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Triple-negative breast cancer (TNBC) is a special subtype of breast cancer that
is difficult to treat. It is crucial to identify breast cancer-related genes that could
provide new biomarkers for breast cancer diagnosis and potential treatment goals.
In the development of our new high-risk breast cancer prediction model, seven
raw gene expression datasets from the NCBI gene expression omnibus (GEO)
database (GSE31519, GSE9574, GSE20194, GSE20271, GSE32646, GSE45255, and
GSE15852) were used. Using the maximum relevance minimum redundancy (mRMR)
method, we selected significant genes. Then, we mapped transcripts of the genes on
the protein-protein interaction (PPI) network from the Search Tool for the Retrieval of
Interacting Genes (STRING) database, as well as traced the shortest path between
each pair of proteins. Genes with higher betweenness values were selected from the
shortest path proteins. In order to ensure validity and precision, a permutation test was
performed. We randomly selected 248 proteins from the PPI network for shortest path
tracing and repeated the procedure 100 times. We also removed genes that appeared
more frequently in randomized results. As a result, 54 genes were selected as potential
TNBC-related genes. Using 14 out the 54 genes, which are potential TNBC associated
genes, as input features into a support vector machine (SVM), a novel model was
trained to predict high-risk breast cancer. The prediction accuracy of normal tissues and
TNBC tissues reached 95.394%, and the predictions of Stage II and Stage III TNBC
reached 86.598%, indicating that such genes play important roles in distinguishing
breast cancers, and that the method could be promising in practical use. According
to reports, some of the 54 genes we identified from the PPI network are associated with
breast cancer in the literature. Several other genes have not yet been reported but have
functional resemblance with known cancer genes. These may be novel breast cancer-
related genes and need further experimental validation. Gene ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were
performed to appraise the 54 genes. It was indicated that cellular response to organic
cyclic compounds has an influence in breast cancer, and most genes may be related
with viral carcinogenesis.
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INTRODUCTION

Breast cancer is a malignant tumor that is highly prevalent
among women worldwide. In recent years, the incidence rate
has increased significantly. According to estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER-2) status, breast cancer can be classified into
four categories. Triple-negative breast cancer (TNBC), one of
the more specialized types of breast cancer, is defined as the
lack of expression of the ER and PR, as well as breast cancer
that lacks HER-2 overexpression or gene amplification. TNBC
is more common in young women, with large tumors, high
lymphatic metastasis rate, and high clinical stage. The 5-year
recurrence rate is high, and visceral metastases such as liver and
lung metastasis are more common. Compared with other types of
breast cancer, TNBC has characteristics of rapid tumor growth,
early recurrence, easy metastasis, and so on (Prat et al., 2013). Up
to now, the genes related to this disease are poorly understood.

Triple-negative breast cancer accounts for about 15–25% of
all breast cancers. The identification of disease-related genes
and prediction of high-risk breast cancer patients have become
important problems. Genes that are highly associated with TNBC
can be found using gene expression profiles. However, there
are still some problems in the current methods of predicting
protein function using high-throughput protein interaction data.
It usually has a high false positive rate, and the reliability
of functional prediction results is reduced (Li et al., 2012b;
Oliver et al., 2015).

In recent years, the continuous accumulation of protein
interaction data has made it possible to analyze and predict
protein functions at the system level through the protein-protein
interaction (PPI) network. Nabieva et al. (2005) proposed the
“guilt-by-association rule” (GBA), which states that interacting
proteins have the same or similar functions, which suggests that
protein function can be predicted by protein interactions.

In this study, we identified TNBC-related genes by a
computational method. A weighted functional PPI network was
integrated, which can overcome the disadvantages of that by
only using the gene expression profiles. We also previously
successfully applied such an integrating method to gene function
prediction and to the identification of novel genes of various
kinds of diseases, such as influenza A/H7N9 virus infection (Ning
et al., 2014), colorectal cancer (Li et al., 2012b), lung cancer
(Li et al., 2013b), colorectal cancer (Li et al., 2013a), hepatitis
B virus (HBV) infection-related hepatocellular carcinoma (Jiang
et al., 2013), retinoblastoma (Li et al., 2012c), Ebola virus
(Cao et al., 2017), etc.

MATERIALS AND METHODS

The whole process of our study is illustrated in Figure 1. Details
are presented in the following sub-sections.

Dataset
Expression profiles from datasets GSE31519, GSE9574,
GSE20194, GSE20271, GSE45255, and GSE15852 were obtained

from the GEO database1. The dataset involves 319 sample chips
with 101 normal breast tissue samples and 218 TNBC tissue
samples (including 21 Stage II samples and 101 Stage III samples).

In this study, the robust multi-array average (RMA) method
in “limma” in R was used to normalize microarray data and
to perform a log2 transformation of chip data. In total, 12,437
genes were obtained. RMA uses a multi-chip model that requires
standardization of all chips together. The expression value is
estimated based on a stochastic model employed by the perfect
match (PM) signal distribution. It is currently the most common
chip data preprocessing method. RMA is commonly used in
the literature. This method has also been used in many other
biomedical research problems, such as when analyzing diabetic
nephropathy (Cohen et al., 2008), the crosstalk between B16
melanoma cells and B-1 lymphocytes (Xander et al., 2013), colon
cancer (Melo et al., 2013), etc.

The mRMR Method
We employed the mRMR method (Peng et al., 2005; Li et al.,
2012a,b; Zhang et al., 2012; Zou et al., 2016b; Su et al.,
2018) to rank the importance of all 12,437 genes examined. In
such a procedure, each gene was regarded as a feature. The
Maximum Relevance criterion selects features most important
in discriminating TNBC samples and controls. The Minimum
Redundancy criterion excludes redundant features among the
selected ones. In an mRMR procedure, a value A-B is calculated
for each feature, in which value A is represented for the relevance
and value B for the redundancy of the feature. Then the features
are ranked by their A-B values in descending order to reflect the
importance to the target. The most important feature is ranked
at the top (Peng et al., 2005; Li et al., 2012a,b; Zhang et al., 2012;
Zou et al., 2016b).

Two ordered lists were generated by the mRMR method,
one was called the MaxRel table, and the other was called the
mRMR table. In the MaxRel table, all the features were ranked
only by the Maximum Relevance criterion. In the mRMR table,
they were ranked by the mRMR criterion, i.e., a feature with a
smaller index in such a table could be more important since it
has a better trade-off between the maximum relevance and the
minimum redundancy. In this study, we selected the top 248
features from the mRMR table, with which the corresponding
248 genes were regarded as significantly differentially expressed
genes from the expression profiles and were analyzed in the
downstream procedures.

PPI Network From STRING
The STRING database (version 10.0)2 (Franceschini et al., 2013)
is a database for searching for known and predicted interactions
between proteins. The related interactions mentioned herein
include direct and indirect relationships between proteins. The
interacting protein can be mapped to a weight network in
STRING. In such a network, proteins are denoted as nodes and
the interaction of every two proteins is given as an edge marked
with a confidence score. If the confidence score is higher, they

1http://www.ncbi.nlm.nih.gov/geo/
2http://string.embl.de/
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FIGURE 1 | The analysis flowchart for this study. This method integrated breast cancer gene expression data and PPI data. Firstly, we regard each gene as a feature
in the data and used mRMR to rank the importance of the genes. Then we selected the top 248 genes from the mRMR results. We searched the shortest paths
between every pair of the 248 coding proteins by the Dijkstra algorithm in the PPI network. Shortest path proteins were retrieved and were ranked in descending
order. After that, 54 of the shortest path proteins were selected and were considered as the potential triple-negative breast cancer-related genes. Finally, using the
C-SVC model for classification in order to achieve satisfactory results, we used the grid Search method to select the appropriate parameters.

may have more analogous functions (Kourmpetis et al., 2010; Ng
et al., 2010; Szklarczyk et al., 2011). In this study, we used a d value
instead of a confidence score (s) for the weight of each interaction
edge. According to the equation d = 1,000−s, d was calculated.
Therefore, the d value can be considered to represent the protein
distances to each other; a smaller distance value indicates the
protein pair has a higher interaction confidence score.

In this study, the human PPI data in the STRING database
were selected as the data source, and there are 8,548,002 pairs of
related interaction forces. The ID of the human species is 9,606.

Shortest Path Tracing
Interactions between every protein pair were analyzed in a graph.
In this study, the R package “STRINGdb” was used to map
the corresponding protein IDs of the top 248 genes selected
by mRMR. The betweenness of a shortest path protein is the
number of shortest paths across the protein. Then, the shortest
path proteins were ranked by betweenness in descending order.

The proteins whose betweenness was greater than 3,000 were
picked out and their corresponding genes were treated as breast
cancer-related genes. The Dijkstra algorithm served to find the
shortest path in the graph G between two given proteins, which
was implemented in the R package “igraph” (Csardi and Nepusz,
2006). In order to ensure the validity and precision of our
results, we randomly chose 248 proteins in the PPI network for
shortest path tracing and repeated the procedure 100 times, and a
permutation test was performed. Then we removed 5 genes that
appear more frequently in randomized results.

The C-SVC Algorithm
The support vector machine (SVM) method largely overcomes
the dimensional disaster and local minimization of feature
attributes in traditional machine learning and solves
small samples. There are many advantages in non-linear
and high-dimensional pattern recognition, which have received
more and more attention in the fields of biomedicine and
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bioinformatics. Therefore, in the field of health care, an
improved SVM algorithm for the diagnosis of breast cancer
diseases was applied by Zhang et al. (2013). A new data feature
dimension reduction method for lymphatic diseases was
proposed by Azar et al. (2014). Auxiliary diagnosis has achieved
a certain improvement in diagnostic efficiency (Yuan et al., 2010;
Mokeddem et al., 2013).

The Cost Support Vector Classification (C-SVC) is a method
of SVM classification. It introduces penalty parameter C for
SVM classification.

minw,b,ζ
1
2

wTw+ C
∑n

i=1
ζi (1)

subject to yi(wTφ(xi)+ b) ≥ 1− ζi,

ζi ≥ 0, i = 1, . . . , n

Its dual is:

minα
1
2
αTQα− eTα (2)

subject to yTα = 0

0 ≤ αi ≤ C, i = 1, . . . , n,

where e is the vector of all ones, C > 0 is the upper bound, Q is
an n by positive semidefinite matrix, Qij ≡ yiyjK

(
xi, xj

)
, where

K
(
xi, xj

)
= φ (xi)

T φ
(
xj
)

is the kernel. Here, training vectors are
implicitly mapped into a higher (maybe infinite) dimensional
space by the function:

sgn
(∑n

i=1
yiαiK

(
xi, xj

)
+ ρ

)
(3)

The C-SVC is capable of categorizing two types of breast tissue
(Jiang and Yao, 2016).

Data Preprocessing for the Prediction
Model
To test the accuracy of the C-SVC-based high-risk breast cancer
prediction model, we divided the samples into two groups, one
for normal tissue and breast cancer tissue, and the other for Stage
II and Stage III breast cancers.

Scaling data according to the Equation (4):

y′ = lower +
(
upper − lower

)
∗

y−min
max−min

(4)

where y is the data before scaling, y′ is the scaled data; lower is
the lower bound of the data specified in the parameter, upper is
the upper bound of the data specified in the parameter; min is the
minimum of all training data, and max is the maximum value of
all training data.

The preprocessing of the data has a great influence on the
final classification accuracy. This paper will compare the different
preprocessing methods and finally choose the method with high
classification accuracy to establish the model.

Parameter Optimization
The choice of a kernel function is important. In a specific
problem, several kernel functions should be applied in order to
choose the best one, obtaining the highest accuracy (Deng et al.,
2016). Both the type of kernel function and other parameters
such as penalty parameter C and γ in kernel functions impact the
performance. Thus, we use the grid search method to select the
appropriate parameters.

RESULTS

The Top 54 Genes on PPI Shortest Paths
After removing the five randomized genes from the intersection
of the shortest path results for normal breast and TNBC tissues, a
total of 54 genes associated with TNBC were obtained, as shown
in Table 1. Similarly, we mapped the PPI networks of these 54
genes using the STRINGdb package in R, as shown in Figure 2.

Function Gene Enrichment Analysis
In this study, we transferred the disease-related genes into its
corresponding EntrezID by using “org.Hs.eg.db” in R. Then,
we analyzed the functional enrichment of the 54 candidate
genes in KEGG pathways and GO terms using the R package
“clusterProfilter.” The GO enrichment analysis includes three
categories: cellular component (CC), molecular function (MF),
and biological process (BP). In our study, we only focus
on BP enrichment due to its importance. These terms were
ranked by the enrichment p-value. The Benjamin multiple
testing correction method was used to regulate family-wide false
discovery rate under a certain rate (e.g., ≤0.01) to correct the
enrichment p-value (Benjamini and Yekutieli, 2001). Results of
the GO enrichment analysis ranked by p-value were provided in
Table 2 and result of the KEGG enrichment analysis ranked by
p-value was provided in Table 3, respectively. The top 10 terms of
the enrichment results are depicted in Figures 3, 4.

High-Risk Breast Cancer Prediction
In this study, we implemented the C-SVC algorithm in the
Matlab 2015a environment. The radial basis function (RBF)
kernel function was employed in this study since the function has
been widely used in various bioinformatics prediction problems
and usually yields the best results compared to other types of
kernel functions (Li et al., 2011; Song et al., 2011; Khan et al.,
2016). In this study, we also employed other kernel functions
on the same prediction task and found that the RBF performed
the best (data not shown). The grid search method was used and
the results were verified by the ten-fold cross-validation method.
The data in the experiment was divided into 10 sets of similar
size, and 9 of them were used in turn as the training set. One
set was used as the test to calculate the corrections and errors of
the prediction. As a result, the normal tissue and TNBC tissue
prediction accuracy reached 95.394%, and the Stage II and Stage
III TNBC predictions reached 86.598%, as shown in Table 4. It
is indicated that based on the 54 genes as features, the C-SVC
algorithm can accurately predict normal tissue and TNBC, as well
as the stage data for TNBC.
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TABLE 1 | The 54 candidate breast cancer-related genes and betweenness.

hgnc_symbol ensp Betweenness Reference

MAGOH ENSP00000360525 1777 Kataoka et al., 2001

CBL ENSP00000264033 1548 Thien and Langdon, 2001

RPS3 ENSP00000433821 1380 Jang et al., 2004

FGFR1 ENSP00000393312 1286 Pirvola et al., 2002

RHOA ENSP00000400175 1237 Strutt et al., 1997

EP300 ENSP00000263253 1048 Gayther et al., 2000

RAC1 ENSP00000348461 871 Gu et al., 2003

CDK1 ENSP00000378699 852 Santamaría et al., 2007

CDH1 ENSP00000261769 848 Konishi et al., 2004

EGFR ENSP00000275493 815 Kobayashi et al., 2005

JUN ENSP00000360266 811 Curran and Franza, 1988

NOTCH1 ENSP00000277541 803 Nicolas et al., 2003

HCFC1 ENSP00000309555 795 Jolly et al., 2015

OGT ENSP00000362824 786 Sodi et al., 2015

PPP1CB ENSP00000296122 786 Alquobaili et al., 2009

CFTR ENSP00000003084 767 Zhang et al., 2013

ERBB2 ENSP00000269571 763 Blackwell et al., 2010

HIF1A ENSP00000338018 762 Ponente et al., 2017

ESR1 ENSP00000206249 745 Robinson et al., 2013

HDAC1 ENSP00000362649 705 Kawai et al., 2003

RPS27A ENSP00000272317 672 Wang et al., 2014

RELA ENSP00000384273 658 Xia et al., 2010

CREB1 ENSP00000387699 582 Chhabra et al., 2007

CCNB1 ENSP00000256442 565 Ding et al., 2014

MAPK8 ENSP00000353483 561 Slattery et al., 2015

SRC ENSP00000350941 559 Zhang et al., 2013

OPTN ENSP00000263036 558 Jeffrey et al., 1999

ITGB1 ENSP00000303351 553 Yang et al., 2016

RPS2 ENSP00000341885 549 Douglas, 1997

NFKB1 ENSP00000226574 512 Curran et al., 2002

MT-ATP6 ENSP00000354632 508 You et al., 2009

MT-CO3 ENSP00000354982 508

ATP5A1 ENSP00000282050 508 Lotz et al., 2014

WDR5 ENSP00000351446 466 Dai et al., 2015

CREBBP ENSP00000262367 466 Gupta et al., 2014

RAN ENSP00000376176 445 Yuen et al., 2013

HNRNPK ENSP00000365439 429

BTRC ENSP00000359206 408

PXN ENSP00000228307 406 Sp et al., 2017

CYC1 ENSP00000317159 394 Han et al., 2016

CYCS ENSP00000307786 391

SHC1 ENSP00000401303 383 Wagner et al., 2004

MEF2A ENSP00000346389 381

NCOR2 ENSP00000384018 362 Green et al., 2008

LIN7A ENSP00000447488 347 Gruel et al., 2016

PCNA ENSP00000368438 336 Kato et al., 2002

YAP1 ENSP00000282441 335 Yu et al., 2013

MPP5 ENSP00000261681 331 Van Rossum et al., 2006

AMOT ENSP00000361027 331 Zhang and Fan, 2015

RANGAP1 ENSP00000348577 323

FOS ENSP00000306245 316 Langer et al., 2006

STAT1 ENSP00000354394 313 Khodarev et al., 2010

AR ENSP00000363822 308 Subik et al., 2010

SUMO2 ENSP00000405965 297 Subramonian et al., 2014

TABLE 2 | Results of the GO enrichment analysis.

Go term entry ID Description p-value Count

GO:0071407 Cellular response to organic
cyclic compound

1.217E-12 16

GO:0006979 Response to oxidative
stress

9.108E-11 13

GO:0048511 Rhythmic process 1.467E-10 12

GO:0071396 Cellular response to lipid 1.897E-10 14

GO:0048732 Heart development 2.055E-10 14

GO:0009612 Gland development 2.349E-10 13

GO:0009314 Response to mechanical
stimulus

3.549E-10 10

GO:0009314 Response to radiation 3.666E-10 13

GO:0038095 Fc-epsilon receptor
signaling pathway

5.244E-10 9

GO:0000302 Response to reactive
oxygen species

6.401E-10 10

TABLE 3 | Results of the KEGG enrichment analysis.

KEGG term entry ID Description p-value Count

hsa05200 Pathways in cancer 7.835E-13 20

hsa05167 Kaposi’s
sarcoma-associated
herpesvirus infection

1.406E-10 13

hsa05161 Hepatitis B 2.393E-10 12

hsa05168 Herpes simplex infection 3.262E-10 13

hsa05203 Viral carcinogenesis 9.155E-10 13

hsa04520 Adherens junction 1.430E-09 9

hsa05215 Prostate cancer 7.949E-09 9

hsa04024 cAMP signaling pathway 9.423E-09 12

hsa05205 Proteoglycans in cancer 1.249E-08 12

hsa01522 Endocrine resistance 1.915E-08 9

DISCUSSION

Genes Identified From PPI Shortest
Paths
As can be seen from Table 1, some genes are associated with
TNBC, such as FGFR1, EGFR, NOTCH1, ERBB2, AR, and so on.

Among these genes, CBL, FGFR1, RHOA, EP300, RAC1,
CDH1, EGFR, NOTCH1, ERBB2, HIF1A, HDAC1, CCNB1, SRC,
ITGB1, NFKB1, CREBBP, PCNA, STAT, and AR are reported to be
related to TNBC.

The Migration and Invasion
We found that specific genes such as CBL, RHOA, EP300, RAC1,
CDK1, and CDH1 are involved in the migration and invasion
of breast cancer.

CBL is a proto-oncogene, and it is indicated that CBL is
associated with the development of leukemia. It has been found
that this gene is mutated or translocated in many cancers (Choi
et al., 2003). CBL encodes a protein which is one of the enzymes
required to target substrate degradation through the proteasome.
It has been found that the gene mutation or translocation occurs
in many cancers, such as acute myeloid leukemia. So far, there

Frontiers in Genetics | www.frontiersin.org 5 March 2019 | Volume 10 | Article 180

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00180 March 13, 2019 Time: 18:14 # 6

Li et al. Breast Cancer Genes Identification and Prediction

FIGURE 2 | The protein-protein interaction network of the proteins encoded by the 54 candidate genes. Shortest path proteins were retrieved from the shortest
paths between every protein pair coded by the top 248 genes selected from the mRMR table. The shortest path between every protein pair was searched by the
Dijkstra algorithm in the network. Finally, the 54 shortest path proteins were obtained, the related genes of which were considered as candidate genes. The PPI
network of the 54 shortest path proteins is depicted, in which the nodes represent proteins, and the lines between nodes represent protein interactions.

are some studies suggesting that CBL is associated with breast
cancer or TNBC. It is reported by Kales et al. that low expression
of Cbl-c is associated with breast tumors (Kales et al., 2014). It is
shown that this gene is involved in the invasion of cancer. The
study by Crist et al. showed that a diminished regulatory capacity
of Cbl-c is a recurrent event that may play a role in the invasive
nature of colorectal cancer cells (Cristóbal et al., 2014). From
these studies, it can be speculated that CBL is associated with
invasiveness of TNBC.

In the Rho family, RHOA is a small GTPase protein. The
overexpression of this gene is related to tumor cell proliferation
and metastasis. It is shown that the RhoA pathway mediates
the independent invasion of MMP-2 and MMP-9 in TNBS cell
lines (Fagan-Solis et al., 2013). RHOA is the target of miR-146a
to prevent cell invasion and metastasis in breast cancer (Liu
et al., 2016). Lee et al. showed that ODAM expression maintains
breast cancer cell adhesion and thus prevents breast cancer cell
metastasis by modulating RhoA signaling in breast cancer cells
(Lee et al., 2015). The study by Kwon et al. showed that SMURF1
acts in EGF-induced migration and invasion of breast cancer
cells (Kwon et al., 2013). In conclusion, RHOA is involved in the
invasion of TNBC cells.

EP300 (histone acetyltransferase p300) encodes the p300
transcriptional coactivator of the adenovirus E1A-associated cell.
Studies by Cho et al. (2015) showed that p300 and MRTF-A
synergistically enhance the expression of migration-associated
genes in breast cancer cells. In addition, it is report that the
EP300-G211S mutation correlates with a low mutation load in
TNBC patients (Bemanian et al., 2017). Therefore, EP300 is
directly related to TNBC.

The RAC1 gene encodes a protein belonging to the
GTPase of the small GTP-binding protein RAS superfamily.
It was found that RASAL2 activates RAC1 to promote TNBC
(Feng et al., 2014). Studies by De et al. have shown that
the caspase-β-catenin-RAC1 cascade suggests a link between
RAC1 and integrin-related metastasis in TNBC (De et al.,
2017). In addition, studies by De et al. (2017) observed
that two different mTORC2-dependent signaling pathways
can be fused with RAC1 to drive breast cancer metastasis.
Therefore, RAC1 may play an important clinical role for the
treatment of TNBC.

CDH1, the gene encoding E-cadherin (E-cadherin), is a
calcium-dependent cell adhesion protein belonging to the
cadherin family. It is involved in the process of tumor
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FIGURE 3 | The GO enrichment analysis. The top 10 terms from the GO enrichment analysis ranked by p-value, shown as a bar chart. The GO terms by name are
listed on the y-axis. The shared number of terms is shown as the length of histogram. The different colors represent the different p-values.

proliferation, invasion, and metastasis. Therefore, it is anticipated
that gene function defects will promote the occurrence and
development of cancer. It is shown that 1α, 25-dihydroxyvitamin
D3 induces E-cadherin expression in TNBC cells through
demethylation of the CDH1 promoter (Lopes et al., 2012).

Posttranscriptional Regulation of Gene Expression
We found that FGR1, MAGOH, RPS3, and CDK1 are all involved
in posttranscriptional regulation of gene expression.

FGFR1 is one of the fibroblast growth factor (FGF) encoding
genes. Cheng et al. suggested that upregulation of FGFR1
expression in TNBC cells may be treated as a potential
therapeutic target (Cheng et al., 2015). Vinayak et al. (2013)
reported that FGF pathways have been implicated in breast
tumorigenesis as a potential target for TNBC. In addition, there
is some research indicating that it is related to breast cancer, as
FGFR1 was found to be associated with luminal A breast cancer
(Zou et al., 2016a). FGFR is also helpful in the targeted therapy
of breast cancer (Ye et al., 2014). Amplification of FGFR1 also
occurs in almost 10% of ER-positive breast cancers, particularly
luminol type B breast cancer subtypes. In summary, FGFR1 and
TNBC are closely related.

MAGOH ranked first, indicating it plays an important role in
TNBC. A protein encoded by the gene is the core component of
the composite exon. There is some evidence showing that it is

associated with TNBC. This gene could possibly be treated as a
potential specific gene for TNBC.

The RPS3 gene encodes the 40S ribosomal protein S3 domain.
Kim et al. have shown that the rpS3 protein is a marker of
malignancy (Kim et al., 2013). It is reported that it is mainly
associated with lung cancer. Slizhikova et al. (2005) have shown
that this gene is a marker of human squamous cell lung cancer.

CDK1 is a set of Ser/Thr kinase systems corresponding to cell
cycle progression. It was shown by Xia et al. (2014) that the CDK1
inhibitor RO3306 potentiates BRCA-negative breast cancer cell
responses to PARP inhibitors. CDK1 inhibition may have a role
in the adjuvant treatment of TNBC.

Additionally, some genes have also been reported to have a
direct relationship with TNBC. In a nutshell, most of the specific
genes found in this study have been reported to be associated
with TNBC, while others are rarely reported to have a direct
relationship with TNBC, suggesting that they could be new
specific genes and potentially be new biomarkers for breast cancer
prevention and treatment.

Candidate Gene Enrichment Analysis
We used the ‘clusterProfilter’ package in R for the enrichment
analysis of the 54 candidate genes, ranking the GO terms and
KEGG pathways by p-value in ascending order. In the present
study, the p-value was calculated for each KEGG and GO term.
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FIGURE 4 | The KEGG enrichment analysis. The top 10 pathways from the KEGG enrichment analysis ranked by p-value, shown as a bar chart. The terms of the
KEGG pathways are depicted on the y-axis. The shared number of pathways is shown as the length of histogram. The different colors represent the different
p-values.

TABLE 4 | The performance of the high-risk breast cancer classification model.

ACC Precision Recall F-measure

Normal and TNBC 95.394% 88.889% 100% 94.118%

II and III 86.597% 80.952% 100% 89.474%

The experiment result shows its upper recall and precision rate. Its recall rate
reaches 100%. The precision and F-measure are also above 80%.

In this study, we only focused on BP. The top 10 terms ranked
by p-value are shown in Figure 2.

As shown in Figure 2, “cellular response to organic cyclic
compound (GO:0071407)” was ranked first. It is well known
that any process leading to changes in cell state or activity
(changes in movement, secretion, enzyme production, gene
expression, etc.) is the result of stimulation by organic cyclic
compounds. It proved the importance of this BP in TNBC.
Both “response to oxidative stress” (GO: 0006979) and “response
to reactive oxygen species” (GO: 0000302) are related to the
reaction of oxygen. “Rhythmic process” (GO:0048511), “cellular
response to lipid” (GO:0071396), “heart development” (GO:
0007507), “gland development” (GO:0048732), and “glandular
development” (GO:0048732) are also associated with TNBC. In
addition, the two responses “response to mechanical stimulus”
(GO: 0009612) and “response to radiation” (GO: 0009314) are
also associated with TNBC, as well as the “Fc-epsilon receptor
signaling pathway” (GO: 0038095). The above entry comment
may provide some new ideas for TNBC.

The top 10 terms of KEGG enrichment ranked by p-value
are depicted in Figure 3. It is clear that “pathways in

cancer” (hsa05200) is ranked at the top, demonstrating its
importance in TNBC.

In addition, “Kaposi’s sarcoma-associated herpesvirus
infection” (hsa05167), “hepatitis B” (hsa05161), “herpes simplex
infection” (hsa05168), and “viral carcinogenesis” (hsa05203) are
associated with viral infection. Moreover, “adherens junction”
(hsa04520), “prostate cancer” (hsa05215), “cAMP signaling
pathway” (hsa04024), “proteoglycans in cancer” (hsa05205),
and “endocrine resistance” (hsa01522) are also associated with
the occurrence and development of TNBC. Huo et al. (2012)
suggested that breast cancer and viral infection were statistically
significant. From the enrichment analysis above it can be
concluded that TNBC may be related to viral carcinogenesis.

Advantages of the Method and Extension
It is anticipated that our model may become a useful tool for
studying cancers from the angle of genes and networks. It was
observed by analyzing the results that the specific genes, the
biological functions of the significant genes, and the pathways
enriched would contribute to cancer diagnosis and cancer
predictions. Furthermore, the current model can also be used to
solve many other disease prediction problems, and we also have
many similar applications in our previous studies, such as for
Ebola (Cao et al., 2017) and for A/H7N9 (Zhang et al., 2014).
These studies show promising results and prove the efficiency
of the proposed methods. However, this method has limitations
on diseases with insignificant genes, which may lead to bias
in prediction results. Additionally, insufficient samples will also
affect the results. Moreover, genes identified from computational
methods should be verified by further experimental studies.
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In all, results may shed some light on the understanding of the
mechanism of the tumorigenesis of breast cancer, providing new
references for research into the disease and for the development
of new strategies for clinical therapies as well as providing
potential for future experimental validation.

CONCLUSION

In this study, we developed a novel method to identify TNBC-
related genes. This method integrated breast cancer gene
expression data and PPI data. Many of the identified genes
were reported to be related to TNBC in the literature. Most
of these genes are related with invasion and metastasis. GO
enrichment analysis indicated that the cellular response to
organic cyclic compounds have an influence in breast cancer.
KEGG pathway analysis indicated that most of these 54 genes
may be related with viral carcinogenesis. We believe that these
findings will provide some insights for breast cancer therapy and
drug development.

We also developed a new SVM method based on the C-SVC
for predicting high-risk breast cancer. The prediction accuracy
of normal tissues and TNBC tissues reached 95.394%, and the
predictions of Stage II and Stage III TNBC reached 86.598%.

Our method could be helpful for identifying novel cancer-
related genes and assisting doctors in medical diagnosis.

Identification of TNBC genes and a novel high-risk breast
cancer prediction model development based on PPI data
and SVM method may have certain theoretical significance
and practical value in the application of cancer diagnosis.
Recently, link prediction paradigms have been applied in the
prediction of disease genes (Zeng et al., 2017a,b), circular
RNAs (Zeng et al., 2017c), and miRNAs (Liu et al., 2016).
Additionally, computational intelligence such as neural networks
(Cabarle et al., 2017) can be applied in this field.
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