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Abstract

The purpose of this study was to determine the profile of bioactive sphingolipids in xenograft

mouse tissues of head and neck squamous cell carcinoma. We utilized UHPLC-MS/MS to

determine the profile of full set of ceramides, sphingosine, and sphingosine 1-phosphate in

this xenograft mouse model. The tissues isolated and investigated were from brain, lung,

heart, liver, spleen, kidney, bladder, tumors and blood. With the exception of equal volume

of blood plasma (100ul), all tissues were studied with the same amount of protein (800ug).

Results demonstrated that brain contained the highest level of ceramide and kidney had the

highest level of sphingosine, whereas sphingosine 1-phosphate and dihydrosphingosine 1-

phosphate were heavily presented in the blood. Brain also comprised the highest level of

phospholipids. As for the species, several ceramides, usually present in very low amounts in

cultured tumor cells, showed relatively high levels in certain tissues. This study highlights

levels of bioactive sphingolipids profiles in xenograft mouse model of head and neck squa-

mous cell carcinoma, and provides resources to investigate potential therapeutic targets

and biomarkers that target bioactive sphingolipids metabolism pathways.

Introduction

Bioactive sphingolipids (SL), which include ceramides (Cer), sphingoid bases, and their phos-

phates, make up the early products of the SL synthetic pathways. Cer, the central molecule, is

associated with the action of several growth suppressor stimuli and inflammatory signals [1–

3]. Cer can either be produced from complex SL or be synthesized (de novo pathway) from

dihydroceramide (dhCer) under the catalysis of dhCer desaturase (DES1) [4]. Sphingoid bases

are the fundamental building blocks of all SL. The main mammalian sphingoid bases are dihy-

drosphingosine (dhSph) and sphingosine (Sph). Sph has functional roles in regulating the

actin cytoskeleton, endocytosis, cell cycle and apoptosis [5–6]. Cer can be hydrolyzed by
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ceramidase (CDase) to produce Sph. Sph is subsequently phosphorylated by Sph kinases (SKs)

to generate Sph 1-phosphate (Sph 1-P), and Sph 1-P has a critical role in many physiological

and pathophysiological processes, such as atherosclerosis, diabetes, and cancer et al [7–9].

Head and neck squamous cell carcinoma (HNSCC) is the most common head and neck

cancer, and is widely known to be resistant to many kinds of treatments (chemotherapy, radia-

tion, and surgery, et al) [10]. Previously, our group and others uncovered targeting Cer metab-

olism enzymes, such as DES1, ACDase, SK1, as wells as certain chain length of Cer could

sensitize resistant cells to various therapies and improve HNSCC cell killing [11–15]. There-

fore, HNSCC xenograft mouse model is a very efficient model to validate efficacy and side

effects of such enzyme inhibitors. However, the profile of bioactive SL in xenograft mouse

model has not been fully described yet. In this study, we utilized ultra-high performance liquid

chromatography tandem mass spectrometry (UHPLC-MS/MS) to determine the profile of

bioactive SL, and we provide the basal levels of Cn-Cer (ceramide species with n carbons in the

fatty acyl chain), Sph, Sph 1-P, dhC16-Cer, dhSph and dhSph 1-P in xenograft mouse model

of HNSCC. The tissues we isolated and investigated are from brain, lung, heart, liver, spleen,

kidney, bladder, tumor and blood.

Materials and methods

Cell culture and reagents

The HNSCC cell line SCC-14a was maintained in DMEM medium with L-glutamine and

4.5g/l glucose (Media-tech, Herndon, VA). When prepared for in vivo studies, SCC-14a were

seeded in a 150mm dish to reach around 70% confluence and harvested using cell stripper

after washing with cold PBS twice, then centrifuged at 500g, and cells pellets were re-sus-

pended in serum-free medium at concentration of 5x107/ml.

Animal studies

All procedures were performed according to guidelines of Medical University of South Caro-

lina institutional biosafety committee (MUSC/IBC). Mice care/ welfare and experiments were

carried out according to the approved protocol (AR3157, Bai A), Medical University of South

Carolina Institutional Animal Care and Use Committee (IACUC). Briefly, nu/nu athymic

nude mice were kept in a pathogen-free environment. Later, mice (at age of 8–9 weeks) were

injected subcutaneously into the right flank with SCC-14a (5x106/100ul). Mice were then mon-

itored twice weekly for the tumor growth. When tumor appeared, tumor size was calculated

using the formula [tumor volume (mm3) = π/6 �Length �Width �Depth]. Mice were enrolled

in the experiment when established flank xenografts reached >100mm3, which is also the

starting point for the drug candidates’ in vivo therapeutic validation. A total 6 mice was utilized

in the studies.

Samples preparation

Once qualified for the studies, mice were sacrificed, and tissues (lung, liver, brain, spleen, blad-

der, kidney, heart, and tumor) and blood (250ul) were isolated. Tissue (heart and bladder) was

quickly dipped in cold PBS twice before being dried down. All tissues were quickly stored in

liquid nitrogen for future protein isolation. Later, tissues were homogenized in lysis buffer

containing protease-inhibitor cocktail before centrifugation at 12,000 g for 10 min (4˚C) to get

the supernatant for protein quantification. Then equal amount of protein (800ug) were pro-

vided for analysis of SL.
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Blood samples were quickly put in sterilized 0.5ml Eppendorf tubes that were previously

treated with 0.5M sterile EDTA (10ul), centrifuged at 2,000 g for 10min (4˚C) to obtain

plasma, and then 100ul equal volume of plasma provided for analysis of SLs.

Lipid extract preparation and UHPLC-MS/MS analyses of SL

Lipids extracts were prepared, and advanced analyses of endogenous bioactive SL were per-

formed as previously described [16]. SL levels were normalized to the total protein content

(per mg) or equal volume (100ul).

Statistical analysis

Where indicated, data are represented as mean ± SD. Statistical analysis was performed using

two-sided t test, with p-value<0.05 considered statistically significant.

Results and summary

Comparison of SL in various tissues

Initially, we determined the levels of bioactive SL in tissues, blood, and tumor xenograft.

The results (Fig 1 and Table 1) showed that among the eight tissues analyzed (lung, liver,

brain, spleen, bladder, kidney, heart, and tumor), brain contained the highest level of Cer

(2.53nmol), which was double the amount of Cer in most of the tissues that were analyzed (Fig

1A). Tumor xenograft contained the highest level of dhC16-Cer (254.8pmol) whereas the low-

est levels of dhC16-Cer were found in liver (8.5pmol) and brain (9.2pmol), showing an almost

30 folds difference between the highest and lowest (Fig 1B). Kidney contained the highest level

of Sph (154. 8pmol), while the lowest level of Sph was found in heart (20.5pmol) (Fig 1C).

Brain also contained the highest level of dhSph (26.7pmol), and the lowest levels were in heart

and bladder (4-5pmol, Fig 1D).

As to the specific Cn-Cer species, interestingly, several Cn-Cer that usually present very low

levels in cultured tumor cells showed relatively high levels in certain tissues. For example, C18

and C18:1-Cer were heavily present in the brain (Fig 2A and 2B and Table 2); C20 and

C20:1-Cer were mainly in the heart (Fig 2C and 2D and Table 2). On the other hand, head and

neck tumor contained the highest levels of C26 and C26:1-Cer, and the lowest level of these

two species were in heart tissue (1pmol, Fig 2E and 2F and Table 2).

Cn-Cer profile in various tissues

Next, we performed a comparative analysis of Cn-Cer in the tissues studied.

Brain. As shown in Table 1, brain contained the highest level of Cer, and the major Cn-

Cer species in the brain were C18, C18:1 and C24:1-Cer (Fig 3A). In detail, C18-Cer, the most

abundant Cer species, contributed 41.1% of total Cer; C18:1-Cer provided 29.4%; whereas

C24:1-Cer was about 18% of total Cer. Consequently, these three species accounted for 88.5%

of Cer in the brain.

Heart. There was a total of 2.01nmol/mg protein Cer found in heart, which was the sec-

ond highest among that 8 tissues that were investigated. The highest Cn-Cer species in the

heart was C20-Cer (42.1%), which is usually a minor species. This was followed by C18-Cer

(15.1%) and C16-Cer (14.1%). C18:1-Cer that was relatively high expressed in the brain

showed very low level in the heart (2.2%) whereas C20:1-Cer that was very poorly expressed in

other tissues was highly expressed in the heart (179.0±30.0 pmol, 8.9%, Fig 3B).
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Kidney. The third highest level of Cer was found in kidney (1.52nmol/mg protein). The

highest level of Cn-Cer species in the kidney was C16-Cer (46.3%), followed by C24:1-Cer

(25.4%). The other species were all below 10% of total (Fig 3C).

Fig 1. Levels of total Cer, Sph, dhC16-Cer, and dhSph present in various tissues. Tissues were homogenized in lysis

buffer containing protease-inhibitor cocktail before centrifugation to get protein. Then equal amounts of protein

(800ug) were provided for analysis of SL. Results are presented as pmol SL/mg protein with means ± st dev. of 6x

replicates. A.Total Cer, � p<0.05 (vs brain), �� p<0.05 (vs liver); B.dhC16-Cer, � p<0.05 (vs tumor), �� p<0.05 (vs
liver); C. Sph, � p<0.05 (vs kidney), �� p<0.05 (vs heart); D. dhSph, � p<0.05 (vs brain), �� p<0.05 (vs bladder).

https://doi.org/10.1371/journal.pone.0215770.g001
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Table 1. Levels of total Cer, dhC16-Cer, Sph and dhSph in various tissues.

Tissue (pmol

/mg pro)

Total Cer Sph dhC16-Cer dhSph

Bladder 1139.7±206.0 39.1±9.5 68.5±19.0 4.3±1.9

Liver 926.0±108.7 54.2±22.5 8.5±4.6 9.1±1.4

Spleen 1006.6 ±178.8 37.8±5.7 71.5±46.3 15.7±7.2

Kidney 1522.1±202.5 154.8±69.6 192.0±64.4 14.6±5.5

Heart 2005.6±422.1 20.5±5.1 80.2±32.8 5.3±2.6

Lung 1214.0±210.1 50.4±32.3 78.4±19.6 19.2±9.5

Brain 2529.9±534.3 71.7±22.4 9.2±3.5 26.7±8.8

Tumor 1143.9±124.4 24.6±7.6 254.8±60.4 23.1±5.2

Results are presented as pmol SL/mg protein with means ± st dev. of 6x replicates.

https://doi.org/10.1371/journal.pone.0215770.t001

Fig 2. Predominant Cn-Cer species in eight tissues. Results are presented as pmol Cn-Cer/mg protein with

means ± st dev. of 6x replicates. A. C18-Cer; B.C18:1-Cer; C. C20-Cer; D. C20:1-Cer; E. C26-Cer; F. C26:1-Cer.

https://doi.org/10.1371/journal.pone.0215770.g002
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Lung. There was 1.21nmol/mg protein Cn-Cer found in lung tissue. Similar to kidney, the

first two highest Cn-Cer species in the lung were C16-Cer (32.7%) and C24:1-Cer (29.3%). In

lung, we also detected a relatively high level of C20-Cer (11.5%, Fig 3D).

Bladder. There was a total of 1.14nmol/mg protein Cer found in bladder, and the most

abundant Cn-Cer species was C24:1-Cer (31.7%), followed by C18-Cer (21.4%), C16-Cer

(19.9%) and C20-Cer (12.4%, Fig 3E). These four major species accounted for 85.4% of Cer in

the bladder.

Spleen. We could detect only 1.01nmol/mg protein Cer in spleen, and the most abundant

Cn-Cer species was C24:1-Cer (42.3%), followed by C16-Cer (26.8%, Fig 3F). The remaining

species were all below 10% of total.

Liver. The lowest level of Cer was found in liver, at only 0.93nmol/mg protein. Among the

different Cn-Cer, the most abundant species was C24:1-Cer (31.3%), followed by C24-Cer

(22%), C16-Cer (13.7%) and C20-Cer (12.8%). Interestingly, we also observed a relatively high

level of C22-Cer in the liver (91.0±16.0 pmol, 9.8%) while most tissues had levels of only

around 25pmol/mg protein (Fig 3G).

Plasma. There was a total of 188pmol Cn-Cer found in 100ul blood plasma. The most

abundant Cn-Cer species in plasma was C24-Cer (53%), which was never above 10% in the

other tissues that were investigated (except liver). C24:1-Cer was the second highest Cn-Cer

species in plasma and contributed 19.5% of total Cer. The third major species in plasma was

C22-Cer (10.5%, Fig 3H), which was only 1–3% in most of tissues. These three major species

accounted for 83% of total Cer in plasma.

Tumor xenograft. The total Cer in tumor was 1.14nmol/mg protein, and same as kidney

and lung, the top two most abundant Cn-Cer species were C16-Cer (41.2%) and C24:1-Cer

(30.8%). Tumor also contained significant amounts of C26-Cer (43.5±10.1 pmol, 3.8%) and

C26:1-Cer (28.8±8.9 pmol, 2.5%), which were hardly detectable in other tissues (Fig 3I).

Discussion

To explore SL metabolism pathways that also have therapeutic benefits for cancer, we gener-

ated initial survey of bioactive SL species across the xenograft mouse tissues. Our data disclose

an intricate tissue distribution of various species such that each tissue shows a unique SL pro-

file, and most likely, the differences in levels are due to the expression levels of various SL met-

abolic enzymes, especially the Cer synthases [17,18]. The common Cer species that were

represented in most of the tissues are C24:1-Cer (8/9) and C16-Cer (7/9). The only tissue that

had C24:1-Cer below 10% is heart (9.1% of total, 182.9± 38.2 pmol). Interestingly, brain and

Table 2. Levels of C18, C18:1-Cer; C20, C20:1-Cer; C26, C26:1-Cer in various tissues.

Tissue (pmol /mg pro) * C18-Cer C18:1-Cer C20-Cer C20:1-Cer C26-Cer C26:1-Cer

Bladder 244.3±48.4 14.2±2.9 141.1±31.3 10.1±2.7 5.4±2.2 3.8±1.8

Liver 62.1±24.4 3.4±1.2 118.5±58.8 3.9±1.2 1.9±0.9 1.2±0.3

Spleen 76.6±30.0 19.3±3.1 70.1±37.5 14.0±1.8 1.5±0.8 2.9±1.2

Kidney 52.4±13.6 25.1±6.8 129.0±35.2 21.1±4.2 3.2±1.4 4.0±1.7

Heart 301.9±76.5 43.4±8.0 844.7±252.3 179.0±30.0 1.1±0.5 1.1±0.3

Lung 108.8±22.8 31.0±5.9 139.7±50.6 56.9±10.3 1.8±0.9 3.3±0.7

Brain 1040.9±295.5 743.3±262.2 128.0±26.1 18.3±4.1 1.3±0.6 7.6±2.5

Tumor 68.7±31.5 13.8±4.2 24.4±8.4 4.2±1.0 43.5±10.1 28.8±8.9

Results are presented as pmol Cn-Cer/mg protein with means ± st dev. of 6x replicates.

� All p values <0.001 (vs highlighted species).

https://doi.org/10.1371/journal.pone.0215770.t002
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plasma contained quite low levels of C16-Cer (2.2% in brain, 56.5±17.4 pmol; 4.9% in plasma,

11.5±2.7 pmol) as compared to the other 7 tissues that were investigated, while the highest

level of C16-Cer was in kidney. We also observed 4 tissues contained relatively high level of

C20-Cer whereas 3 tissues had high level of C18-Cer, and the highest level of C20-Cer was in

heart, whereas C18-Cer was the most abundant Cer species in the brain.

Fig 3. Cn-Cer’s profile in various tissues. Results are presented as pmol Cn-Cer/mg protein with means ± st dev. of 6x replicates. A.

Brain; B. Heart; C. Kidney; D. Lung; E. Bladder; F. Spleen; G. Liver; H. Blood plasma; I. Tumor xenograft.

https://doi.org/10.1371/journal.pone.0215770.g003
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Among all Cer species, we also detected some Cer only heavily presented in certain tissues;

for instance, C18:1-Cer, which contributed only 1–2% in most of the tissues, was highly pres-

ent in the brain (743.3±262.2 pmol, 29.4%); C22-Cer was one of the major Cer species in the

plasma; C24-Cer was only highly present in the liver and plasma (Table 3). Furthermore, there

was a total of 188pmol of Cn-Cer found in 100ul plasma, but the most abundant SL in the

plasma was Sph1-P (288.4±70.5 pmol), which had only very low amounts (around 1pmol)

found in the eight other tissues; Moreover, blood also contained the highest level of dhSph1-P

(79.5±30.0 pmol), which had either trace mount (<0.3pmol) or below the detection limit

(BDL) in the eight tissues that were investigated (Table 4).

There have been a few studies evaluating a larger set of lipids in mouse models, but they

either included few tissues or presented only major lipids. They also utilized various mouse

backgrounds, depending on the goal of the study [19–22]. Comparing these studies, there are

some typical differences. The first relates to data normalization, some including ours used tis-

sue protein, others used total lipid phosphate, or directly used per wet weight of tissues. Based

on that, we also measured the level of total phosphate of each sample that had been quantified

with same amount of protein (800ug), and the results indicated their phosphate were not

equal, the difference between the highest (brain) and the lowest (bladder) was over 6 fold (Fig

4). The conversion between per mg protein to per nmol phosphate is obtained via dividing the

Table 3. Major Cn-Cer species (>10% of total Cer) in various tissues.

Tissues

(/mg pro)

C16 C18 C18:1 C20 C22 C24 C24:1 % of total

Brain 1040.9±295.5 743.3±262.2 451.5±72.9 88.5

Heart 282.2±63.3 301.9±76.5 844.7±252.3 71.2

Kidney 704.0±60.1 386.5±80.9 71.6

Lung 397.1±136.0 139.7±50.6 355.4±48.9 73.5

Tumor 471.0±78.5 352.1±64.6 72.0

Bladder 226.2±87.0 244.3±48.4 141.1±31.3 361.4±86.4 85.4

Spleen 270.1±70.3 425.7±96.6 69.1

Liver 127.0±29.9 118.5±58.8 203.6±43.7 289.8±45.3 79.8

Plasma

(100ul)

24.4±5.7 124.3±66.2 45.8±17.0 82.9

Results are presented as pmol Cn-Cer/mg protein with means ± st dev. of 6x replicates.

https://doi.org/10.1371/journal.pone.0215770.t003

Table 4. Levels of Sph 1-P and dhSph 1-P in various tissues.

Tissue (/mg protein) * Sph 1-P dhSph 1-P

Brain 0.7±1.2 0.2±0.2

Heart 0.5±0.7 BDL

Kidney BDL BDL

Lung 0.3±0.3 0.1±0.1

Tumor 1.1±1.5 BDL

Bladder 0.6±1.0 BDL

Spleen 1.1±1.4 0.3±0.2

Liver 0.3±0.3 BDL

Plasma (100ul) 288.4±70.5 79.5±30.0

Results are presented as pmol SL/mg protein with means ± st dev. of 6x replicates.

�BDL = below the detection limit

https://doi.org/10.1371/journal.pone.0215770.t004
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results by the following: bladder (87.0); liver (276.7); spleen (115.7); kidney (357.8); heart

(262.1); lung (176.3); brain (552.5), and xenograft tumor (131.8). The second issue relates to

methods of extracting lipids. Some used Bligh and Dyer (B&D) extraction [23], while we used

methods that were developed by Bielawski et al, and the difference between B&D extraction

and our extraction have been published [24]. Therefore, due to these differences, it is hard to

compare various sets of results directly. However, beyond these, we did note some interesting

points; for example, there are tremendous amounts of C18:1-Cer in nude mice brain (C18:

C18:1-Cer, 1.4:1.0), while there was actually very low level of C18:1-Cer present in C57BL/6J x

FVB brain (C18:C18:1-Cer, 179.0:1.0).

While this resource represented an initial SL exploration in xenograft mouse model, it has

limitations, such as the extraction and analytic methods were selected to study the profile of

Cer/Sph/Sph 1-P, therefore, we did not evaluate complex SL at this time.
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