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ABSTRACT

Objective: Clinical research data warehouses (RDWs) linked to genomic pipelines and open data archives are

being created to support innovative, complex data-driven discoveries. The computing and storage needs of

these research environments may quickly exceed the capacity of on-premises systems. New RDWs are migrat-

ing to cloud platforms for the scalability and flexibility needed to meet these challenges. We describe our expe-

rience in migrating a multi-institutional RDW to a public cloud.

Materials and Methods: This study is descriptive. Primary materials included internal and public presentations

before and after the transition, analysis documents, and actual billing records. Findings were aggregated into

topical categories.

Results: Eight categories of migration issues were identified. Unanticipated challenges included legacy system

limitations; network, computing, and storage architectures that realize performance and cost benefits in the

face of hyper-innovation, complex security reviews and approvals, and limited cloud consulting expertise.

Discussion: Cloud architectures enable previously unavailable capabilities, but numerous pitfalls can impede

realizing the full benefits of a cloud environment. Rapid changes in cloud capabilities can quickly obsolete exist-

ing architectures and associated institutional policies. Touchpoints with on-premise networks and systems can

add unforeseen complexity. Governance, resource management, and cost oversight are critical to allow rapid

innovation while minimizing wasted resources and unnecessary costs.

Conclusions: Migrating our RDW to the cloud has enabled capabilities and innovations that would not have

been possible with an on-premises environment. Notwithstanding the challenges of managing cloud resources,

the resulting RDW capabilities have been highly positive to our institution, research community, and partners.
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BACKGROUND AND SIGNIFICANCE

Data-intensive programs in personalized medicine, learning health

systems, and data-driven research have driven explosive growth in

clinical research databases. Research data warehouses (RDWs) now

store data from electronic health records; clinical images, videos,

and physiological signals; genomic panels expanding to whole-

exome/whole-genome sequences; and patient-generated data from

mobile apps, home monitors, and wearable devices.1,2 Many RDWs

also integrate nonclinical data such as social media postings and

public data sets (census, environmental, traffic, crime).3–8 The vol-

ume of relevant electronic data and the computational requirements

to perform advanced analytics using these data easily overwhelm the

computing resources of large and small research organizations.

Many healthcare organizations are investigating migrating research

computing systems from on-premises, locally managed environ-

ments to public clouds. We describe the University of Colorado

Anschutz Medical Campus’s (CU-AMC) experience implementing a

large RDW combining administrative, clinical, genomic, and

population-level data from 4 organizations plus commercial, gov-

ernmental, and public third-party data sources into Google Cloud

Platform (Google Cloud Platform). Public cloud providers offer dif-

ferent, rapidly evolving technologies; however, lessons learned from

our implementation should apply to organizations considering tran-

sitioning to any public cloud provider.

In August 2013, CU-AMC established a new research data ware-

house called Health Data Compass (HDC: www.healthdatacom-

pass.org) in partnership with 2 affiliated health systems and an

independent faculty practice plan. After an extensive market search,

in July 2014, HDC began implementing an on-premises, vendor-

supported, healthcare-specific hardware and software stack that in-

cluded a specialized database engine and extraction-transform-load

(ETL) pipeline. Full-scale go-live commenced March 2015.

By summer 2015, despite being just over 1 year into implementa-

tion and 3 months into deployment, substantial HDC personnel

time and consulting costs were being consumed reacting to unex-

pected system failures due to computational and storage constraints.

Frequent upgrades and patches would take the entire HDC environ-

ment offline for more than 24 h. Loading data from hospital sources

and running the vendor-provided master person index also over-

loaded on-premises resources, causing frequent delays in loading

new data. In addition, HDC faced unplanned costs to implement re-

dundant hardware and software to support system reliability and di-

saster recovery. Because of these challenges, HDC initiated 2 formal

pilot studies using GCP from April through October 2016. Study 1

targeted high-throughput data processing; study 2 focused on com-

putational scalability. Both pilots also provided insights into techni-

cal effort, data security, regulatory compliance, and estimated

immediate and long-term costs. Based on these findings, in Novem-

ber 2016, the HDC executive sponsors approved reimplementing

the HDC environment within GCP. The transition to a cloud-only

infrastructure was completed by February 2017. In late 2020, CU-

AMC’s on-premises high-performance compute cluster (HPCC),

used for large-scale genomic analyses, reached end-of-life. All next-

generation bioinformatics computing and storage needs were mi-

grated to Compass GCP.

Much literature, mostly from marketing or consulting sources,

highlights the benefits of cloud-based infrastructures.9–11 General-

ized guidance for on-premises to in-cloud transitions are harder to

find. Given the nascent state of clinical data warehousing in the

cloud in late 2016, there was minimal literature and hands-on expe-

rience with cloud implementations. Our journey as early cloud

adopters provides useful insight into developing a cloud healthcare

ecosystem, with emphasis on the additional requirements of a clini-

cal research environment.

OBJECTIVE

We present the key objectives that HDC articulated at the beginning

of the migration from an existing on-premises RDW to a de novo

cloud-based reimplementation. We share insights that may be useful

to others considering a cloud-based research data warehouse. We

also provide usage and cost metrics and describe examples where de-

sign decisions can significantly impact the overall costs of a cloud-

based deployment.

MATERIALS AND METHODS

This is a descriptive study. Primary materials date from early 2016

to early 2021, including internal and public presentations before

and after the transition, analysis documents, and historical billing

records. Costs were aggregated over time and by GCP service. Not

included were internal personnel and external consulting costs, al-

though staffing considerations are discussed. Findings were aggre-

gated into topical categories such as networking and security,

computation, storage, and staffing. Key performance indicators

were generated in June 2021.

RESULTS

Figure 1 is the graphic that summarized the findings from the 2016

GCP pilot studies. Findings were separated into “met expectations,”

“lower than expectations,” and “exceeded expectations.” Assess-

ments were qualitative except for financial projections. Through the

intervening 5 years, these 2016 findings have been re-confirmed. Ad-

ditional findings have emerged as HDC’s size and functionality ex-

panded from pilot to enterprise-scale.

Figure 2 (top) is the high-level description of HDC’s current ca-

pabilities as presented to nontechnical executive audiences. Figure 2

(bottom) is a technical overview that illustrates data flows, network

interfaces, and key GCP technologies currently used.

In the lower right corner of Figure 2 is an application created by

HDC named Eureka. Eureka is a secure, scalable cloud computing

and storage platform designed to enable advanced analytics on large

or sensitive data sets without data leaving HDC’s secure cloud envi-

ronment. Eureka instances can be created with a wide range of

CPUs/TPUs, RAM memory, and persistent storage. Unlike standard

cloud virtual machines (VMs), Eureka images have strict access con-

trols designed to prevent data egress while allowing restricted access

to core Internet software libraries and repositories. Extensive log-

ging and auditing controls are embedded in the Eureka image. More

details about Eureka are available at https://www.healthdatacom-

pass.org/cloud-analytics-infrastructure.

In August 2020, HDC’s parent organization, the Colorado Cen-

ter for Personalized Medicine (CCPM), established the Translational

Informatics Services (TIS). TIS provides computational services for

large-scale genomic data, processes genotypes and genomic data

into data sets useful for research and clinical use, implements stan-

dard and one-off bioinformatics pipelines, and supports partnerships

between academia and industry. TIS migrated to a fully cloud-native

infrastructure using HDC’s secure environment to store large files

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 4 593

http://www.healthdatacompass.org
http://www.healthdatacompass.org
https://www.healthdatacompass.org/cloud-analytics-infrastructure
https://www.healthdatacompass.org/cloud-analytics-infrastructure


with raw and processed genetic data, accommodate diverse file for-

mats, and leverage on-demand HPCCs to perform genome-wide as-

sociation studies (GWAS), phenome-wide association studies

(PheWAS), and other analyses. TIS core cloud components and data

flows are shown in Figure 3.

Table 1 lists common RDW key performance measures illustrat-

ing the magnitude of data flows into and within HDC, current stor-

age, data sources, and data requests/data delivery volumes. Also

included are row counts from key clinical tables.

Figure 4 (top) displays growth in HDC’s total spend across all

GCP products from July 2017 to March 2021. Figure 4 (center) is a

cost breakdown by GCP services, and Figure 4 (bottom) illustrates

the relative spend by GCP service from January to March 2021.

DISCUSSION

It is daunting to move complex data flows, computations, and appli-

cations that support a wide range of translational research to any

new environment. Differences in features and cost structures be-

tween on-premises and cloud infrastructures allow for unique op-

portunities and unexpected pitfalls. A simple “lift-and-shift” model

that replicates on-premises hardware and software directly to cloud-

hosted VMs may be most straightforward and comfortable for cur-

rent teams to execute. But overlooking the cloud’s capability to in-

stantly assign, alter, or release storage, computing, and networking

resources or to provide entirely new services via simple application

programming interface (API) changes can result in missed opportu-

nities for cost savings or new innovations. Conversely, overlooking

how new cloud products integrate into the existing cloud architec-

ture or how usage charges accrue can quickly result in wasted

resources, unexpected costs, unanticipated security and compliance

risks, or conflicts with security controls, policies, or procedures.

Table 2 categorizes key areas of discovery during our RDW mi-

gration to GCP (details follow). Some issues are not unique to

cloud-based implementations but are accentuated by the hyperdy-

namic technical advances in the public cloud marketplace. Other

issues reflect platform limitations that existed when HDC architec-

tural decisions were made. Given the continuous expansion of cloud

capabilities, RDW teams responsible for cloud implementations

must create processes and policies that anticipate a state of ongoing

architectural and technical redesign while simultaneously supporting

a large, complex, and heavily used operational RDW.

Networking and network security
Cloud tools and infrastructure listed by GCP as HIPAA compliant

meet or exceed HIPAA security and privacy requirements. Institu-

tional on-premises network security manages access control, threat

detection, real-time alerting, compliance, and auditing. Existing on-

premises security configurations have evolved over many years into

deeply embedded infrastructure with approved policies tied to audit-

ing and compliance procedures. HDC significantly underestimated

the work necessary to translate the on-premises security environ-

ment (firewall, intrusion detection, logging, monitoring, alerting) us-

ing unfamiliar cloud-native security tools and the effort to integrate

the new GCP security capabilities with the deployed institutional

network design and security tools.

The security officers of our stakeholder institutions agreed upon

NIST 800-53a as our target security compliance framework, a deci-

sion that significantly impacted costs, resources, and timelines.12 As

early adopters, Compass faced significant concerns about institu-

tional risks associated with large-scale fully identified patient data in

the cloud. Because of internal experience with NIST 800-53a from

participation in the National Children’s Study, the decision to imple-

ment NIST 800-53a controls helped accelerate acceptance. How-

ever, NIST 800-53a is a complicated, costly compliance framework

to both implement and maintain. It is not strictly required to achieve

sufficient technical security for HIPAA compliance. Specific security

threats, the systems and processes that address each threat, and

monitoring procedures to ensure compliance with the proposed sol-

utions are contained in a Systems Security Plan (SSP). Security guid-

ance documents for HIPAA, NIST 800-53 and HITRUST list

hundreds of mandatory or recommended system and network secu-

rity threats that require explicit implemented controls and compli-

ance oversight.13–15 HDC’s current SSP consists of approximately

140 “moderate” NIST 800-53 controls, approved by our stakehold-

ers security officers. Changes to the SSP require high-level institu-

tional technical, regulatory, and legal engagement and approval.

Thus, the long list of GCP HIPAA compliant products belies an
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• Google’s security is strong and 
highly configurable

• All partner security, 
compliance, and legal officers 
(4 partners!) approved use of 
GCP

• Securing virtual machines on 
GCP requires more legacy 
monitoring approaches / 
systems than desired

• Google’s bounty program 
reduces the need for web 
penetra�on tes�ng

• Management of creden�als
and two-factor 
authen�ca�on is a breeze.
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• BigQuery performance is very 
fast, on large data sets.

• Data uploads from campus to 
Google Cloud Storage very fast

• Most GCP components very 
easy to use rela�ve to on-
premises and compe�ng cloud 
providers

• ETL orchestra�on 
implemented with custom 
programming due to 
unsa�sfactory 3rd-party tools

• 1-3 second fixed 
performance cost for small 
queries on BigQuery

• BigQuery data 
transforma�ons are 
ridiculously fast

• Tableau server connec�vity 
to BigQuery is na�ve

• BigQuery-based MPI is 
exponen�ally faster than 
tradi�onal MPI applica�ons, 
and much simpler to manage

Figure 1. Key findings from 2016 pilot studies comparing Google Cloud Platform with existing on-premises systems as presented to nontechnical executive spon-

sors. Superlative were used to emphasize particularly distinctive findings that supported the migration proposal.
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Figure 2. Top, The executive view of Health Data Compass highlighting data inputs, outputs and key GCP technologies for nontechnical audiences. Bottom, Tech-

nical view of data flows, network boundaries, and internal GCP technologies used in the current Health Data Compass research data warehouse. Google Cloud

icons labels available at https://docs.google.com/presentation/d/1aGOTpNdCoO4GXZ2es38ZFO5qPGEAjTtDSVeHaDpwsas/edit#slide¼id.g5e923c6224_190_56.

Abbreviations: APCD: Colorado All Payers Claims Database; CDPHE: State death registry; GCP: Google Cloud Platform; Melissa: Melissa Inc.

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 4 595

https://docs.google.com/presentation/d/1aGOTpNdCoO4GXZ2es38ZFO5qPGEAjTtDSVeHaDpwsas/edit#slide=id.g5e923c6224_190_56
https://docs.google.com/presentation/d/1aGOTpNdCoO4GXZ2es38ZFO5qPGEAjTtDSVeHaDpwsas/edit#slide=id.g5e923c6224_190_56


enormous amount of additional work to ensure that a product is

deployed in compliance within institutional security policies.

In retrospect, CU-AMC and HDC jointly significantly under-

staffed this activity. We allocated only 0.5 FTE across all tasks asso-

ciated with creating a new SSP, policies, implementation, auditing

procedures, and tools for the initial years. Our current estimate is

that a combined effort of 2.5 FTEs across numerous institutional

groups (HDC, network security, regulatory, compliance, legal) is a

more realistic estimate in a multi-institutional environment manag-

ing highly confidential clinical and genomic data.

Another early decision was to limit network access to high-

security VMs that performed critical ETL functions (ETL VMs). ETL

VMs have network access only to institutional source systems (eg, hos-

pital electronic medical records systems) and HDC-specific GCP net-

works. However, limited network access conflicts with a fundamental

design assumption incorporated into many GCP products. These

products are designed to pull the most recent version of software or

containers from Google-managed repositories at the time the tool is

activated—code repositories that were not accessible to the ETL VMs.

Therefore, GCP tools failed with standard deployment designs. While

not an ideal solution, hard-coding firewall rules to allow access to spe-

cific IP addresses was required for these tools to work.

Data engineering: source versus cloud performance

mismatch
HDC’s primary clinical data sources are electronic health record sys-

tems that house data in traditional relational database systems

(RDBMS). These databases are also used by operational reporting

units who compete with HDC for the same resources. Resource

limitation policies control access to these high-demand databases.

Thus, despite HDC’s access to scalable cloud computing resources,

the initial extraction and transfer into the cloud is wholly deter-

mined by the on-premises RDBMS resource allocation to HDC.

HDC has devised multiple optimization strategies to enable extrac-

tions to complete within the allowed restrictions. Once within

HDC’s environment, resource constraints are nonexistent.

A second performance issue was handling increased network vol-

umes. Due to source data model limitations, full table pulls rather

than incremental loads are required. For very large tables, existing

routers became network bottlenecks, requiring upgrades to the net-

work infrastructure. A redesigned network architecture moved more

network functions and traffic to scalable cloud-based routers, mini-

mizing the amount of traffic between on-premises and cloud servers.

ETL redesigns using incremental data extraction based on transaction

logs may greatly decrease the amount of data moving across networks.

Computation: virtual machines and managed services
Modern IT architectures use virtual machines or containers to enable

allocating resources dynamically. With fixed hardware, adding new

VMs is a zero-sum competition addressed either by restricting resour-

ces or purchasing more hardware. Public cloud vendors remove this

resource competition, replacing the fixed upfront costs of acquiring

new hardware with the variable costs of using more cloud resources.

To comply with our SSP each VM or container requires HDC to

configure security settings and manage patches and upgrades to the

operating system and hosted applications. An alternative to VMs are

managed services, which encompasses software-as-a-service (SaaS),

Figure 3. Data flows and key Google Cloud Platform (GCP) technologies used by the Translational Informatics Service (TIS). Although TIS uses fewer GCP tech-

nologies, TIS deploys more “forward-facing” (App Engine GUI, R Studio), high-performance computing (Eureka HPC), and cloud storage resources than does the

RDW.

Table 1. Health data compass key performance indicators as of

June 30, 2021

Health data compass key metrics

Tables 790

Storage/clinical 16 TB

Storage/genomic 55TB

Extraction-transform-load jobs 2000þ
Data sources 6 (3 internal; 3 external)

Unique persons 7.3M

Visits (all types) 51M

Conditions/Diagnoses (all types) 171M

Medications (ordered, administered, dispensed) 240M

Measurements (laboratory test) 1.3B

Observations (includes flowsheets) 6.6B

Clinical notes (all types) 210M

Custom data sets delivered 1286

Custom data marts/registries (local, national) 15

End-user applications 9
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Figure 4. Top, Growth in Google Cloud Platform (GCP) total spend across all GCP services from July 2017. Middle, Growth of GCP monthly costs by specific GCP

service October 2020–March 2021. Bottom, Proportion of charges across GCP services January–March 2021.
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platform-as-a-service (PaaS), and infrastructure-as-a-service (IaaS).

A managed service provides capabilities to a customer on an as-

needed basis. SaaS requires the least amount of HDC management;

IaaS requires the most. All current HDC design decisions prioritize

SaaS over PaaS and PaaS over IaaS.

In practice, minimizing security and management overhead

through higher level managed services has had mixed results. Fig-

ure 4 (bottom) shows Google BigQuery (GBQ), GCP’s SaaS large-

scale database to be the highest GCP cost. By using BigQuery, HDC

personnel no longer spend time fine-tuning DBMS parameters or

scheduling activities around resource constraints. Similarly, techni-

cal personnel no longer spend time optimizing one-time queries.

HDC does not employ a database administrator (DBA) despite its

massive size. More technical services are focused on higher value use

of resources. Managed services costs are offset by increased pro-

grammer productivity and more end-user services.

Managed services can also scale according to needs. For exam-

ple, the TIS team generated genome-wide association studies

(GWAS) summary statistics for more than 1000 phenotypes to sup-

port phenome-wide exploration of genetic associations (PheWAS).

Fifty-four billion summary statistics for genetic variant/phenotype

associations were stored in GBQ. It was possible to establish this

5.3TB repository without competing with other HDC resources.

The dynamic HPCC hosted within HDC’s HIPAA-compliant cloud,

called Eureka HPC, enables genomic analytics performed by TIS to be

used with fully identified biobank and clinical phenotype data. Eureka

HPCC uses inexpensive preemptible VMs, which are standard VMs but

with the caveat that Google can deallocate with a few minutes notice.

This extremely cost-effective model is now used to run 2 production

GWAS pipelines that utilize between 4 and 60 CPUs. Eureka HPCC

allows large one-time jobs to be executed using the same HPCC infra-

structure. For example, TIS deployed a large Eureka HPCC to compute

1260 GWAS analyses for �34 000 genotyped Biobank participants.

This ephemeral HPCC cost $8730 or $6.93 per phenotype.

Despite a strong preference for using SaaS or PaaS managed serv-

ices over IaaS virtual machines, Figure 4 shows that GCP VMs

(Compute Engines) are HDC’s second largest cost. HDC hosts ap-

proximately 300 VMs. The majority of VM images are Eureka ana-

lytic engines which are created and terminated as-needed by end-

users. Additionally, most data engineering development projects re-

quire 3 environments—development, test, and production—which

multiplies the number of VMs. Other VMs host applications that

only run on dedicated VMs such as OHDSI ATLAS,16 sandbox proj-

ects (described below), and the reluctance of some GCP SaaS ven-

dors to sign Business Associate Agreements (BAA), forcing HDC to

host the application.

Storage
Access to essentially limitless storage eliminates a zero-sum competi-

tion for disk space. Cloud storage can use multiple geographical

regions to ensure “5-9s” (99.999%) availability, a performance level

that would be cost-prohibitive for a single institution. Backups are

automatic with multiregion designs.

Because storage is inexpensive, HDC tends to keep everything.

However limitless storage has downsides. An infrastructure with

hundreds of users often results in duplication of the same or very

similar data with little ability to reconstruct the chain of transforma-

tions. Archives and refreshes of these duplications can accumulate

significant storage costs. It is difficult to know which data sets are in

active use versus which can be archived or deleted. Even users have

trouble keeping abreast their various data resources.

Since launching TIS, storage of large files with raw and proc-

essed genetic data in multiple file formats has highlighted the need

to implement tiered storage to reduce costs. However, defining a

tiered storage strategy that maximizes data availability while mini-

mizing storage costs has been more challenging than envisioned.

Data stored in high-latency tiers can be very cost-effective. How-

ever, the cost of migrating data from high-latency tiers back into on-

line storage is expensive. Moving data between storage tiers only

once or twice can obliterate the original cost savings. Uncertainty

about data reuse has caused HDC to be cautious about using high-

latency storage. Given the tendency of investigators to reanalyze old

data with new hypotheses or tools, the amount of data deemed truly

safe to put into cold storage has been surprisingly small.

Table 2. Categories of underappreciated challenges that emerged during migration from on-premises to cloud data warehouse

Networking/Network security Integration with enterprise networking

System security plan/HIPAA Compliance

Network access

Data engineering Performance mismatch between source and cloud-based environments

Computation Compute engines

Managed services

Cluster computing

Storage Storage costs

Tiered storage strategies

Data provenance

Secure analytics Cloud-based analytics

Analytics repos vs security

Sandboxes/Public data Sandboxes for low-barrier access

Oversight

Understanding public data sets

Innovation/Consulting services Hyper-innovation/legacy architectures

Development environments

Consulting knowledge

Costs/utilization Oversight and monitoring

Leveraging cost-savings opportunities

598 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 4



Secure analytics
Eureka is an analytics platform based on a high-security version of

CentOS (Linux) designed to enable advanced analytics on large,

PHI-containing data sets within HDC’s HIPAA compliant environ-

ment. Eureka enables users to scale both CPU and storage capacity

to meet their analytic needs. Eureka costs are charged to the user

based on cloud resources consumed. End-users control costs by

“right-sizing” resources and turning off Eureka instances when not

in use. Eureka instances can be deleted when no longer needed. Cur-

rently at Version 3.0, HDC has deployed approximately 100 Eureka

instances.

Due to network security concerns, Eureka Version 1.0 blocked

direct internet access. Eureka users were unable to pull directly from

software repositories, like GitHub, to assemble packages or to up-

date software. To offer more flexibility, Eureka 3.0 contains a grow-

ing safelist of public web resources to which a user can request time-

limited access (60 minutes). The safe-list includes 9 major repository

sites for data science, such as CRAN, Anaconda, PyPI, GitHub, and

Bioconductor. Eureka continues to grow and evolve in response to

user feedback.

Sandboxes/public data sets
To enable broader access to GCP resources, HDC established lower

security sandboxes where de-identified or synthetic data, such as

Synthea17 and MIMIC18 can be made available and accessed directly

along with the tools and capabilities of GCP. Sandboxes are used to

“kick the tires” of new tools or standard VM- or container-based

applications, such as OHDSI ATLAS16 and the University of Wash-

ington Leaf,19 to explore functionality and determine the value and

effort required to integrate into a more secure environment. Cloud-

based sandboxes do not compete with computational or storage

resources used by existing projects.

However, ensuring users do not misuse sandbox environments

by uploading sensitive data obtained outside HDC oversight is a

challenge. Newer tools, such as GCP’s Data Loss Prevention, which

scans data sets for sensitive information, may detect sensitive data in

sandbox databases. In addition, there are no automated tools to de-

termine when a sandbox is no longer needed other than examining

when it was last assessed.

All public cloud vendors make a wide range of public and com-

mercial data sets available for querying on their platforms. Google

Marketplace currently lists 216 data sets available in BigQuery

(https://console.cloud.google.com/marketplace/browse?filter¼solu-

tion-type:dataset&pli¼1), including 43 data sets labeled as health-

care specific. The richness of readily available data resources has

been a double-edged sword. Given scalable resources and easy avail-

ability, accessing these resources is trivial within the HDC platform.

Our current challenges are understanding the strengths and weak-

nesses of each data source, what types of problems are best

addressed by each resource, and how to query the data tables which

limits our ability to leverage these resources. Thus, zero or minimal

access costs have not translated into high or novel utilization.

Innovation/consulting services
The speed and magnitude of new functionality in the cloud market-

place is daunting for HDC cloud architects to evaluate the utility of

new offerings. In today’s cloud ecosystems, implementations are al-

most instantaneously legacy designs. The hyper-innovation of the

cloud enables previously unattainable capabilities to become avail-

able simply via a new set of APIs. Determining what offering is a dis-

traction versus a transformative opportunity takes time and

carefully planned tests within sandboxes that replicate the existing

architecture for head-to-head comparisons.

Once a new technology is deemed sufficiently promising to in-

corporate into production pipelines, extensive institutional review

processes to comply with HDC’s SSP must be completed, including

creating design documentation, risk analyses and assessments, and

updating the SSP system boundaries. This requirement is not differ-

ent from approval processes required for implementing new on-

premises systems. However, the substantial personnel time across

multiple institutional entities before production implementation

extends the time between a new innovation and its availability in

HDC. In the meantime, new product releases continue to occur,

resulting in an sense of always falling behind to rapid-fire innova-

tions.

Similarly, the rapid evolution of cloud-based technologies makes

it difficult for internal architects and external consultants to obtain

the deep experience with the leading-edge tools and technologies to

leverage new capabilities. Overall, our experiences with consultants

have been disappointing who tend to bring previous experiences

with “out-of-the-box” designs. Few have experienced healthcare set-

tings; none have implemented complex GCP-based solutions in a

large-scale clinical research environment. The anticipated efficien-

cies of outside cloud expertise have been negated by prolonged

knowledge transfer—the time and effort local resources consume ed-

ucating consulting personnel on the nuances of our environment.

When we have skipped extensive technical on-boarding by GCP

technical members, initial implementations have not worked. HDC

has learned how to better engage with external experts to ensure

that local architectural features are highlighted from the beginning.

Costs/utilization
Cloud-based resources are usually charged on a pay-as-you-use ba-

sis. Services can be turned on as needed, but also can be inadver-

tently kept active when not in use. Many services use different

metrics to determine usage charges. BigQuery charges are based on

data rows queried; Google Cloud Storage charges are based on size,

access tier, and regions; Google Compute Engines are based on

availability (pre-emptible), CPU, permanent storage needs, operat-

ing system, and uptime. Other services charge per-API call, per li-

censed user, or as a percent of other system charges. As the number

of cloud services used by HDC has grown, aggregating and summa-

rizing cloud charges has required more internal financial resources

than anticipated. However, without careful oversight, unnecessary

consumption-based costs can grow insidiously. For example, HDC

did a comprehensive inventory of unused BigQuery data sets, virtual

machines, and cloud storage. The resulting purge reduced monthly

charges by approximately 20%.

New cloud capabilities also open new cost savings strategies as

long as these opportunities are recognized, incorporated into daily

practice, and displace more expensive practices. For example, be-

cause of the lack of a data orchestration tool, HDC’s ETL pipelines

were initially constructed using a large Windows-based VM. The

per-minute charge for this dedicated VM was high and it was used

continuously for 3–4 days. A recent redesign uses a new data orches-

tration managed service that dynamically instantiates an array of in-

expensive pre-emptible virtual machines which terminate in hours.

The cost difference between the 2 ETL designs is significant, but
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cost savings were only realized after the new design was analyzed,

approved, and implemented and the old design was retired.

CONCLUSION

RDWs have become mission-critical strategic assets for advancing

data-driven discoveries and next-generation clinical care. Given the ex-

plosive size and diversity of data in RDWs and the complexity of the

data science now being applied to these data, traditional architectural

designs are being displaced by cloud-based solutions. But the migra-

tion from traditional on-premises hardware and software is not as sim-

ple as moving the same tools and processes into a cloud-based

environment. Public cloud vendors offer a tremendous array of new

capabilities and access to resources on an as-needed basis, enabling in-

novation at scales and speeds not previously possible. At the same

time, leveraging and managing this dynamic environment raises

unique issues or accentuates similar issues seen in traditional settings.

HDC made an early decision to move to a fully-cloud RDW. At

that time, it was the first significant foray into patient data manage-

ment on a public cloud for HDC’s participating institutions. It also

was the first enterprise-scale health data warehouse on GCP. HDC

has never regretted this decision.
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