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Abstract Emerging evidence suggests that peroxisomes play a role in the regulation of
tumorigenesis and cancer progression. However, the prognostic value of peroxisome-related
genes has been rarely investigated. This study aimed to establish a peroxisome-related gene
signature for overall survival (OS) prediction in patients with hepatocellular carcinoma
(HCC). First, univariate Cox regression analysis was employed to identify prognostic
peroxisome-related genes in The Cancer Genome Atlas liver cancer cohort, and least absolute
shrinkage and selection operator Cox regression analysis was used to construct a 10-gene signa-
ture. The risk score based on the signature was positively correlated with poor prognosis
(HR Z 4.501, 95% CI Z 3.021e6.705, P Z 1.39e�13). Second, multivariate Cox regression
incorporating additional characteristics revealed that the signature was an independent pre-
dictor. Time-dependent ROC curves demonstrated good performance of the signature in pre-
dicting the OS of HCC patients. The prognostic performance was validated using
International Cancer Genome Consortium HCC cohort data. Gene set enrichment analysis re-
vealed that the signature-related alterations in biological processes mainly involved peroxi-
somal functions. Finally, we developed a nomogram model based on the gene signature and
TNM stage, which showed a superior prognostic power (C-index Z 0.702). Thus, our study re-
vealed a novel peroxisome-related gene signature that may help improve personalized OS pre-
diction in HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is the most frequent
pathological type of primary liver cancer, representing the
sixth most common neoplasm and fourth leading cause of
cancer-related deaths worldwide.1 Although advancements
have been made in the clinical management of HCC in the
last decade, the prognosis of HCC patients is dismal, and
the 5-year survival rate is 18%.1 Prognostic evaluation is
crucial for disease surveillance and selecting treatment
strategies for HCC management. Several staging systems
considering clinical and pathological patient characteristics
are recommended in HCC management guidelines.2e4

However, these assessment approaches have various limi-
tations in patient stratification and require improve-
ment.1,5 In recent years, next-generation sequencing data
have considerably enhanced our understanding of cancer
biology; several studies have demonstrated the prognostic
abilities of gene signatures established from different as-
pects in HCC patients.6e8 However, further efforts are
required to identify novel and robust prognosis predictors
through bioinformatic analyses of genome data combined
with the clinical features of HCC patients.

Aberrant metabolism is a hallmark of cancer.9 Metabolic
reprogramming involving glucose, lipid, and amino acid
metabolism, redox balance, and the tumor microenviron-
ment facilitates the survival and malignancy of hepatoma
cells.10 Several inhibitors targeting critical enzymes
involved in metabolic reprogramming have entered pre-
clinical and clinical trials for cancer therapy.11 Peroxi-
somes, predominantly found in the liver, are single-
membrane-enclosed organelles that contain enzymes that
catalyze the metabolism of very-long-chain and branched-
chain fatty acids, ether phospholipids, reactive oxygen
species, and bile acids.12e14 Recent studies revealed that
peroxisomes play an essential role in the development and
progression of HCC.15 Specifically, multiple peroxisomal
enzymes and related metabolic activities are altered in
HCC and other cancers.16e20 Additionally, modulation of
peroxisomal enzyme inhibitors and gene expression has
been demonstrated to either inhibit or promote tumor
growth.16,17,20

Studies on the role of peroxisomes in HCC have mainly
focused on specific peroxisomal enzymes, such as AGPS,
HAO2, and PRDX117,20,21, whereas peroxisomal function at
the subcellular level has been rarely investigated. In this
study, we identified a novel prognostic signature from
peroxisome-related genes in HCC cohorts via univariate Cox
and least absolute shrinkage and selection operator (LASSO)
Cox regression analyses. Further, we confirmed the signa-
ture to be a robust, independent predictor for risk strati-
fication in HCC patients, and we established a superior
nomogram combining the gene signature and a clinical
feature (TNM stage). We hypothesize that this novel
signature may contribute to strategizing personalized can-
cer management and that the relevant peroxisome-related
genes may become prospective therapeutic targets for
HCC.

Materials and methods

Collection of peroxisome-related gene sets

To generate a representative peroxisome-related gene list,
we collected genetic data including a human peroxisomal
gene set (100 genes) from the PeroxisomeDB 2.0 data-
base,22 a database that gathers and integrates curated in-
formation related to peroxisomes; a peroxisomal gene set
(83 genes) from the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database,23 a well-known database for genes
and pathways; and protein-coding genes from the proteome
of human liver peroxisomes (60 genes).24 In total, 113 non-
redundant peroxisome-related genes were included in the
analysis (Table S1).

Data acquisition of HCC cohorts

All HCC datasets from The Cancer Genome Atlas (TCGA),
International Cancer Genome Consortium (ICGC), and Gene
Expression Omnibus (GEO) databases were collected (up to
November 20, 2019). The TCGA Liver Hepatocellular Car-
cinoma (TCGA-LIHC) and ICGC Liver Cancer - RIKEN, Japan
(LIRI-JP) cohorts were selected as study cohorts because
they contain complete survival information and all the
peroxisome-related genes could be mapped in their gene
expression profiles.

For the TCGA-LIHC cohort, gene expression profiles
produced using the Illumina HiSeq RNA-Seq platform were
downloaded from the TCGA database (https://portal.gdc.
cancer.gov/repository/). Protein-coding gene symbols cor-
responding to Ensemble IDs were transformed according to
the Homo_sapiens.GRCh38.98.chr.gtf file (http://asia.
ensembl.org/info/data/ftp/index.html). HTSeq-count
gene expression profiles were normalized using the vari-
ance stabilizing transformation (VST) function in DESeq2 of
the R package (R Core Team, https://www.R-project.
org).25 Clinical information and somatic mutation data
were extracted from the TCGA database and cBioPortal
(http://cbioportal.org/),26 respectively. We collected data
from 374 liver cancer samples from 371 patients. Twenty-
three samples, including three with recurrent tumor,
seven with incomplete survival information, seven with
intrahepatic cholangiocarcinoma (ICC) or combined hepa-
tocellular cholangiocarcinoma (cHCC/CC), and six with
inferior quality according to the TCGA sample quality an-
notations file (https://gdc.cancer.gov/about-data/
publications/pancanatlas), were excluded from further
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Figure 1 Development of the 10-gene signature based on data in the training cohort. (A) Ten-time cross-validation for tuning
parameter screening in the LASSO Cox penalized regression model. (B) LASSO coefficient profiles of 47 peroxisome-related genes.
(C) Forest plot of 10 signature genes selected by LASSO Cox regression. HR, hazard ratio; CI, confidence interval.
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analysis. The remaining 351 HCC samples, from 351
patients, were designated as the training cohort.

For the ICGC LIRI-JP cohort, gene expression profiles,
gene somatic mutation data, and clinical information were
downloaded from the ICGC database (https://dcc.icgc.org/
releases/release_28/).27

Raw RNA-Seq count data with annotated gene symbols
were also normalized using VST. We collected data from 243
liver cancer samples from 232 patients. Forty-seven sam-
ples, including three with metastatic tumor, 30 with ICC or
cHCC/CC, and 14 duplicated samples with low tumor cell
percentage, were excluded from further analysis. The
remaining 196 HCC samples, from 196 patients, were
designated as the validation cohort.

Generation of a gene signature

To find prognostic peroxisome-related genes, we performed
an univariate Cox proportional hazards regression analysis
using the R package survival (https://cran.r-project.org/
web/packages/survival/index.html) and we identified the
genes significantly associated with overall survival (OS) in
the training cohort. P < 0.05 was considered statistically
significant in the Wald test. Hazard ratios (HRs) and 95%
confident intervals (95% CIs) were calculated. A covariate
with HR > 1 indicated a positive association with event
hazards and a negative association with survival time.
Least absolute shrinkage and selection operator (LASSO)
penalized Cox regression was utilized to construct an
optimal risk signature from the survival-associated genes
using the R package glmnet (https://cran.r-project.org/
web/packages/glmnet/index.html). The risk score for
each patient in both cohorts was calculated by taking the
sum of the LASSO regression coefficient for each signature
gene multiplied with its corresponding expression value.
Patients were subsequently median-dichotomized into
high- and low-risk groups based on the risk scores in each
cohort.
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Table 1 Functions of genes in the prognostic gene signature.

No. Gene
Symbol

Full name Function Risk coefficient

1 MPV17 Mitochondrial Inner Membrane
Protein MPV17

Regulation of reactive oxygen species
metabolism

0.0167

2 AGPS Alkylglycerone Phosphate Synthase Participates in the pathway of ether
lipid biosynthesis

0.1011

3 LDHA Lactate Dehydrogenase A Catalyzes conversion of pyruvate to
lactate under anaerobic conditions

0.2231

4 TRIM37 Tripartite Motif Containing 37 E3 ubiquitin-protein ligase 0.0115
5 PRDX1 Peroxiredoxin 1 Thiol-specific peroxidase 0.1103
6 ACSL6 Acyl-CoA Synthetase Long Chain

Family Member 6
Catalyzes the formation of acyl-CoA
from fatty acids, ATP, and CoA

�0.0299

7 PECR Peroxisomal Trans-2-Enoyl-CoA
Reductase

Participates in chain elongation of
fatty acids

�0.0154

8 ACAT1 Acetyl-CoA Acetyltransferase 1 Enzyme that catalyzes the reversible
formation of acetoacetyl-CoA

�0.1801

9 MTARC2 Mitochondrial Amidoxime Reducing
Component 2

Catalyzes the reduction of N-
oxygenated molecules

�0.1248

10 ATAD1 ATPase Family AAA Domain
Containing 1

AAAþ-protein involved in peroxisome
biogenesis and function

�0.0058

Prognostic signature in hepatocellular carcinoma 119
Evaluation and validation of the gene signature

Schoenfeld residuals were calculated to validate the pro-
portional hazards (PH) assumption of the multigene signa-
ture Cox model. PH assumption was satisfied if both
individual and global P-values were >0.05. KaplaneMeier
analysis and the log-rank test were employed to estimate
and visualize OS distributions, using R packages survival and
survminer (https://cran.r-project.org/web/packages/
survminer/index.html). P < 0.05 was considered
statistically significant in the log-rank test. Multivariate
Cox regression analysis was performed to evaluate the in-
dependence of the signature from additional clinical fea-
tures and gene somatic mutation status. To assess the
predictive performance of the signature, we conducted
time-dependent receiver-operating characteristic (ROC)
analysis and calculated the area under the curve (AUC)
values using the R package survcomp (http://www.
bioconductor.org/packages/release/bioc/html/survcomp.
html).

Gene set enrichment analysis (GSEA)

To investigate alterations in the molecular signaling path-
ways the signature genes are involved in, we conducted
GSEA using the officially recommended software (GSEA
v4.0.3)28 to analyze gene enrichment in the datasets. Risk
scores based on the gene signature were used to classify
the patients into high-risk and low-risk groups. The gene
sets used in our study (c2.cp.kegg.v7.0.symbols.gmt) were
downloaded from the Molecular Signatures Database
(MSigDB, http://software.broadinstitute.org/gsea/msigdb/
index.jsp). Nominal P < 0.05 and false discovery rate
(FDR) < 0.25 were set as thresholds to determine the
statistical significance of the normalized enrichment score
(NES).
Construction and evaluation of the nomogram

The risk scores and characteristics significant in the uni-
variate Cox analysis were selected to construct a nomogram
using the R packages survival and rms (https://cran.r-
project.org/web/packages/rms/index.html). The
concordance index (C-index) was calculated to assess the
performance of the prediction model. Calibration plots
were drawn to evaluate the concordance between actual
and predicted survival. All statistical analyses performed
were two-tailed, and P < 0.05 was considered statistically
significant.
Results

Baseline characteristics of HCC patients

Data from 547 HCC patients from the TCGA-LIHC cohort
(n Z 351) and the ICGC LIRI-JP cohort (n Z 196) were
examined in this study. Detailed baseline characteristics of
the patients in both cohorts are listed in Table S2. The
component ratios of clinical features and gene mutation
status differed significantly (P < 0.05) between the two
independent cohorts.
Development of a peroxisome-related gene
signature from the training cohort

We identified 47 genes significantly associated with the OS
of HCC patients (Fig. S1) based on univariate Cox regression
analysis of 113 peroxisome-related genes in the TCGA-LIHC
(training) cohort. Forty genes with HRs <1 were considered
as protective genes, whereas 7 genes with HRs >1 were
considered as risky genes.
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Figure 2 Distributions of risk scores, OS, and survival status, and heatmaps of gene expression profiles of signature genes in the
training (A) and validation (B) cohorts. The dotted line indicates patients were median-dichotomized into the low-risk group and
high-risk group.
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To select optimal predictive genes, we applied LASSO
Cox regression to 47 prognostic genes and thus identified 10
genes, i.e., ACAT1, AGPS, ATAD1, LDHA, MTARC2, PECR,
ASCL6, MPV17, PRDX1, and TRIM37, with nonzero LASSO
Cox regression coefficients (Fig. 1). All individual and global
Schoenfeld test P-values were >0.05 (Fig. S2), indicating no
violation of the PH assumption; therefore, the gene signa-
ture was established using these 10 genes. The functions
and coefficients of these 10 genes were shown in Table 1,
which mainly involved with a variety of metabolic enzymes.
The risk scores for each patient were computed using the
following formula: risk score Z (�0.1801 � ACAT1
expression) þ (0.1011 � AGPS expression) þ (�0.0058 �
ATAD1 expression) þ (0.2231 � LDHA expression) þ
(�0.1248 � MTARC2 expression) þ (�0.0154 � PECR
expression) þ (�0.0299 � ACSL6 expression) þ
(0.0167 � MPV17 expression) þ (0.1103 � PRDX1
expression) þ (0.0115 � TRIM37 expression). High- and low-
risk groups were classified according to the median cutoff in
each cohort.

The distributions of the signature-based risk scores, OS
status, survival time, and gene expression profiles for the
training and validation cohorts are plotted in Fig. 2. The
heatmaps demonstrate that the risky genes MPV17, AGPS,
LDHA, TRIM37, and PRDX1 exhibit higher expression in the
high-risk group, whereas the protective genes ASCL6, PECR,
ACAT1, MTARC2, and ATAD1 exhibit higher expression in the
low-risk group.
Evaluation and validation of the 10-gene signature
in HCC cohorts

We evaluated the OS predictive ability of the 10-gene
signature in the training and validation cohorts. The OS
rates of patients in the high-risk group were significantly
lower in the training (P < 0.0001) and validation cohorts
(P Z 0.00038) (Fig. 3A, C).

To evaluate the predictive ability of the signature
further, we conducted time-dependent ROC curve analysis
for OS at different time points. The AUC values for 1-, 3-,
and 5-year OS were 0.715, 0.704, and 0.691, respectively,
for the training cohort (Fig. 3B) and 0.759, 0.738, and
0.724, respectively, for the validation cohort (Fig. 3D).

Univariate Cox regression analysis confirmed that the risk
score was positively associated with poor prognosis of pa-
tients in the training (HR Z 4.501, 95% CI Z 3.021e6.705,
P Z 1.39ee13) and validation cohorts (HR Z 6.572, 95%
CI Z 3.026e14.274, P Z 1.95ee06) (Fig. 4). In addition, the
TNM stage was significantly prognostic in both cohorts,
whereas tumor size, hepatic vein invasion, and TP53 muta-
tion status were predictive only in the validation cohort.

Next, we performed multivariate Cox regression analysis
adjusted for additional characteristics significant in the
univariate Cox regression analysis to examine the inde-
pendence of the 10-gene signature (Fig. 4). The signature
retained highly prognostic value after adjustment in both
HCC cohorts (TCGA-LIHC: HR Z 3.808, 95%



Figure 3 Prognostic performance of the 10-gene signature in HCC cohorts. (A) KaplaneMeier plot of OS in the training cohort. (B)
Time-dependent ROC curves with calculated AUCs at 1-, 3-, and 5-year OS based on the gene signature in the training cohort. (C)
KaplaneMeier plot of OS in the validation cohorts. (D) Time-dependent ROC curves with calculated AUCs at 1-, 3-, and 5-year OS
based on the gene signature in the validation cohorts. (E, F) KaplaneMeier plots of OS in subgroups with different tumor stages in
the training (E) and validation (F) cohorts. (G, H) KaplaneMeier plots of OS in subgroups with different TP53 mutation status in the
training (G) and validation (H) cohorts.
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CI Z 2.461e5.892, P Z 1.92ee09; ICGC LIRI-JP:
HR Z 4.567, 95% CI Z 1.822e11.449, P Z 0.001).
KaplaneMeier analysis of OS according to TNM stage and
TP53 mutation status revealed that the signature success-
fully discriminated OS rates in the different subgroups in
both the training and validation cohorts (all log-rank test,
P < 0.05) (Fig. 3EeH).

The 10-gene signature was also compared with six
recently reported multigene biomarkers for predicting the
OS of HCC patients.29e34 Risk scores were calculated in
accordance with the reports. Time-dependent ROC curve
analysis revealed that our signature performed well in
predicting the prognosis across distinct datasets (Fig. 5),
indicating its robustness.

Altered KEGG pathways in high- and low-risk
subgroups

We conducted GSEA comparing the high- and low-risk
groups in each HCC cohort to determine the biological
pathway alterations underlying the signature. In total,
23 and 16 KEGG pathways were found to be enriched in
the TCGA-LIHC and ICGC LIRI-JP cohorts, respectively
(Table S3). Commonly enriched KEGG pathways in both
cohorts are shown in Fig. 6. No significantly enriched
pathway was identified in the high-risk group for both co-
horts. Enriched KEGG pathways in the low-risk group were
mainly related to peroxisome, peroxisome proliferator-
activated receptor (PPAR) signaling, and other metabolic
pathways, including primary bile acid biosynthesis, fatty
acid metabolism, drug metabolism cytochrome p450, and
nine amino acid metabolic pathways.

Establishment of a nomogram based on the
peroxisome-related gene signature

To quantitatively predict the prognosis of HCC patients, we
developed a nomogram integrating the risk score and the
independent clinical risk factor (TNM stage) using TCGA-
LIHC cohort data (Fig. 7A). Based on multivariate Cox



Figure 4 Univariate and multivariate Cox regression analyses of the relation between the signature and clinical characteristics in
the TCGA-LIHC (A) and the LIRI-JP (B) cohorts.
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analysis, each variate was assigned scaled points in the
nomogram. We drew two horizontal straight lines to
dispense the points for risk score and TNM stage, respec-
tively. The total points for each patient were then
computed by taking the sum of all variate points. The
predicted survival probabilities at 1, 2, and 3 years were
obtained by drawing a vertical line between the total point
line and each prognostic line. The calibration curves indi-
cated that the predicted and actual survival had a good
consistency (Fig. 7B). The nomogram indicated that the risk
score had a higher weight than the TNM stage. The C-index
was 0.611, 0.693, and 0.702 for the TNM stage, risk score,
and nomogram model, respectively. The nomogram was
validated in the ICGC LIRI-JP cohort, and the 1-, 2-, and 3-
year calibration curves are presented in Fig. 7C. Taken
together, these results suggest that the developed nomo-
gram is an optimal model for predicting the prognosis of
HCC patients in comparison with individual risk factors.
Discussion

Advances in multi-omics technologies have greatly
improved our understanding of cancer development and



Figure 5 Time-dependent ROC curves with calculated AUCs at 1-, 3-, and 5-year OS of six other gene signatures reported in
previous studies in the TCGA-LIHC and LIRI-JP cohorts.

Prognostic signature in hepatocellular carcinoma 123
progression and provided new promising approaches in
cancer prevention, diagnosis, and therapy.35,36 In this
study, we identified a novel peroxisome-related gene
signature that independently predicts OS in HCC cohorts. It
improved the predictive ability of the TNM stage and suc-
cessfully differentiated the OS of patients in similar stages.
In addition, we developed a nomogram based on the 10-
gene signature that demonstrated enhanced predictive
ability in prognosis prediction.

The 10 genes included in our signature encode enzymes
that are either predominantly or partially localized in the
peroxisomes.24 MPV17, AGPS, LDHA, TRIM37, and
PRDX1 were positively associated with poor survival,
whereas ASCL6, PECR, ACAT1, MTARC2, and ATAD1
appeared to be protective genes in the TCGA-LIHC cohort.
AGPS, which encodes a critical peroxisomal enzyme
involved in ether lipid synthesis, has been reported as an
oncogene in multiple cancers.17 AGPS inhibitor 1a lowered
ether lipid levels and inhibit the survival and migration in
several types of cancer cells.37 As a new peroxisomal con-
stituent in the human liver identified by proteomics,24 LDHA
catalyzes the interconversion of pyruvate to lactate and
promotes various malignant features, including
proliferation, metastasis, and immune escape.21,38,39

TRIM37, encoding an E3 ubiquitin ligase that is partially
located in peroxisomes, also promotes malignancy in mul-
tiple cancers.40e42 PRDX1 is an antioxidant enzyme of the
peroxiredoxin family and reportedly functions as an onco-
protein in various types of solid tumors.18,43,44 ASCL6 be-
longs to long-chain acyl-CoA synthetases participating in
lipid metabolism. High ASCL6 levels predicted a better
prognosis in acute myeloid leukemia, suggesting that ASCL6
is a potential protective gene.45 Based on their respective
performances in the HCC cohorts, AGPS, LDHA, TRIM37,
PRDX1, and ASCL6 showed similar risk-elevating or protec-
tive functions in previous studies. By contrast, ACAT1 is
considered an oncogene, as ACAT1 inhibitors impaired
tumor progression.46e48 Interestingly, we found that ACAT1
expression was significantly reduced in the high-risk group
and correlated with a better OS; however, further investi-
gation is needed to validate this result. The remaining
signature genes (ATAD1, MTARC2, MPV17, and PECR), which
also may act as oncoproteins or tumor suppressors, have
been seldom reported. Further evaluation is required to
fully elucidate the potential roles and mechanisms of the
identified 10 genes in HCC.



Figure 6 GSEA plots of commonly enriched KEGG pathways in the TCGA-LIHC cohort.
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Evaluation and validation of the 10-gene signature in two
independent HCC cohorts demonstrated that it effectively
discriminated HCC patients with poor prognosis. Addition-
ally, the results after incorporation of traditional clinical
characteristics indicated that the signature can serve as an
independent predictor. Our signature was found to be
robust across distinct datasets when compared with six
recently reported multi-gene biomarkers for liver cancer.
Finally, a nomogram model composed of the risk score and
TNM stage was developed for patient stratification.

Results of GSEA in both HCC cohorts revealed that the
signature was significantly associated with the peroxisome,
PPAR signaling, and other metabolic pathways, suggesting
that it is tightly related to metabolic reprogramming in HCC.
As multifunctional organelles, peroxisomes have been re-
ported to be either directly or indirectly related to the
enriched biological processes identified. Interestingly, all
enriched pathways were related to the low-risk group, which
indicates that peroxisome-related metabolism may benefit
the survival of HCC patients. Identifying the mechanisms un-
derlying the gene signature may enhance our understanding
of the role of peroxisomes in tumorigenesis and progression.
The current risk signature has several advantages.
First, it was established based on two independent and
strictly screened HCC cohorts, in which samples with
non-HCC pathology and inferior quality were excluded. It
is a precise risk signature derived directly from HCC
rather than liver cancer cohorts. Second, our signature
demonstrated a more robust performance than common
clinical features and other gene signatures reported
previously. Third, it reflected a specific biological back-
ground and significantly correlated with several charac-
teristics of metabolic reprogramming in HCC and may be
useful in distinguishing patients with different metabolic
features.

However, as our study was based on retrospective data,
prospective validation of the signature is warranted in
further research. In addition, the predictive performance is
expected to improve if multi-omics data can be appropri-
ately integrated into the analyses. Furthermore, the cur-
rent gene signature is not yet suitable for immediate
clinical application because its application requires pre-
setting the risk-score thresholds and data normalization in a
large pre-collected cohort.49



Figure 7 ConstructionofanomogramforOSprediction. (A)Nomogramcombining thegenesignaturewithTNMstage. (B,C)Calibration
curve of the nomogram for predicting the probability of OS at 1, 2, and 3 years in the TCGA-LIHC (B) and in the LIRI-JP (C) cohorts.
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Conclusion

We identified a novel prognostic signature comprising 10
peroxisomal genes for HCC. The 10-gene signature may be a
potentially valuable prognostic marker for HCC. Application
of the 10-gene signature to personalized clinical treatment
may have a positive impact on the prognosis of HCC patients.
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