
Comparing language outcomes in monolingual
and bilingual stroke patients

Thomas M. H. Hope,1 ‘Ōiwi Parker Jones,1,2 Alice Grogan,1 Jenny Crinion,2 Johanna Rae,1

Louise Ruffle,1 Alex P. Leff,3,4 Mohamed L. Seghier,1 Cathy J. Price1,* and David W. Green5,*

*These authors contributed equally to this work.

Post-stroke prognoses are usually inductive, generalizing trends learned from one group of patients, whose outcomes are known, to

make predictions for new patients. Research into the recovery of language function is almost exclusively focused on monolingual

stroke patients, but bilingualism is the norm in many parts of the world. If bilingual language recruits qualitatively different

networks in the brain, prognostic models developed for monolinguals might not generalize well to bilingual stroke patients. Here,

we sought to establish how applicable post-stroke prognostic models, trained with monolingual patient data, are to bilingual stroke

patients who had been ordinarily resident in the UK for many years. We used an algorithm to extract binary lesion images for each

stroke patient, and assessed their language with a standard tool. We used feature selection and cross-validation to find ‘good’

prognostic models for each of 22 different language skills, using monolingual data only (174 patients; 112 males and 62 females;

age at stroke: mean = 53.0 years, standard deviation = 12.2 years, range = 17.2–80.1 years; time post-stroke: mean = 55.6 months,

standard deviation = 62.6 months, range = 3.1–431.9 months), then made predictions for both monolinguals and bilinguals (33

patients; 18 males and 15 females; age at stroke: mean = 49.0 years, standard deviation = 13.2 years, range = 23.1–77.0 years; time

post-stroke: mean = 49.2 months, standard deviation = 55.8 months, range = 3.9–219.9 months) separately, after training with

monolingual data only. We measured group differences by comparing prediction error distributions, and used a Bayesian test

to search for group differences in terms of lesion-deficit associations in the brain. Our models distinguish better outcomes from

worse outcomes equally well within each group, but tended to be over-optimistic when predicting bilingual language outcomes: our

bilingual patients tended to have poorer language skills than expected, based on trends learned from monolingual data alone, and

this was significant (P50.05, corrected for multiple comparisons) in 13/22 language tasks. Both patient groups appeared to be

sensitive to damage in the same sets of regions, though the bilinguals were more sensitive than the monolinguals.
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Introduction
Research suggests that language deficits, or aphasia, are

some of the most feared consequences after stroke (Lam

and Wodchis, 2010). Patients with aphasia suffer dispro-

portionate levels of anxiety, depression and unemployment,

at just the same time as their most basic coping

mechanism—talking with family and friends—is being

undermined. Stroke patients want to know whether,

when, and in what respects they might hope to recover

lost language skills (Hanger et al., 1998; Choi-Kwon

et al., 2005)—questions that have motivated a great deal

of research into the factors that predict better or worse

recovery from post-stroke aphasia (Keenan and Brassell,

1974; Miceli et al., 1981; Pickersgill and Lincoln, 1983;

Basso, 1992; Pedersen et al., 1995; Maas et al., 2012;

Plowman et al., 2012; El Hachioui et al., 2013). This

work has traditionally emphasized monolingual patients,

with bilingualism treated as a special case of language use

which, though relevant and interesting, might not be taken

to provide the kind of primary evidence that the study of

post-stroke aphasia requires. But bilingualism (hereafter

used to indicate anyone who speaks more than one lan-

guage) is the norm rather than the exception in many

parts of the world; here, we explore if and how prognostic

models built from monolingual stroke patient data can be

generalized to bilingual patients.

Language in the bilingual brain

Research suggests that bilingualism induces plastic changes

in the brain (Mechelli et al., 2004; Bialystok et al., 2009),

but the functional significance of these changes is still

debated. On the one hand, a non-native language may be

represented and processed differently from that of the native

language. For example, where one language is learned later

than another, neural regions may become specialized for the

representation of the native language and resist recruitment

by a non-native language, and there are also claims that

some (e.g. temporo-parietal) regions may preferentially pro-

cess second languages (Lucas et al., 2004). Research using

electrical stimulation in bilingual patients suffering from seiz-

ures (Lucas et al., 2004; Cervenka et al., 2011) or with left-

frontal glioma (Bello et al., 2006), indicates sites where the

stimulation disrupts object naming in a language-specific

manner (together with other sites where the effect is

common to both). These results encourage the view that

there is neural divergence in the underlying language pro-

cesses. But object naming involves a network of regions,

mapping lexical representations into speech (Price, 2012)

and as suggestive as these data may be, they are still con-

sistent with the notion that first and subsequent languages

use a common network, which is differentially sensitive to

disruption as a function of the language in use.

A more specific model of bilingual language processing,

the ‘procedural/declarative’ model (Ullman, 2001; Paradis,

2004), contends that native and non-native languages, their

grammatical aspects in particular, are served by distinct

neural circuits. The distinction flows from the intuition

that native language grammar is learned in an implicit or

procedural manner, associated with left frontal (i.e. anter-

ior) regions and the basal ganglia, while second and sub-

sequent language grammars are learned more explicitly,

with a greater emphasis on declarative memory in tem-

poro-parietal (i.e. posterior) regions (Ullman, 2001). This

model naturally predicts different activation profiles in

functional imaging studies when bilingual speakers process

spoken sentences in their native and non-native languages

(Dehaene et al., 1997; Yokoyama et al., 2006), and is also

supported by neuropsychological case reports associating

selectively impaired recovery in the native language with

damage to basal ganglia structures (Fabbro and Paradis,

1995; Garcia-Caballero et al., 2007), and selectively pre-

served grammatical processing in the native language with

the preservation of the same structures (Zanini et al.,

2011). However, other neuropsychological studies point

to grammatical deficits in both first and subsequent

languages arising from anterior lesions, contrary to

the procedural/declarative model’s predictions (Tschirren

et al., 2011).

An alternative account of bilingual language processing—

the neural convergence account—argues that identical

regions mediate monolingual and bilingual language

(Green, 2008; Consonni et al., 2013) both during lexical

processing (Parker Jones et al., 2012) and grammatical pro-

cessing (Abutalebi, 2008). Although common regions are

active for native and non-native languages, the functional

demand on these regions is higher for bilingual speakers

(Abutalebi and Green, 2007; Parker Jones et al., 2012).

Such increased demand arises from the reduced proficiency

of language processing in bilingual speakers for their two

languages compared to that of monolingual speakers of

those languages (Portocarrero et al., 2007; Bialystok

et al., 2009) and from the concurrent activation of both

languages whilst processing just one language (Kroll et al.,

2006; Hoshino et al., 2011). Under the neural convergence

account, the apparent differences between how first and

subsequent languages are processed reflect an increased

reliance on cognitive control mechanisms to mediate

between the different languages, rather than differences in

their neural representation. Selective recovery of language

post-stroke would also be attributable to difficulties in exer-

cising language control (Abutalebi and Green, 2007; Green

et al., 2010).

If the neural convergence account of bilingual language is

correct, language deficits and recovery in bilingual stroke

patients should reflect damage in essentially the same brain

regions as monolingual stroke patients, although the sensi-

tivity to damage may be greater in bilinguals, either be-

cause of reduced premorbid language proficiency, or

because bilinguals are doing more with the same regions

than monolinguals. By contrast, if there is distinct represen-

tation, or neural divergence, the ‘critical regions’ for each

patient group might be very different. The practical
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implications are profound because: (i) lesion site and size

information are increasingly recognized as key prognostic

factors in post-stroke aphasia (Plowman et al., 2012; Hope

et al., 2013); (ii) the best predictions can only be made by

excluding irrelevant regions (Hope et al., 2013); and (iii)

most practical attempts to predict prognoses for stroke

patients are inductive, in the sense that they aim to learn

(often statistical) trends from patients whose outcomes are

known, and to generalize those trends to new patients

(Jorgensen et al., 1995; Tilling et al., 2001; Pettersen

et al., 2002; Price et al., 2010; Toschke et al., 2010; Zhu

et al., 2010; Hope et al., 2013). If the neural convergence

theory is right, the search for critical language regions in

monolingual stroke patients should be equally applicable to

bilingual patients: both patient groups can be pooled, with

work in each group yielding lessons that are relevant to all.

But if there are divergent representations, lesion-deficit as-

sociations learned from the monolingual stroke patients

may not tell us much about bilingual stroke patients,

which in turn implies that we need to repeat the whole

model-selection process for monolingual and bilingual

stroke patients separately.

In what follows, we ask how applicable prognostic

models designed for monolingual English stroke patients

are to language recovery in bilingual stroke patients (non-

native speakers of English). Specifically, we ask (i) whether

the bilingual patients’ English language outcomes are

better, worse, or similar to expectations based on monolin-

gual data; and (ii) whether the apparent differences that we

do in fact find correspond to differences at the level of

lesion-deficit associations in the brain. Neural divergence

accounts of bilingual language predict that that there

should be significant lesion-deficit associations for the

bilingual group in regions where there is no association

at all for the monolingual patients (and the procedural/

declarative model predicts that those differences will

principally be found in regions implicated by syntactic

language processing). By contrast, common lesion-deficit

associations are predicted by the neural convergence

account albeit with the possibility of significant differences

within regions that play the same roles in both groups

(i.e. suggesting that the load on those regions may differ

across groups).

Materials and methods

The PLORAS database

Our patient data are extracted from our PLORAS database

(Price et al., 2010), which associates stroke patients, tested

over a broad range of times post-stroke, with demographic

data, behavioural test scores from the Comprehensive

Aphasia Test (Swinburn, 2004), and high resolution

T1-weighted MRI brain scans.

Patient selection

We included all available right-handed patients with left
hemisphere stroke irrespective of the presence or absence of
aphasia or any other type of cognitive impairments (e.g. spatial
neglect). Patients were only excluded on the basis of their
behaviour if they were unable to consent for the study, had
contraindications to MRI scanning or were unable to see or
hear the stimuli required to assess their language abilities.
Additionally, patients were excluded if they: (i) were 53
months post-stroke when assessed; (ii) had evidence of other
significant neurological conditions (e.g. dementia, multiple
sclerosis); (iii) showed no visible damage anywhere in the
brain, as assessed by a neurologist (A.P.L.), using the patients’
raw T1-weighted scans; or (iv) had suffered dispersed rather
than focal damage. To make this last judgement, we employed
the lesion identification algorithm described previously (Seghier
et al., 2008) to identify the damaged regions in the patients’
brains, and excluded patients whose lesions occupied a con-
tiguous volume of 51 cm3 in the left hemisphere of the
brain—reflecting the spatial scale at which the patients’ scans
are smoothed when compared to control data. This selection
process yielded 174 stroke patients who are native English
speakers (the monolingual group), and 33 stroke patients
who are non-native English speakers (the bilingual group).

The monolingual group included 112 males and 62 females,
and the bilingual group included 18 males and 15 females. Age
at onset was variable within each group [monolinguals’
mean = 53.0 years; standard deviation (SD) = 12.2 years: bilin-
guals’ mean = 49.0 years; SD = 13.2 years], but not signifi-
cantly different across groups (t = 1.68, P = 0.10). And the
same was true for time since stroke at assessment (monolin-
guals’ mean = 55.6 months; SD = 62.6 months; bilinguals’
mean = 49.2 months; SD = 55.8 months; between group com-
parison: t = 0.54, P = 0.59). We also compared the number of
years of education after the age of 16 across groups (with
missing data for 5/174 monolinguals and 2/33 bilinguals);
the monolingual patients reported slightly more years on aver-
age than bilinguals (1.75 years versus 1.32 years), but the
difference was not significant (Wilcoxon rank sum test:
z = 1.03, P = 0.30).

Bilinguals’ language histories and
experience of English

All of the patients in our bilingual group were ordinarily resident
in the UK, both at the time of testing and before their strokes
occurred. They had a large variety of first languages, including:
Dutch, Farsi, Finnish, French (four patients), German (two pa-
tients), Gujerati (three patients), Hakka (two patients), Ibo,
Italian (three patients), Jamaican Patois, Lithuanian, Lunda,
Mauritian, Polish, Portugese, Punjabi (two patients), Russian,
Serbian, Spanish, Swahili, Tamil (two patients), and Yoruba.
We collected several other types of language history data
(Table 1), though every patient left at least some of our questions
here unanswered. Most of the bilingual patients spoke more than
two languages fluently, and although 11 reported that they were
bilingual from birth, none reported learning English before they
were 2 years old. Twenty per cent of the patients who gave us the
information reported using English less than half the time pre-
stroke, rising to 30% post-stroke. Exactly half of those who
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answered gave themselves the highest rating (9/9) for pre-stroke
proficiency in English, and three (11%) gave themselves a rating
below 7/9.

Behavioural data

Each patient was assigned a behaviour score based on the
tasks tested in the Comprehensive Aphasia Test. For ease of
comparison across tasks, these raw scores are then converted
to T-scores, representing each patient’s assessed skill on each
task (e.g. describing a picture; reading non-words) relative to a
reference population of 60 aphasic patients. The threshold for
impairment is defined relative to a second population of 27
neurologically normal controls such that performance below
threshold would place the patient in the bottom 5% of the
normal population. Lower scores indicate poorer performance.
We excluded six scores relating to certain non-linguistic
cognitive skills (line bisection, semantic memory, recognition
memory, gesturing object use, arithmetic and memory).
The groups did not differ in any of these scores (all t51.0
or P40.10). We also excluded six additional scores that
merely summarize other scores. Our analyses therefore concern
the remaining 22 language scores from the Comprehensive
Aphasia Test (see Table 2 for the task scores).

Taken in aggregate, the scores provide a reasonably detailed
and complete characterization of each patient’s language skills.
Some of our patients had missing scores in some of those 22
dimensions, either because they could not complete those tasks
at all, or because of other practical constraints. Here, we make
no assumptions about the reasons why those data are missing,
and each task analysis includes only that subset of the patient
population who did complete the relevant language task
assessment (see Table 2 for the sample sizes in each case).
This approach allows us to maximize the sample size in
every task analysis.

MRI data acquisition

Imaging data were collected using either a Siemens 1.5 T
Sonata scanner, or a Siemens 3 T Trio scanner. In each case
a T1-weighted 3D modified driven equilibrium Fourier trans-
form sequence (Deichmann et al., 2004) was used to acquire
176 contiguous sagittal slices with an image matrix of
256 � 224 yielding a final resolution of 1 mm3: repetition
time/echo time/inversion time = 12.24/3.56/530 ms and 7.92/
2.48/910 ms at 1.5 T and 3 T, respectively.

Data preprocessing

Preprocessed with Statistical Parametric Mapping software
(SPM, 2005), these images were spatially normalized into
Montreal Neurological Institute (MNI) space using a unified
segmentation algorithm (Ashburner and Friston, 2005) opti-
mized for use in patients with focal brain lesions (Seghier
et al., 2008), resulting in a binary lesion image for each
patient, in standard space. The processing pipeline is described
in detail by Seghier et al. (2008).

We encoded these lesion images by lesion load (percentage of
damage) in a series of anatomically defined regions of the brain:
0% if the region is completely preserved by a patient’s lesion(s),
rising to 100% when the region is completely destroyed. We ex-
tracted 199 regions for this process, from the Anatomy Toolbox
(Eickhoff et al., 2005), the Automatic Anatomical Labelling tool-
box (Tzourio-Mazoyer et al., 2002), the ICBM-DTI-81 white-
matter labels atlas (Oishi et al., 2011) and the JHU white-
matter tractography atlas (Hua et al., 2008). The aim here was
simply to cover the whole brain (i.e. grey and white matter in the
left hemisphere) in as flexible as possible a manner, so that pa-
tients’ lesions could be encoded with minimal a priori assump-
tions concerning what parts of their lesions drive deficits in
particular language skills. This conversion also helps to reduce
the dimensionality of the lesion data from tens of thousands of
voxels to5200 regions. Added to these, were four predictors for:
(i) total lesion volume in the left hemisphere; (ii) time post-stroke;
(iii) sex; and (iv) age—a total of 203 predictors per patient.

Model selection

Our goal in this work was to identify and explore any char-
acteristic differences between the monolingual and bilingual
groups at the level of brain-behaviour associations. To do
this, we first needed to find models that could relate the pa-
tients’ demographic and lesion data to their language skills.
We restricted our search to linear models, which reduced the
model selection process to a feature selection process—finding
the right subset of the (203) available predictors to predict
each of our 22 language scores. Good models here are
models that generate accurate predictions, or in other words,
which minimize prediction error. Predictions were made by
first training a model with some patient data, using multivari-
ate linear regression to assign coefficients to the model’s pre-
dictors, before inverting the model to predict language scores
for new patients. We generated predictions for the

Table 1 Language history and immersion data

Language use data n Mean Maximum Minimum

Number of languages spoken 30 3.3 8 2

Age of bilingualism (years) 26 5.5 21 0

Age learned English (years) 24 10.7 24 2

Years English used 24 39.8 57 9

Self-rated premorbid proficiency (1 = lowest; 9 = highest) 26 8.1 9 5.8

Self-rated % time spent using English pre-stroke 15 73.6 100 33.3

Self-rated % time spent using English post-stroke 27 64.9 100 15

n = number of patients who responded to each question; Maximum = the maximum value reported by any patient; Minimum = the minimum value reported

by any patient.
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monolingual patients using leave-one-out cross-validation, or
holding one patient’s data out of the data set, training with the
rest, then predicting the language score for the held-out pa-
tient, and repeating that process once for every single mono-
lingual patient. We generated predictions for the bilingual
patients by training with all of the monolingual patient data,
and predicting language scores for all the bilingual patients in
a single pass.

We selected the best models (or best feature sets) using
monolingual data only, with an iterated combination of for-
ward selection and backwards elimination. Starting with a
single feature or predictor —time post-stroke—the forward se-
lection phase proceeded by adding, in sequence, the new pre-
dictor whose addition most reduced prediction error across the
monolingual patient group as a whole. We continued adding
predictors until no further improvement was observed. During
the backwards elimination phase, we removed the predictor
whose removal most reduced model prediction error in mono-
lingual patients, again until no further improvement was
observed. We repeated the entire two-phase process until
there was convergence on a single feature set, where neither
the addition of any new predictor, nor the removal of any
current predictor, could reduce prediction error any further.
And we repeated the whole process once for every one of
the 22 target variables, to find the best predictive models for
every language score in monolingual patients. Implemented in
Matlab script (2012a), this process took �48 h on a desktop
PC, running Windows 7.

Finally, to ensure that our results were not artefacts of the
particular subsets of the 203 available features that we chose
when trying to find the best models, we repeated the same
analysis with 10 000 models composed of randomly selected
features. Specifically, we (i) chose a random group of features
(lesion load in some specified set of brain regions, and/or other
demographic data); (ii) derived predictions for the monolingual
patients from these features using cross-validation; and (iii)
derived predictions for the bilingual patients after training
with monolingual data only. We repeated the whole process
once for each of the 22 language scores, with each of 10 000
random models, for a total of 220 000 tests. This allowed us to
check whether any distinctions made between the groups by
our best models were also typical of the behaviour of the
model-space more generally.

Characterizing group differences

In Analyses 1 and 2, we characterize group differences by com-
paring errors on the predictions made for patients in both groups
for each of the 22 language scores. The aim here is to establish
how predictive lesion-deficit trends learned from the monolin-
gual group might be when predicting prognoses for the bilingual
group. In the monolingual patients, predictions are generated by
leave-one-out cross-validation, while the bilingual patients’ pre-
dictions are made after training with monolingual data only. A
focus on prediction errors rather than scores per se is appropriate
because we expect the scores to depend on the type and severity

Table 2 Behaviour scores for the two patient groups

Task Monolingual patients Bilingual patients

Sample Scores Sample Scores

n Impaired Min Max Mean SD n Impaired Min Max Mean SD

Fluency 174 58 37 75 61.4 9.9 32 18 37 70 56.3 8.3

Comprehension (spoken words) 174 85 28 72 59.0 8.5 31 23 37 72 54.5 8.4

Comprehension (spoken sentences) 171 27 34 60 54.3 7.7 30 12 34 60 49.4 9.2

Comprehension (spoken para.) 174 49 32 65 57.7 7.0 32 18 41 65 53.5 7.7

Comprehension (written words) 172 56 28 72 60.5 8.4 31 21 43 67 54.0 6.8

Comprehension (written sentences) 172 69 36 73 60.4 8.2 31 25 41 68 53.9 6.9

Repeating words 173 73 35 65 57.2 8.5 31 17 35 65 53.8 9.2

Repeating complex words 173 61 38 62 56.1 8.9 31 15 38 62 52.5 10.8

Repeating non-words 173 49 38 67 56.5 9.1 32 14 38 67 53.1 9.2

Repeating digits 173 60 35 66 55.2 8.9 33 14 35 66 52.8 9.2

Repeating sentences 173 74 39 63 56.4 8.7 32 21 39 63 52.3 9.5

Object naming 174 86 37 74 61.6 10.2 32 24 37 74 55.1 9.3

Action naming 174 97 39 69 58.8 9.2 32 26 39 69 51.5 10.2

Spoken picture description 171 93 39 75 58.9 8.8 33 28 39 67 53.7 6.5

Reading words 172 94 38 69 58.9 9.3 32 23 38 69 54.5 8.8

Reading complex words 171 77 40 67 57.7 10.7 32 20 40 67 55.2 10.7

Reading function words 171 24 35 62 57.6 8.6 32 5 35 62 56.6 8.3

Reading non-words 171 77 40 68 57.3 10.8 32 19 40 68 54.3 10.9

Writing (copying) 170 14 40 61 59.3 4.6 28 7 40 61 56.4 6.6

Writing (picture naming) 173 33 38 67 60.5 8.0 31 15 38 67 55.4 8.3

Writing (dictation) 173 66 38 68 59.2 8.6 30 21 38 68 53.9 6.7

Written picture description 167 78 42 75 64.1 8.5 31 24 42 71 56.9 9.3

Including the minimum (Min), maximum (Max), mean and standard deviations for each language score by group, together with the number of patients in each group who might be

considered ‘impaired’, in the sense that their performance on that task fell within the lower 5% of scores relative to a reference population of neurologically normal controls. For ease

of comparison, all scores are converted into T-scores, using the procedure described in Swinburn et al. (2004).

n = number of patients who completed the assessment.
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of the lesions patients have suffered, and also on non-lesion fac-
tors such as time post-stroke. Our predictive models naturally
take these factors into account. We control for multiple compari-
sons here using permutation thresholding: repeating the key tests
n times (n = 1000) after shuffling the key variable of interest (the
membership of the monolingual or bilingual groups). The effect is
to simulate what might be the null distribution of the test statistic.
Credible effects should be ‘extreme’ relative to that null
distribution.

In Analysis 3, we compare the lesion-deficit associations
embodied by the two patient groups. The aim here is to ex-
plain the group differences observed in Analyses 1 and 2,
either as a result of (i) a simple main effect of group, which
does not relate to differences in lesion-deficit associations in
the brain; or (ii) enhanced loading in the bilingual group in
regions that are also relevant to the monolingual group; or (iii)
some sensitivity to damage in the bilingual group in regions
that have no prognostic relevance for the monolingual group.

We make most group comparisons with t-tests—for inde-
pendent samples when comparing (i) demographic variables;
and (ii) prediction errors across the monolingual and bilingual
groups; and for paired samples when comparing native to non-
native language scores (within subject) in the bilinguals, and
the lesion-deficit correlations (within region) across patient
groups. The exception is the comparison of levels of education
(years of education beyond the age of 16), where we used the
Wilcoxon rank sum test instead. In the other between group
comparisons, we assumed equal variances after first confirming
that there were no significant differences between the distribu-
tions being compared (with Levene’s F-test).

Results

Lesion and language data

Figure 1A displays the distributions of the lesions suffered

by the patients in these two groups; collectively, they

cover much of the left hemisphere of the brain, though

both groups’ lesions tend to spare most frontal regions.

Table 2 reports the scores in each group for all 22 language

tasks. Language scores are generally lower in the bilingual

group compared to the monolingual group. In addition, for

some patients in the bilingual group (Table 3), we collected

native language scores for 7 of the 22 language tasks (flu-

ency, spoken and written picture description, repeating

digits, naming objects, naming actions and written picture

naming, by adapting the relevant parts of Comprehensive

Aphasia Test to those non-English languages. In every task

but one (written picture naming), the bilingual group ap-

peared to achieve better scores in English than in their

native language (Fig. 1B and Table 3).

Analysis 1: Predicting non-native
English language scores from native
English data

Best models

For every dimension of language that we considered, our

best predictive models included (i) time post-stroke; and (ii)

lesion load in some combination of brain regions. Age at

stroke was also included in 5/22 tasks. Figure 2 presents a

frequency image of the regions implicated in these (22) pre-

dictive models; the smallest model contained 18 predictors,

and the largest contained 36. These models can all predict

their particular language score with reasonable accuracy in

the monolingual group (Table 3), though their performance

naturally varies from task to task. And the models also

perform well when predicting the scores in the bilingual

group, with a higher correlation, albeit often only slightly,

between predicted and actual scores in the bilingual group

than the monolingual group in 18/22 tasks. The models

distinguish ‘better’ from ‘worse’ language outcomes equally

well within both patient groups.

Figure 1 Patient data. (A) Frequency maps of the two patient groups’ lesions. Two lesion frequency maps in standard (MNI) space, with

sagittal and coronal slices centred at x = �21 mm, y = �2 mm, z = 21 mm: the map for the monolingual group is on the top and the map for the

bilingual group is at the bottom. (B) Histogram of the differences between the bilingual patients’ language scores in their (non-English) native

language and in English. L1 scores were available in 7 of the 22 language assessments considered in the original analyses. The legend indicates both

the names of the tasks and the numbers of scores available for comparison in each task. To support comparison across the language tasks, all

differences (native language score minus English language score) were standardized to the same range: negative differences indicate that the

patient’s language score was better when tested in English than when tested in their own (non-English) native language.
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However, the models trained on L1 data often fail in one

critical respect: in every task, these models tend to predict

higher scores than they should for bilingual patients on

average, and this is significant at the 5% level (corrected

for multiple comparisons) in 13/22 tasks (Table 4).

Focusing solely on those 13 tasks, Fig. 3 illustrates the

difference with scatter plots of predicted versus actual

scores in each task, and histograms of prediction errors

made for all these tasks.

Analysis 2: Predicting non-native
English language scores from native
English data

10 000 Random models

The differences found so far are observed in 13/22 language

tasks, when we use our best models to predict those language

scores. But are the differences reported in Analysis 1 specific

to the particular models, and the particular feature sets, that

we used? To check this, we repeated the previous analysis on a

further 10 000 models, generated by selecting predictors at

random. After conducting the same training and testing pro-

cedures as used in Analysis 1, we then observed what distinc-

tions, if any, these random models made between the two

patient groups.

Our random models naturally have very variable quality

because no effort was made to ensure that the features they

used were really predictive of the language scores, but the

model space is also consistent with the behaviour we

observed in Analysis 1. Specifically, for the 13/22 language

tasks where our best models made predictions, which were

significantly shifted at the 5% level for the bilingual group

(Table 4), we see the same shifts, at the same significance

level, in 80.2% of the random models (104 300/130 000).

There were no tests at all where we observed a significant

group difference in the other direction—i.e. where

prediction errors for the bilinguals were negatively shifted

relative to those for monolinguals. In other words, most

randomly selected models make the same distinction be-

tween the patient groups as our best models: those group

differences are therefore very unlikely to be an artefact of

model selection.

Analysis 3: Searching for differences
at the level of lesion-deficit
associations

Here, we searched for group differences at the level of

lesion-deficit associations in the brain, which might help

to explain the behavioural differences observed so far.

Specifically, we searched for differences in the associations

between language scores and lesion load in single anatom-

ically defined regions of the brain, and classified those dif-

ferences according to whether they support either the

neural convergence account or an alternative neural diver-

gence account.

The neural convergence account proposes that patients in

our L1 and bilingual group share essentially the same lan-

guage networks but allows a differential loading on differ-

ent parts of that network. Under this account, the scores of

bilingual patients might be worse than expected because of

premorbid differences in language proficiency or because

their performance is more sensitive to lesion damage in

regions which play a similar role for both groups (i.e.

where damage causes the same types of language impair-

ment). Neural divergence accounts predict that bilingual

language may recruit distinct regions that are not typically

implicated in monolinguals’ language networks; on this

view, the bilingual group could be worse than expected

because they have damage in regions that do not affect

language scores in the monolingual group.

To distinguish these two accounts, we used the test pro-

posed by Wetzels and Wagenmakers (2012). In contrast to

frequentist tests that only measure evidence for the presence

of a correlation, this default Bayesian null hypothesis test

quantifies the evidence both in favour of and against the

presence of a correlation between two variables. Given only

the correlation coefficient and the number of observations

made, the test calculates a Bayes Factor, which compares

two regression models: the ‘alternative model’, which in-

cludes our predictor of interest (i.e. lesion load), and a

‘null’ model which includes only a constant term and a

Gaussian noise term. Using the convention proposed by

Jeffreys (1961), we interpret Bayes Factors 43 and 410

as indicating ‘substantial’ and ‘strong’ support, respectively

for the alternative model (i.e. indicating that the data make

the presence of a correlation either 3 or 10 times more

likely than its absence). By contrast, Bayes Factors less

than one-third or less than one-tenth indicate ‘substantial’

and ‘strong’ support, respectively for the null hypothesis

(i.e. that the null hypothesis is 3 and 10 times more

likely than the alternative, given the data).

Table 3 Comparing the bilingual patients’ language

scores with their non-English native language scores in

selected tasks

TASK P T Mean L1–L2 n

Fluency 50.001 �4.4 �1.3 22

Repeating digits 0.011 �2.6 �0.7 10

Naming objects 0.018 �2.3 �0.7 12

Naming actions 0.038 �2.1 �0.6 11

Spoken picture description 0.004 �2.9 �0.8 17

Written picture naming 0.907 �0.1 0.01 10

Written picture description 50.001 �3.5 �1.0 18

Taking just those subsets of patients where native language assessment data were

available (with sample sizes reported in the final column), this table compares the

native language scores to the English language scores using t-tests for paired samples.

Histograms for the differences between these scores are depicted in Fig. 3. Negative

differences indicate where the patients’ English language scores were better than their

(non-English) native language scores on the same task.

L1 = non-English native language score; L2 = non-native English language score;

n = number of patients for whom both scores were available.
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Across all of the 13 language tasks considered here (those

where significant group differences were observed in

Analysis 1), there are 129 cases where there is ‘strong’ evi-

dence for a correlation (Bayes Factor 410), in the bilingual

group, between some language score and lesion load in

some specific region of the brain. In 127/129 cases, we

find the same association (Bayes Factor 410) in the mono-

lingual group. In these regions, increasing damage is asso-

ciated with increasingly severe deficits in the same language

skills in both patient groups (Fig. 4). Critically, the

coefficients of the associations in these regions are signifi-

cantly more negative for the bilingual group than they are

for the monolingual group (df = 128, t = 16.24, P5 0.001).

In other words, the differences observed in Analysis 1

plausibly reflect enhanced sensitivity to lesion damage in

the bilingual group in regions that play a similar role in

the monolingual group.

In the two cases where the correlation for the bilingual

group was strongly supported, but the correlation for the

monolingual group was not strongly supported, the Bayes

Figure 2 Frequency of the regions implicated by our best prognostic models for all (22) language tasks. Because our patient

population was restricted to those with left hemisphere stroke only, we only considered regions in the left hemisphere of the brain.

Post-stroke language outcomes in bilinguals BRAIN 2015: 138; 1070–1083 | 1077



Factors for the monolingual group were 8.55 and 0.96,

respectively. In the first case, there is still ‘substantial’

(Jeffreys, 1961) evidence in favour of a correlation, and

in the second, there is no solid evidence either way. In

sum, across all of the 13 language tasks that we identified

in Analysis 1, we found no single region where scores for

the bilingual group are sensitive to damage and scores for

the monolingual group are not. This finding is not pre-

dicted by neural divergence accounts but is consistent

with the neural convergence account of bilingual language

in the brain.

Discussion
Across a large range of language tasks, from reading single

words to repeating full sentences, our bilingual patients

appear to have lower English language scores than pre-

dicted from lesion-behaviour data in the monolingual

group. These differences might be explained in at least

three ways.

The first explanation is that the bilingual patients appear

worse than expected because they are assessed in their non-

native language, whereas the monolingual patients are as-

sessed in their native language. If this is true, we would

expect the bilingual patients to get better scores when

tested in their non-English native languages. What data

we have here suggests the reverse: that the bilinguals may

actually have been better at English than in their native

languages (Table 3). There may be testing confounds at

play here: though our tests were a subset of the

Comprehensive Aphasia Test, the actual exemplars used

for naming may not have been typical of the referents of

target nouns in the patients’ native languages. Even if they

were typical, those referents may have been less common in

the patients’ native languages than in English (e.g. a

Spanish patient might find it harder to name a ‘hedge’ in

Spanish than in English, because hedges are a more

common feature of Britain than of Spain). On the other

hand, our bilingual patients were immersed in an English-

speaking environment and typically used English most of

the time premorbidly (Table 1), so the results in Table 3

may reflect poorer native language function premorbidly

rather than greater post-morbid impairment for that lan-

guage. If so our data are in line with the typical, parallel

pattern of language recovery post-stroke (Paradis, 2004).

Post-stroke differences in language use may also contribute

to the observed data (Table 1), and as residents of the UK,

what speech and language therapy they had would likely

have emphasized English. In other words, though our data

Table 4 Best model predictive performance in the monolingual and bilingual patient groups

TASK Monolingual patients Bilingual patients Difference

r P Error r P Error P T

Fluency 0.68 50.001 0.59 0.61 50.001 0.61 0.020 2.35

Comprehension (spoken words) 0.63 50.001 0.62 0.69 50.001 0.63 0.017 2.41

Comprehension (spoken sentences) 0.16 0.033 0.88 0.59 0.001 0.90 0.064 1.86

Comprehension (spoken para.) 0.60 50.001 0.64 0.71 50.001 0.62 0.079 1.77

Comprehension (written words) 0.52 50.001 0.66 0.62 50.001 0.72 0.003 3.03

Comprehension (written sentences) 0.59 50.001 0.62 0.70 50.001 0.59 0.002 3.08

Repeating words 0.54 50.001 0.66 0.64 50.001 0.65 0.178 1.35

Repeating complex words 0.70 50.001 0.54 0.75 50.001 0.62 0.043 2.03

Repeating non-words 0.63 50.001 0.66 0.64 50.001 0.70 0.005 2.87

Repeating digits 0.59 50.001 0.62 0.69 50.001 0.61 0.574 0.56

Repeating sentences 0.74 50.001 0.49 0.81 50.001 0.48 0.041 2.06

Object naming 0.59 50.001 0.62 0.72 50.001 0.61 0.005 2.87

Action naming 0.68 50.001 0.59 0.64 50.001 0.75 0.003 3.04

Spoken picture description 0.69 50.001 0.57 0.66 50.001 0.57 0.002 3.20

Reading words 0.61 50.001 0.61 0.75 50.001 0.53 0.034 2.14

Reading complex words 0.65 50.001 0.59 0.81 50.001 0.47 0.817 0.23

Reading function words 0.52 50.001 0.66 0.72 50.001 0.47 0.886 0.14

Reading non-words 0.60 50.001 0.59 0.72 50.001 0.59 0.468 0.73

Writing (copying) 0.23 0.003 0.77 0.42 0.026 1.32 0.568 0.57

Writing (picture naming) 0.61 50.001 0.66 0.66 50.001 0.72 0.001 3.46

Writing (dictation) 0.58 50.001 0.60 0.52 0.003 0.62 0.012 2.54

Written picture description 0.67 50.001 0.60 0.70 50.001 0.74 50.001 4.65

Monolingual performance data are calculated via leave-one-out cross-validation. Bilingual performance data are calculated by predicting bilingual data after training with monolingual

data only. Both types of prediction are characterized by (i) correlating predicted scores versus actual scores; and (ii) calculating the mean absolute prediction error for each group.

Differences between the prediction error distributions for the monolingual and bilingual groups are characterized by t-tests (for independent samples): positive t-values here indicate

that the bilingual patients’ prediction error distribution is positively shifted relative to the monolingual patients’ prediction error distribution. Highlighted rows indicate where the

shift is significant, after correction for multiple comparisons (5% significance level after permutation thresholding: P = 0.042).
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could be confounded, they are also potentially plausible,

and they discourage the interpretation of the group differ-

ences we see here as an artefact of testing in the non-native

language.

One alternative explanation for those differences is that

they occur because the bilingual patients had lower levels of

premorbid language proficiency (in any language) than the

monolingual patients. In the neurologically normal popula-

tion, bilingual speakers typically recall verbal materials

more poorly (Fernandes et al., 2007; Bialystok et al.,

2009) and recognize and produce words more slowly

(Portocarrero et al., 2007; Bialystok et al., 2008), than

monolingual speakers, even when they use their native lan-

guage (Ivanova and Costa, 2008). As mentioned previ-

ously, differential practice and experience may be one

source of such differences, as bilingual speakers use each

of their languages proportionately less of the time than

monolingual speakers of those languages. We had no ob-

jective measures of premorbid proficiency for any of the

patients, but premorbid proficiency differences could plaus-

ibly account for the post-stroke differences we observed in

Analysis 1.

However, this explanation does not predict the differ-

ences we observed at the level of lesion-symptom associ-

ations in Analysis 3. A main effect of group membership

(bilingual versus monolingual) need not imply any differ-

ences at all in terms of the association between increasing

damage in key brain regions, and increasing symptom se-

verity. This result is consistent with the claim that mono-

lingual and bilingual brains share essentially the same

language networks, though bilingual brains may exhibit

enhanced loading and so increased sensitivity to damage

in some parts of that network—as proposed in the neural

convergence account of the bilingual brain (Green, 2003;

Consonni et al., 2013). By contrast, we could find no in-

stances where there was ‘strong or better’ support (Jeffreys,

1961) for neural divergence accounts, which predict that

the bilingual brain should recruit different regions for pro-

cessing a non-native, second language (including the pro-

cedural/declarative model, which predicts that such

differences will emerge principally in sentence processing

tasks). We suggest that the most plausible account of the

group differences we see here is that they flow from some

combination of (i) premorbid proficiency differences; and

Figure 3 Predictions and prediction errors, by patient group, in tasks where significant group differences were observed. Top:

Scatter plots of the predicted versus actual scores in each of the 13(/22) tasks where significant differences were observed in Table 3; predicted

and actual scores are equal along the red line in each case (i.e. perfect predictions would fall along this line). Note that the predictions for the

bilingual group (top right) tend to fall above the red line, which means that predicted scores tend to be higher than actual scores in these tasks.

Bottom: Histograms of the prediction errors for predictions made in each of the same 13 tasks; the distribution for the monolingual group is

centred close to zero (mean = �0.018), whereas the distribution for the bilingual group is positive (mean = 4.07).
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(ii) enhanced loading (and thus enhanced sensitivity to

damage) in a common network of regions recruited to im-

plement language in both patient groups.

We note several potential limitations of our results, some

relating to our sample, and others concerning out analytic

method. First, although we sought to control these analyses

as carefully as possible, there remain potential confounds

that we cannot address with the current patient population

and that could be usefully explored in future work. As a

general point, our sample provides very little data on the

patients’ experience of speech and language therapy. We

note, however, that in future work, when the patient

sample is partitioned into those that have experienced a

given therapy and those that have not, prognostic models

based on the latter provide a way to assess the effectiveness

of the therapeutic intervention. Our current bilingual group

also mixes bilinguals of different language histories, with a

mixture of simultaneous and sequential bilinguals (a dis-

tinction that could be pertinent to language recovery)

(Hull and Vaid, 2007), although none of the bilingual pa-

tients learned English from birth. In fact, we found no evi-

dence that language history mediates the group differences

observed here: there were no significant associations be-

tween any of the language history variables we collected

(as listed in Table 1), and prediction errors in any of the

13 tasks where we saw significant group differences. But

our language history data were incomplete for many of the

bilingual patients, and the sample itself is neither particu-

larly large, nor selected to drive a balanced, within-group

comparison at this level. Therefore we cannot dismiss the

relevance of language history here with any real confidence.

One more methodological limitation stems from the im-

balance in the sizes of the two patient groups (174 mono-

linguals versus 33 bilinguals). We had little control over

Figure 4 Frequency map of regions where both patient groups have strong associations between lesion load and one of the 13

critical language tasks. The frequency of each region (max = 11) refers to the number of tasks (/13) where both patient groups displayed

strong evidence of a correlation between task score and lesion load in that region.
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this demographic distribution and used what data we had.

But the split is certainly inefficient, because the power of

between-groups comparisons is maximized when both

groups are the same size, though the current design is

still more powerful than a balanced comparison between

two groups of size 33. Nevertheless, the comparatively

small size of our bilingual sample encourages caution

when interpreting these results, unless and until they can

be replicated in larger patient populations.

Another potential limitation stems from the model-de-

pendent nature of Analyses 1 and 2, where we use model

prediction errors to characterize group differences. This ap-

proach is useful because our models naturally take many of

the relevant differences between these patients into account,

and the results of Analysis 2, where we measured the be-

haviour of many random models, suggest that our best

models’ behaviour is typical of most alternative models

we might have chosen. But whenever we use this approach,

there is the risk that newer, better models will be found

that change our substantive conclusions. This risk is ever-

present in cross-sectional group studies with stroke pa-

tients, because no two patients are the same and no two

patients ever suffer identical stroke damage, but its likely

significance should diminish as our sample grows larger.

Normal bilingual speakers tend to show a lower level of

language proficiency compared to monolingual speakers

and our data on bilingual stroke patients conform to this

pattern. But weaker language skills in the normal brain

may nonetheless be associated with enhanced cognitive

control skills. Normal bilingual speakers, for example, are

poorer at processing sentences in noise relative to monolin-

gual speakers (Shi, 2010) but are better able to resist the

effects of a concurrent distracting and irrelevant auditory

sentence when there is a reliable cue to selection of the

correct target (Filippi et al., 2012). The life-long exercise

of controlling weaker linguistic representations and avoid-

ing interference between two languages may underlie ad-

vantages reported for older bilingual speakers in tasks

involving cognitive control (Bialystok et al., 2009). Such

advantages may be an important mediator of the neuropro-

tective effects of bilingualism in the ageing brain and en-

hance cognitive reserve (Stern, 2009) as intimated by

studies reporting a delay in the onset of symptoms of

Alzheimer’s disease (Bialystok et al., 2007; Chertkow

et al., 2010; Craik et al., 2010; Alladi et al., 2013) and

mild cognitive impairment (Bialystok et al., 2014). Whether

a similar advantage obtains following stroke is an open and

interesting empirical question. Our data suggest that if

there is any such advantage it seems not to reduce the

impact of lesion load in bilingual stroke patients.

However, given the need to control interference between

two languages, damage to the networks involved in the

cognitive control of language may limit the extent of bilin-

gual language recovery. In a single case study using dy-

namic causal modelling of neuroimaging data (Abutalebi

et al., 2009), improvements in picture naming in the non-

native language following treatment in that language were

shown to be mediated by increased connectivity of regions

involved in language control (e.g. left inferior frontal re-

gions, anterior cingulate cortex and left head of caudate)

(Abutalebi and Green, 2007), and those involved in picture

naming (inferior frontal gyrus and fusiform gyrus)

(Demonet et al., 2005). By contrast, no increase in such

connectivity was observed for the untreated native language

that did not improve. If substantiated by further research,

this result suggests that indices of the integrity of white

matter tracts subserving language control may contribute

to improved predictions of language recovery in bilingual

stroke patients more generally.

In conclusion, the current results, both the differences

that we see in the groups’ language scores and the asso-

ciated differences at the level of lesion-deficit associations in

the brain, appear robust in our data. Our models tend to

be over-optimistic about the bilingual group as a whole,

but they distinguish ‘better outcomes’ from ‘worse out-

comes’ equally well within both patient groups. If these

results are robust to validation in larger samples of pa-

tients, the implication is very encouraging clinically: given

a potentially simple correction, prognostic models built for

monolingual stroke patients can be generalized to bilingual

stroke patients.
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