes, N., Carvalho, J., Duraes, C., Sousa, B., Gomes, M., Costa, J. L., et al. (2012). 1Alpha, 25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. *Anticancer Res.* 32, 249–257.
- Lotz, C., Lin, A. J., Black, C. M., Zhang, J., Lau, E., Deng, N., et al. (2014). Characterization, design, and function of the mitochondrial proteome: from organs to organisms. *J. Proteome Res.* 13, 433–446. doi: 10.1021/pr40 0539j
- Melo, F. D. S. E., Wang, X., Jansen, M., Fessler, E., and Vermeulen, L. (2013). Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. *Nat. Med.* 19, 614–618. doi: 10.1038/ nm.3174
- Mokeddem, S., Atmani, B., and Mokaddem, M. (2013). Supervised feature selection for diagnosis of coronary artery disease based on genetic algorithm. *Comput. J. Sci. Inform. Tech.* 10, 41–51. doi: 10.5121/csit.2013.3305
- Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., and Singh, M. (2005). Wholeproteome prediction of protein function via graph-theoretic analysis of interaction maps. *Bioinformatics* 21(Suppl. 1), i302–i310. doi: 10.1093/ bioinformatics/bti1054

- Ng, K. L., Ciou, J. S., and Huang, C. H. (2010). Prediction of protein functions based on function–function correlation relations. *Comput. Biol. Med.* 40, 300–305. doi: 10.1016/j.compbiomed.2010.01.001
- Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. *Nat. Genet.* 33:416. doi: 10.1038/ng1099
- Ning, Z., Min, J., Tao, H., and Cai, Y.-D. (2014). Identification of *influenza A*/H7N9 virus infection-related human genes based on shortest paths in a virus-human protein interaction network. *Biomed. Res. Int.* 2014:239462. doi: 10.1155/2014/ 239462
- Oliver, G. R., Hart, S. N., and Klee, E. W. (2015). Bioinformatics for clinical next generation sequencing. *Clin. Chem.* 61, 124–135. doi: 10.1373/clinchem.2014. 224360
- Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. *IEEE Trans. Pattern Anal. Mach. Intell.* 27, 1226–1238. doi: 10.1109/TPAMI. 2005.159
- Pirvola, U., Ylikoski, J., Trokovic, R., Hébert, J. M., McConnell, S. K., and Partanen, J. (2002). FGFR1 is required for the development of the auditory sensory epithelium. *Neuron* 35, 671–680. doi: 10.1016/S0896-6273(02)00824-3
- Ponente, M., Campanini, L., Cuttano, R., Piunti, A., Delledonne, G. A., Coltella, N., et al. (2017). PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes. *JCI Insight* 2:e87380. doi: 10.1172/jci.insight.87380
- Prat, A., Adamo, B., Cheang, M. C., Anders, C. K., Carey, L. A., and Perou, C. M. (2013). Molecular characterization of basal-like and non-basal-like triplenegative breast cancer. *Oncologist* 18, 123–133. doi: 10.1634/theoncologist. 2012-0397
- Robinson, D. R., Wu, Y. M., Vats, P., Su, F., Lonigro, R. J., Cao, X., et al. (2013). Activating ESR1 mutations in hormone-resistant metastatic breast cancer. *Nat. Genet.* 45:1446. doi: 10.1038/ng.2823
- Santamaría, D., Barrière, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, K., et al. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. *Nature* 448, 811–815. doi: 10.1038/nature06046
- Slattery, M. L., Lundgreen, A., John, E. M., Torres-Mejia, G., Hines, L., Giuliano, A. R., et al. (2015). MAPK genes interact with diet and lifestyle factors to alter risk of breast cancer: the Breast Cancer Health Disparities Study. *Nutr. Cancer* 67, 292–304. doi: 10.1080/01635581.2015.990568
- Slizhikova, D. K., Vinogradova, T. V., and Sverdlov, E. D. (2005). The NOLA2 and RPS3A genes as highly informative markers of human squamous cell carcinoma of lung. *Russ. J. Bioorgan. Chem.* 31, 178–182. doi: 10.1007/s11171-005-0024-6
- Sodi, V. L., Khaku, S., Krutilina, R., Schwab, L. P., Vocadlo, D. J., Seagroves, T. N., et al. (2015). mTOR/MYC axis regulates O-GlcNAc transferase (OGT) expression and O-GlcNAcylation in breast cancer. *Mol. Cancer Res.* 13, 923– 933. doi: 10.1158/1541-7786
- Song, S., Zhan, Z., Long, Z., Zhang, J., and Yao, L. (2011). Comparative study of svm methods combined with voxel selection for object category classification on fmri data. *PLoS One* 6:e17191. doi: 10.1371/journal.pone.0017191
- Sp, N., Kang, D. Y., Joung, Y. H., Park, J. H., Kim, W. S., Lee, H. K., et al. (2017). Nobiletin inhibits angiogenesis by regulating Src/FAK/STAT3-mediated signaling through PXN in ER+ breast cancer cells. *Int. J. Mol. Sci.* 18:935. doi: 10.3390/ijms18050935
- Strutt, D. I., Weber, U., and Mlodzik, M. (1997). The role of RhoA in tissue polarity and Frizzled signalling. *Nature* 387:292. doi: 10.1038/387292a0
- Su, R., Wu, H., Xu, B., Liu, X., and Wei, L. (2018). Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data. *IEEE/ACM Trans. Comput. Biol. Bioinform.* doi: 10.1109/ TCBB.2018.2858756 [Epub ahead of print].
- Subik, K., Lee, J. F., Baxter, L., Strzepek, T., Costello, D., Crowley, P., et al. (2010). The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. *Breast Cancer* 4, 35–41. doi: 10.1177/117822341000400004
- Subramonian, D., Raghunayakula, S., Olsen, J. V., Beningo, K. A., Paschen, W., and Zhang, X. D. (2014). Analysis of changes in SUMO-2/3 modification during breast cancer progression and metastasis. *J. Proteome Res.* 13, 3905–3918. doi: 10.1021/pr500119a
- Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., et al. (2011). The STRING database in 2011: functional interaction networks

of proteins, globally integrated and scored. *Nucleic Acids Res.* 39(Suppl. 1), D561–D568. doi: 10.1093/nar/gkq973

- Thien, C. B., and Langdon, W. Y. (2001). Cbl: many adaptations to regulate protein tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2:294. doi: 10.1038/35067100
- Van Rossum, A. G., Aartsen, W. M., Meuleman, J., Klooster, J., Malysheva, A., Versteeg, I., et al. (2006). Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Müller glia cells. *Hum. Mol. Genet.* 15, 2659–2672. doi: 10.1093/hmg/ddl194
- Vinayak, S., Nadauld, L. D., Miotke, L., Rumma, R. T., Telli, M. L., Ji, H. P., et al. (2013). Detection of FGFR1 and FGFR2 amplification in triple-negative breast cancer using digital droplet PCR and DNA-based microarrays. *Cancer Res.* 73(8 Suppl.):4130. doi: 10.1158/1538-7445.AM2013-4130
- Wagner, K., Hemminki, K., Grzybowska, E., Klaes, R., Butkiewicz, D., Pamula, J., et al. (2004). The insulin-like growth factor-1 pathway mediator genes: SHC1 Met300Val shows a protective effect in breast cancer. *Carcinogenesis* 25, 2473– 2478. doi: 10.1093/carcin/bgh263
- Wang, H.-C., Chen, J., An, N., Yu, T.-T., Li, S.-Y., Liu, S., et al. (2014). Rps27a silence potentiates chemosensitivity of k562 cells to saha. J. Exp. Hematol. 22, 938–942. doi: 10.7534/j.issn.1009-2137.2014.04.011
- Xander, P., Brito, R. R., Pérez, E. C., Pozzibon, J. M., De Souza, C. F., Pellegrino, R., et al. (2013). Crosstalk between b16 melanoma cells and b-1 lymphocytes induces global changes in tumor cell gene expression. *Immunobiology* 218, 1293–1303. doi: :10.1016/j.imbio.2013.04.017
- Xia, Q., Cai, Y., Peng, R., Wu, G., Shi, Y., and Jiang, W. (2014). The CDK1 inhibitor RO3306 improves the response of BRCA-proficient breast cancer cells to PARP inhibition. *Int. J. Oncol.* 44, 735–744. doi: 10.3892/ijo.2013.2240
- Xia, W., Bacus, S., Husain, I., Liu, L., Zhao, S., Liu, Z., et al. (2010). Resistance to ErbB2 tyrosine kinase inhibitors in breast cancer is mediated by calciumdependent activation of RelA. *Mol. Cancer Ther.* 9, 292–299. doi: 10.1158/1535-7163.MCT-09-1041
- Yang, J., Hou, Y., Zhou, M., Wen, S., Zhou, J., Xu, L., et al. (2016). Twist induces epithelial-mesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network. *Int. J. Biochem. Cell Biol.* 71, 62–71. doi: 10.1016/j.biocel.2015.12.004
- Ye, T., Wei, X., Yin, T., Xia, Y., Li, D., Shao, B., et al. (2014). Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis. *Breast Cancer Res. Treat.* 143, 435–446. doi: 10.1007/s10549-013-2829-y
- You, H., Jin, J., Shu, H., Yu, B., De Milito, A., Lozupone, F., et al. (2009). Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. *Cancer Lett.* 280, 110–119. doi: 10.1016/j.canlet.2009.02.023
- Yu, S. J., Hu, J. Y., Kuang, X. Y., Luo, J. M., Hou, Y. F., Di, G. H., et al. (2013). MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. *Clin. Cancer Res.* 19, 1389–1399. doi: 10.1158/1078-0432.CCR-12-1959
- Yuan, Y., Giger, M. L., Li, H., Bhooshan, N., and Sennett, C. A. (2010). Multimodality computer-aided breast cancer diagnosis with FFDM and DCE-MRI. Acad. Radiol. 17, 1158–1167. doi: 10.1016/j.acra.2010. 04.015
- Yuen, H. F., Gunasekharan, V. K., Chan, K. K., Zhang, S. D., Platt-Higgins, A., Gately, K., et al. (2013). RanGTPase: a candidate for Myc-mediated cancer progression. J. Natl. Cancer Inst. 105, 475–488. doi: 10.1093/jnci/djt028
- Zeng, X., Ding, N., Rodríguez-Patón, A., and Zou, Q. (2017a). Probabilitybased collaborative filtering model for predicting gene-disease associations. *BMC Med. Genom.* 10:76. doi: 10.1186/s12920-017-0313-y
- Zeng, X., Liao, Y., Liu, Y., and Zou, Q. (2017b). Prediction and validation of disease genes using HeteSim Scores. *IEEE/ACM Trans. Comput. Biol. Bioinform.* 14, 687–695. doi: 10.1109/TCBB.2016.2520947
- Zeng, X., Lin, W., Guo, M., and Zou, Q. (2017c). A comprehensive overview and evaluation of circular RNA detection tools. *PLoS Comput. Biol.* 13:e1005420. doi: 10.1371/journal.pcbi.1005420
- Zhang, H., and Fan, Q. (2015). MicroRNA-205 inhibits the proliferation and invasion of breast cancer by regulating AMOT expression. Oncol. Rep. 34, 2163–2170. doi: 10.3892/or.2015.4148
- Zhang, J. T., Jiang, X. H., Xie, C., Cheng, H., Da Dong, J., Wang, Y., et al. (2013). Downregulation of CFTR promotes epithelial-to-mesenchymal transition and

is associated with poor prognosis of breast cancer. *Biochim. Biophys. Acta* 1833, 2961–2969. doi: 10.1016/j.bbamcr.2013.07.021

- Zhang, N., Jiang, M., Huang, T., and Cai, Y. D. (2014). Identification of Influenza A/H7N9 virus infection-related human genes based on shortest paths in a virus-human protein interaction network. *Biomed Res. Int.* 2014:239462. doi: 10.1155/2014/239462
- Zhang, N., Li, B. Q., Gao, S., Ruan, J. S., and Cai, Y. D. (2012). Computational prediction and analysis of protein γ-carboxylation sites based on a random forest method. *Mol. Biosyst.* 8, 2946–2955. doi: 10.1039/C2MB 25185J
- Zou, Q., Wan, S., Han, B., and Zhan, Z. (2016a). "BDSCyto: an automated approach for identifying cytokines based on best dimension searching," in *Proceedings* of the Pacific Rim International Conference on Artificial Intelligence, (Cham: Springer), 713–725.
- Zou, Q., Zeng, J., Cao, L., and Ji, R. (2016b). A novel features ranking metric with application to scalable visual and bioinformatics data classification. *Neurocomputing* 173, 346–354. doi: 10.1016/j.neucom.2014.12.123

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Li, Guo, Feng and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.