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Abstract: The rational design of carbon nanomaterials-reinforced polymer matrix composites based
on the excellent properties of three-dimensional porous materials still remains a significant challenge.
Herein, a novel approach is developed for preparing large-scale 3D carbon nanotubes (CNTs) and
graphene oxide (GO) aerogel (GO-CNTA) by direct grafting of CNTs onto GO. Following this, styrene
was backfilled into the prepared aerogel and polymerized in situ to form GO–CNTA/polystyrene
(PS) nanocomposites. The results of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy
indicate the successful establishment of CNTs and GO-CNT and the excellent mechanical properties of
the 3D frameworks using GO-CNT aerogel. The nanocomposite fabricated with around 1.0 wt% GO-
CNT aerogel displayed excellent thermal conductivity of 0.127 W/m·K and its mechanical properties
were significantly enhanced compared with pristine PS, with its tensile, flexural, and compressive
strengths increased by 9.01%, 46.8%, and 59.8%, respectively. This facile preparation method provides
a new route for facilitating their large-scale production.

Keywords: CNT-GO aerogel; in-situ polymerization; grafting reaction; mechanical properties; ther-
mal conductivity

1. Introduction

Due to their light weight and high performance, graphene oxide (GO)–carbon nan-
otube (CNT)-polymer nanocomposites have been widely studied and applied in various
industries, including aerospace [1], military, and national defense, and some engineering
materials [2–4]. Three-dimensional (3D) GO aerogels can act as carriers for CNTs by en-
abling them to disperse evenly in the wall of GO aerogel, followed by filling the matrix
with a suitable polymer material, thereby overcoming poor dispersion of the nanomaterials
within the polymer [5–8]. In previous studies, CNTs were dispersed in GO through physi-
cal mixing to form GO-CNT aerogels [9,10]. However, there have been a few systematic
studies on the grafting of CNTs onto the surface of GO. Therefore, it is important to explore
how the structure and state of the CNTs in the GO aerogel affect the properties of the
nanocomposite [11].

In recent years, the use of 3D aerogel-reinforced filler has greatly improved the uneven
dispersion of fillers and effectively enhanced the performance of the nanocomposites [12–14].
For instance, Fan et al. prepared graphene aerogels and filled them with poly(methyl
methacrylate) (PMMA) to form nanocomposites; the mechanical properties of the nanocom-
posites were significantly enhanced compared to those prepared using the traditional
blending and dispersion method. When the content of the graphene aerogels was increased
from 0.67 to 2.50 vol.%, the microhardness of the nanocomposites increased from 303.6 to
462.5 MPa [15]. When the content of GO was 2 wt.%, the mechanical strength and elastic
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modulus of the GO/epoxy resin nanocomposites were increased by 50% and 19.6%, respec-
tively, the glass transition temperature increased by 15.59 ◦C, and the thermal conductivity
was 1.4 times higher than that of the neat epoxy resin [6]. In addition, the compressive
strength and elastic modulus of 3D graphene aerogel-reinforced silicone rubber was higher
than that of silicone rubber, with the hardness increasing from 9.2 HA for pure GO to
20.5 HA for the nanocomposite [7]. Li et al. grafted CNTs on GO to form a hybrid filler to
be dispersed into an epoxy matrix. The results showed that the tensile modulus and the
tensile strength were enhanced by ~36% and ~40%, respectively [16]. However, systematic
studies on the influence of the GO and CNT morphologies and structures on the properties
of nanocomposites produced by physical mixing and chemical grafting have not yet been
conducted [17–19].

In this study, CNTs were grafted onto the surface of GO with a silane coupling agent
KH550 (3-Aminopropyltriethoxysilane), and 3D large-scale aerogels were prepared by
freeze-drying. A mixture of styrene and an initiator were backfilled into the prepared 3D
aerogel and polymerized in situ to form GO-CNT aerogel polystyrene (GO-CNTA/PS)
nanocomposites. Subsequently, the mechanical properties of GO-CNT aerogels and GO-
CNTA/PS nanocomposites were investigated.

2. Experimental
2.1. Materials

Graphite powder (about 20 µm) was purchased from the Huayuan Chemical Co., Ltd.
(Shanghai, China), plain CNTs (length: 5~15 µm, diameter: ~20 nm, purity: ~97%) were
purchased from Shenzhen Nano Company (Shenzen, China), styrene was purchased
from Chemical Reagent Co, Ltd. (Tianjin, China), and azobisisobutyronitrile (AIBN)
was purchased from the Tianjin Damao Chemical Reagent Factory (Tianjin, China). γ-
Aminopropyl triethoxysilane (KH-550), N-hydroxysuccinimide (NHS), and 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) were purchased from the Shanghai Machlin
Biochemical Co, Ltd. (Shanghai, China). Carboxylated CNTs (oxygen content: ~6.4%) were
fabricated by the Institute of Polymer Materials, Qingdao University, China.

2.2. Preparation of the GO-CNT Aerogel

GO was prepared via an improved Hummers’ method from graphite flakes. CNTs
were oxidized with a mixture of sulfuric acid and nitric acid at 100 ◦C for 8 h, and then
the oxidized CNTs were obtained by centrifuging, filtering, and freeze-drying [20]. Next,
the obtained CNTs (0.059 g) were mixed with ethanol (2 ml) in deionized (DI) water (21 mL)
by sonication for 1 h. The mixture was then transferred to the GO suspension liquid (8.7 mL)
and dispersed by sonication for 3 h (the mass ratio of CNTs to GO was 3:7). Following
this, the suspension was transferred into a mold and held at −25◦C for 12 h and then
freeze-dried for 48 h.

The preparation process of GO-CNT aerogel was divided into two steps. First, to pre-
pare the modified CNT-KH550, a mixture of 90 mL ethanol, 10 mL DI water, and 2 mL
KH550 in a three-necked flask was ultrasonically dispersed for 1 h. Following this, CNTs
were added and the mixture was ultrasonically dispersed for 2 h, followed by stirring at
78 ◦C for 6 h [21,22]. Finally, the prepared mixture was washed with acetone and ethanol,
and then freeze-dried.

Second, for the preparation of GO-CNT, GO, DI water, and ethanol were combined
in a three-necked flask, after which ultrasonic dispersion was conducted for 3 h. Next,
EDC/NHS (1:3) was added and the mixture stirred for 2 h at room temperature. Following
this, the dispersed CNT-KH550 solution was added dropwise at 35 ◦C for 24 h. A schematic
of the reaction mechanism is shown in Figure 1 [23–25].
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2.3. Preparation of GO-CNTA/PS Nanocomposites

The prepared GO-CNT aerogel was immersed in a mixture of styrene and AIBN via
vacuum-assisted impregnation to ensure that the mixture replaced the air in the aerogel.
The complexes were then maintained at 70 ◦C for 12 h, 80 ◦C for an additional 12 h,
and 90 ◦C for another 12 h. The final GO-CNTA/PS nanocomposites were obtained after
cooling and were molded by hot-pressing at 5 MPa and 170 ◦C for 5 min to discharge any
tiny pores; the nanocomposites were only compressed by approximately 5% during the
hot-pressing process. For comparison, a mixture of GO and CNTs (a total mass content of
1.0 wt.%, and a mass ratio of 7:3) was added to a pristine PS matrix to prepare blended
nanocomposites, defined as GOC/PS. Abbreviation of the samples was shown in Table 1.
The hot-pressing conditions shown in Figure 2 were the same for all samples.

Table 1. Abbreviation of sample.

Full Name Abbreviation

GO, CNT and polystyrene blending composite GOC/PS
polystyren PS

CNT covalently bonded to KH550 CNT-KH550
CNT grafted GO aerogel GO-CNTA

GO-CNT aerogel/polystyrene composite GO-CNTA/PS
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Figure 2. Preparation process of composite material.

2.4. Characterization

The synthesized GO-CNT morphology and chemical structure were analyzed via
Fourier-transform infrared spectroscopy (FTIR; Nexus 360 ThermoNicolet, Singapore).
Elemental and chemical compositions were evaluated by using X-ray photoelectron spec-
troscopy (XPS; Escalab 220i-XL, VG Systems, Ltd., East Grinstead, UK). GO and CNT
structures were characterized by Raman spectroscopy (InVia 2000, Renishaw PLC, Wotton-
Under-Edge, UK), and the structure and composition were analyzed via X-ray diffraction
(XRD; D8 Advance, Bruker AXS GmBH, Karlsruhe, Germany) with Cu-Kα radiation and
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λ = 1.5418 Å. GO-CNT and nanocomposite morphologies were characterized by using
field-emission scanning electron microscopy (FESEM; Hitachi S-5700, Hitachi High-Tech
Analytical Science, Abingdon, UK) with gold for 30 s. Microhardness was measured
with an HXD-1000TMC (Cany Precision Instruments Co., Ltd., Shanghai, China) digital
microhardness tester using a 245 mN indentation force for 15 s.

Composite tensile, bending, impact, and compression tests were performed according
to National Standards GB/T 1040.1-2006/ISO 527-1:1993, GB/T 9341-2008/ISO 178:2001,
GB/T 1041-2008/ISO 604:2002, and GB/T 1043.1-2008/ISO 179-1:2000 using an a1-7000
tensile tester (GOTECH, Taiwan, China) over 0–30,000 N with 2 mm/min tensile test speed
and a standard 25 mm sample-spacing. The test speed for the plastic bending test was
1 mm/min, with 32 mm sample-spacing. Compression tests were performed using the
universal testing machine with a speed of 5 mm/min, and impact tests were performed
using the universal testing machine with a simple-supported beam impact tester with 7.5 J
impact energy and a 32 mm sample span.

3. Results and Discussion
3.1. Chemical Composition and Morphology of GO, CNT, CNT-KH550, and GO-CNT

Figure 3 shows the structures and compositions of GO, CNTs, CNT-KH550, and GO-
CNT determined via Fourier-transform infrared spectroscopy (FTIR). Absorption peaks
for GO and CNTs were located at 3208 cm−1 (O-H tensile vibration), as well as 1721 and
1045 cm−1 (C=O and C-O tensile vibration, respectively), indicating that they contained a
large number of hydroxyl and carboxyl groups. However, CNT-KH550 had an absorption
peak at 1031 cm−1, which was attributed to Si-O-C tensile vibration, indicating that KH550
had been successfully grafted onto the surface of the CNTs. The peak intensity at 3208 cm−1

for GO-CNT decreased, indicating that the O-H groups had decreased significantly and
CNT-KH550 had been successfully grafted onto the GO surface.

Polymers 2021, 13, 735 4 of 12 
 

 

Analytical Science, Abingdon, UK) with gold for 30 s. Microhardness was measured with 
an HXD-1000TMC (Cany Precision Instruments Co., Ltd., Shanghai, China) digital micro-
hardness tester using a 245 mN indentation force for 15 s. 

Composite tensile, bending, impact, and compression tests were performed accord-
ing to National Standards GB/T 1040.1-2006/ISO 527-1:1993, GB/T 9341-2008/ISO 178:2001, 
GB/T 1041-2008/ISO 604:2002, and GB/T 1043.1-2008/ISO 179-1:2000 using an a1-7000 ten-
sile tester (GOTECH, Taiwan, China) over 0–30,000 N with 2 mm/min tensile test speed 
and a standard 25 mm sample-spacing. The test speed for the plastic bending test was 1 
mm/min, with 32 mm sample-spacing. Compression tests were performed using the uni-
versal testing machine with a speed of 5 mm/min, and impact tests were performed using 
the universal testing machine with a simple-supported beam impact tester with 7.5 J im-
pact energy and a 32 mm sample span. 

3. Results and Discussion 
3.1. Chemical Composition and Morphology of GO, CNT, CNT-KH550, and GO-CNT 

Figure 3 shows the structures and compositions of GO, CNTs, CNT-KH550, and GO-
CNT determined via Fourier-transform infrared spectroscopy (FTIR). Absorption peaks 
for GO and CNTs were located at 3208 cm−1 (O-H tensile vibration), as well as 1721 and 
1045 cm−1 (C=O and C-O tensile vibration, respectively), indicating that they contained a 
large number of hydroxyl and carboxyl groups. However, CNT-KH550 had an absorption 
peak at 1031 cm−1, which was attributed to Si-O-C tensile vibration, indicating that KH550 
had been successfully grafted onto the surface of the CNTs. The peak intensity at 3208 
cm−1 for GO-CNT decreased, indicating that the O-H groups had decreased significantly 
and CNT-KH550 had been successfully grafted onto the GO surface. 

 
Figure 3. FTIR spectrum of GO, CNT, CNT-KH550 and GO-CNT. (color figure can be viewed 
online). 

Figure 4 shows Raman spectroscopy results for GO, CNTs, CNT-KH550, and GO-
CNT. Two strong bands at 1351 (the D band) and 1594 cm−1 (the G band) correspond with 
the surface disorder and active groups of GO or CNT, respectively. It can be seen from the 
ID/IG ratio that the degree of disorder and reactivity of unoxidized CNTs (1.076), CNTs 
(1.270), and CNT-KH550 (1.466) gradually increased. Thus, the degree of disorder and 
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Figure 4 shows Raman spectroscopy results for GO, CNTs, CNT-KH550, and GO-CNT.
Two strong bands at 1351 (the D band) and 1594 cm−1 (the G band) correspond with the
surface disorder and active groups of GO or CNT, respectively. It can be seen from the
ID/IG ratio that the degree of disorder and reactivity of unoxidized CNTs (1.076), CNTs
(1.270), and CNT-KH550 (1.466) gradually increased. Thus, the degree of disorder and
surface activity for CNT-KH550 were high. Compared with GO (1.705), the degree of
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disorder and reactivity of GO-CNT (1.533) was reduced to a certain extent, which was due
to the reaction of CNT-KH550 with the active groups on the GO surface, signifying that
CNTs had been grafted onto the surface of the GO aerogel.
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Figure 4. Raman spectroscopy (color figure can be viewed online).

Figure 5 shows XRD patterns of graphite, GO, unoxidized CNTs, CNTs, CNT-KH550,
and GO-CNT. The diffraction peak at 26.51◦ corresponds to 0.34 nm interlayer spacing.
GO had a large interlayer distance (~0.86 nm) due to hydroxyl and carboxyl group for-
mation, indicating that graphite was successfully exfoliated during the chemical reaction.
The diffraction peak at 25.95◦ for unoxidized CNTs, CNTs, and CNT-KH550 confirmed
that the interlayer distances for these did not change because the hydroxyl and carboxyl
groups do not affect the interlayer distance. However, the interlayer spacing of GO-CNT
(~0.842 nm) was smaller than that of GO (~0.86 nm), suggesting that GO had reacted.
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Figure 6 shows the surface chemical composition of GO, CNTs, CNT-KH550, and GO-
CNT analyzed via XPS. In Figure 6a, the peaks at 285 and 530 EV correspond to C and O,
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respectively, in GO, CNTs, CNT-KH550, and GO-CNT. Figure 6b is an enlarged view of
Figure 6a for the range of 0–250 eV. The peaks at 50 and 101 eV correspond to Si 2p and Si 2s,
respectively, which helps to further indicate that KH550 and CNT-KH550 had been grafted
onto the CNTs and GO, respectively. Figure 6c,d shows the C 1s regions of CNT-KH550 and
GO-CNT, respectively, deconvoluted into six peaks, which were attributed to the binding
energies of C-C (284.4 EV), C-O-C (286.5 eV), C=O (287.2 eV), C-OH (284.8 eV), and C
(C=O)-OH (288.5eV), respectively. Figure 6d,f shows the Si 2p regions of CNT-KH550
and GO-CNT, respectively, especially the binding energy of Si-O-C at 1031 eV. Therefore,
there were a lot of Si-O-C bonds present on the GO surface after the CNTs had been grafted.
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3.2. Morphology and Dispersion of GO-CNT Aerogel and GO-CNTA/PS Nanocomposites

The microstructure of the GO-CNT aerogel and GO-CNTA/PS nanocomposite were
investigated via FE-SEM imaging, as shown in Figure 7. Figure 7a shows the GO-CNT
aerogel images with different magnification, and Figure 7b exhibits nanocomposite frac-
tured surface microstructures with different magnification. In Figure 7a, it can be seen
that GO-CNT had a uniform 3D network, and the pores were interconnected with each
other. However, the aerogel wall can be seen in the composite fractured surface as shown
in Figure 7b1. The bright streaking is the wall of the aerogel, which was made of CNTs
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bonded to GO sheets. Seen from Figure 7b2, the red dotted lines show the walls of the
aerogel, and the uniform parts between the walls are PS. Figure 7b3 shows the GO aero-
gel wall uniformly coated with CNTs; it can be clearly seen that the CNTs were only on
the surface of GO and did not penetrate the GO sheet. A cross-section of GO-CNTA/PS
(Figure 7b1) indicates that the matrix and reinforcement in the nanocomposites appear
alternately, indicating that PS completely filled the pores in the aerogel.
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3.3. Mechanical Properties of the Nanocomposites

We explored the mechanical properties of pristine PS, GOC/PS, and GO-CNTA/PS
using tensile, flexural, compressive, and impact measurements. Table 2 summarizes the
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various parameters for tensile strength, tensile strain, flexural strength, flexural strain,
compressive strength, compressive strain, and impact strength. As shown in the stress–
strain curves of the nanocomposites in Figure 9, we determined that the tensile, impact,
and compressive strength values of the GO-CNTA/PS nanocomposites were improved by
varying degrees compared with pristine PS: the tensile strength was improved by 9.01%,
and that the bending strength was improved by 46.88%. Hence, the distribution of the CNTs
in the GO aerogel and PS filling the aerogel pores had a direct effect on the mechanical
properties of the nanocomposites.

Table 2. Mechanical properties of different composites.

Sample Tensile Strength
(MPa)

Tensile Strain
(%)

Flexural
Strength

(MPa)
Flexural

Strain (%)

Impact
Strength
(KJ/m2)

Compressive
Strength

(MPa)
Compressive
Strain (%)

PS 8.29 0.858 18.74 0.95 2.09 33.45 7.56
GOC/PS 6.8 0.785 22.18 0.79 1.96 38.72 6.08

GO-CNTA/PS 9.037 1.074 27.525 1.405 2.168 53.441 10.853Polymers 2021, 13, 735 9 of 12 
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As shown in Figure 10, it can be seen that the electrical and thermal conductivity
values of GO-CNTA/PS were 0.156 ms/m and 0.128 W/mK, respectively. Compared with
pure PS with no electrical conductivity, the thermal conductivity increased by 60%. This is
because the excellent electrical and thermal conductivity were enhanced by the CNTs being
connected and evenly dispersed. However, the electrical and thermal conductivity values of
GO-CNTA/PS were lower than those of GOC/PS. The possible reasons are as follows: (1) In
the process of hot pressing, the structure of 3D aerogel may be damaged to a certain extent,
resulting in lower electrical and thermal conductivity properties of the GO-CNTA/PS
composite than that of the GOC/PS composite. (2) The grafting of carbon nanotubes onto
the GO surface resulted in a decrease in the amount of CNTs between the GO sheets on the
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aerogel wall, and therefore the electrical and thermal conductivity of the GO-CNTA/PS
composites was lower than that of the GOC/PS composites. The electrical and thermal
conductivity of the composites is expected to be better if the CNT were doped in GO sheets.
It also provides a reference and idea for the design of new composite materials.
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Figure 10. Electrical and thermal conductivity of neat PS, GOCA/PS and GO-CNTA/PS.

The thermal properties of the nanocomposites were also analyzed. Figure 11 shows
the differential scanning calorimetry curves for the different samples. It can be seen that
the glass transition temperature of GO-CNTA/PS was the highest, which was due to
the physical crosslinking effect in the complete GO-CNT network in the nanocomposite.
However, the 3D network structure for GO-CNT was incomplete and thus not able to
improve the glass transition temperature of the nanocomposites. In addition, the crystal-
lization tendency of polystyrene was enhanced by the induction of GO, and the crystal-
lization temperature of GOCA/PS and GO-CNTA/PS composites was lower than that of
pure polystyrene.
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4. Conclusions

To the best of our knowledge, testing of standard splines has been rarely reported in
the literature. In this work, we demonstrated a facile preparation method to fabricate a
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GO-CNT aerogel and GO-CNTA/PS nanocomposite on a large-scale and implemented
standard spline cutting and testing. The surface energy of GO was reduced by surface mod-
ification, and the compatibility between inorganic materials and polymers was increased,
thus improving the mechanical properties of the nanocomposites. The results show that
the GO-CNT aerogel framework has high compression performance: the tensile, flexural,
impact, and compressive strength of the obtained GO-CNTA/PS nanocomposites were
significantly stronger than pristine PS, with increases of 9.01%, 46.8%, 3.73%, and 59.8%,
respectively. Moreover, the thermal conductivity of the GO-CNTA/PS nanocomposites
showed an increase of 60% to 0.128 W/m·K compared to pristine PS.

To sum up, the innovative points of this work are as follows: (1) large-scale GO-CNT
aerogel was prepared, (2) large-scale GO-CNTA/PS composite sheet was prepared via in
situ polymerization, (3) realized the mechanical test of the standard sample.
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