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CONSPECTUS: Complexes of lanthanide(III) ions are being actively studied
because of their unique ground and excited state properties and the associated
optical and magnetic behavior. In particular, they are used as emissive probes in
optical spectroscopy and microscopy and as contrast agents in magnetic resonance
imaging (MRI). However, the design of new complexes with specific optical and
magnetic properties requires a thorough understanding of the correlation between
molecular structure and electric and magnetic susceptibilities, as well as their
anisotropies. The traditional Judd−Ofelt−Mason theory has failed to offer useful
guidelines for systematic design of emissive lanthanide optical probes. Similarly,
Bleaney’s theory of magnetic anisotropy and its modifications fail to provide accurate
detail that permits new paramagnetic shift reagents to be designed rather than
discovered.
A key determinant of optical and magnetic behavior in f-element compounds is the ligand field, often considered as an electrostatic
field at the lanthanide created by the ligands. The resulting energy level splitting is a sensitive function of several factors: the nature
and polarizability of the whole ligand and its donor atoms; the geometric details of the coordination polyhedron; the presence and
extent of solvent interactions; specific hydrogen bonding effects on donor atoms and the degree of supramolecular order in the
system. The relative importance of these factors can vary widely for different lanthanide ions and ligands. For nuclear magnetic
properties, it is both the ligand field splitting and the magnetic susceptibility tensor, notably its anisotropy, that determine
paramagnetic shifts and nuclear relaxation enhancement.
We review the factors that control the ligand field in lanthanide complexes and link these to aspects of their utility in magnetic
resonance and optical emission spectroscopy and imaging. We examine recent progress in this area particularly in the theory of
paramagnetic chemical shift and relaxation enhancement, where some long-neglected effects of zero-field splitting, magnetic
susceptibility anisotropy, and spatial distribution of lanthanide tags have been accommodated in an elegant way.
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simultaneously and hence hide smaller NMR pseudocontact
shif t changes.

• Suturina, E. A.; Mason, K.; Geraldes, C. F.; Chilton, N. F.;
Parker, D.; Kuprov, I. Lanthanide-induced relaxation
anisotropy. Phys. Chem. Chem. Phys. 2018, 20, 17676−
17686. Detailed variable f ield proton relaxation rate
analyses for isostructural series of lanthanide complexes
reveal an angular dependence in both the dipolar and Curie
mechanisms, demonstrated both experimentally and theoret-
ically in a revised approach.

■ ELECTRONIC STRUCTURE INTRODUCTION
The unique electronic structure of trivalent 4f ions determines
the distinctive properties of their coordination complexes. The
electrostatic shielding of the electrons in 4f orbitals by fully
occupied 5s and 5p orbitals makes the effects from surrounding
ligands and other molecules far smaller than the interelectron
repulsion and spin−orbit coupling (Figure 1). Due to these

order-of-magnitude differences, electronic transitions in
lanthanide(III) complexes are often independent of the ligand
environment, and the ligand field splitting can be considered on
the basis of the ground-state total angular momentum, J.
The energy of mJ sublevels can be calculated using the crystal

field theory that neglects mixing of f-orbitals with the orbitals of
the ligands. For a given J multiplet, the model Hamiltonian has
the form given in eq 1:

H B O
k

k
q k

k

q
k

k
q

2,4,6

∑ ∑θ̂ = ̂
= =− (1)

where Bq
k are ligand field parameters, Ok

q are Stevens operators,
and θk are operator equivalent coefficients (Table 1), defined for

each term and multiplet in a given configuration.5,6 The Bq
k

parameters are defined in a particular reference frame; in
symmetric molecules, the z-axis is usually aligned with the
principal axes of the symmetry group, in which case the number
of nonzero parameters is reduced.7,8 In the absence of symmetry,
the expansion in eq 1 has 27 independent parameters. However,
given sufficiently high symmetry or enough spectroscopic data,
all nonzero ligand field parameters may be determined by
luminescence spectroscopy.9,10 The principal parameter of
interest to the NMR community is B0

2, due to the prevalence
of Bleaney’s theory.11 As an example, for Eu(III), it may be
extracted directly from the 5D0 to

7F1 transition (Figure 2).
12−14

The Bq
k parameters can be estimated from experimental data but

are nowadays commonly obtained from multireference ab initio
electronic structure methods, such as complete active space self-
consistent field (CASSCF) calculations.15

Because the emissive state 5D0 is nondegenerate, the splitting
of the transition must arise from the ligand field splitting of the
7F1 multiplet (excluding vibrational effects). Since J = 1, the
series in eq 1 terminates at k = 2, and when the complex has
symmetry higher than C2, only B0

2 is nonzero and the spectrum
exhibits two bands corresponding to the degeneratemJ =±1 pair
and the mJ = 0 singlet, whose separation is ∝B0

2. In lower
symmetry, the degeneracy of the mJ = ±1 states is lifted and B±2

2

is nonzero. Therefore, the 5D0 →
7F1 band can be modeled with

band-specific B0
2 and B2

2, which may differ slightly from the
parameters determined by fitting all observable bands.14,16 The
splittings are given as Δ = 3θ2B0

2 and δ = 2θ2B2
2, and θ2 = −1/5

(Table 1), where ligand field parameters are defined for Stevens
operators, and the renormalization for more commonly used
spherical tensors is given in the Figure 2 caption.13 The sign ofΔ
is positive if themJ = 0 component of 7F1 is lower in energy than
the barycenter ofmJ =±1 components, giving a singlet transition
at higher energy than the doublet. Comparing the aza-
phosphinate complexes [EuL8b] and [EuL9]+ (Figure 2), there
is a change in the sign of B0

2, which is positive for the latter. The
sign of these crystal field parameters is tightly linked to the local
symmetry at the Eu(III) ion.12,14,17,18 Even though, Bq

k

parameters determined for Eu(III) complexes can be very
similar to isostructural complexes of other lanthanide ions, Bq

k

Figure 1. Schematic representation of electronic states for Eu(III)
(4f6): six electrons occupy seven degenerate 4f orbitals giving a 7F
ground term in the Russell−Saunders coupling scheme (spectroscopic
notation, 2S+1LJ), with total spin S = 3 and total orbital angular
momentum L = 3. Spin−orbit coupling splits this term into seven J
multiplets separated by about 103 cm−1. Each J state is (2J + 1)-fold
degenerate for the free-ion; this degeneracy is partially removed upon
loss of spherical symmetry. The separation ofmJ states due to the ligand
field is around 102 cm−1 but can be much larger.

Table 1. Equivalence Coefficients for the Low-Energy Terms
of Late Ln(III) Ions6

Ln(III) term θ2 θ4 θ6

Eu 7F0 0 0 0
7F1 −1/5 0 0

Tb 7F6 −1/99 2/(11 × 1485) −1/(13 × 33 ×
2079)

Dy 6H15/2 −2/(9 × 35) −8/(11 × 45 ×
273)

4/(112×132×33×7)

Ho 5I8 −1/(30 ×
15)

−1/(11 × 10 ×
273)

−5/
(112×132×33×7)

Er 4I15/2 4/(45 × 35) 2/(11 × 15 ×
273)

8/(112×132×33×7)

Tm 3H6 1/99 8/(3 × 11 ×
1485)

−5/(13 × 33 ×
2079)

Yb 2F7/2 2/63 −2/(77 × 15) 4/(13 × 33 × 63)
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depends on the radial part of the f-electron wave function, which
changes with nuclear charge, and small changes in bond lengths
and angles may also affect the angular part of Bq

k unexpectedly.

When the ligand field splitting is comparable to the splitting
between spin−orbit multiplets, J is no longer a good quantum
number, and the coupling scheme breaks down, for example, for
Sm(III),19 leading to the phenomenon of “Jmixing”, commonly
invoked to explain unusual oscillator strengths and odd
transitions in polarized emission spectra.20−22 Despite this,
many other spectral phenomena defy explanation, and “J
mixing” is often cited as a “catch-all”, highlighting limitations
in current understanding.12,14,23

Lanthanide magnetic moments,24 which are often assumed to
be independent of coordination environment25,26 also routinely
show reductions in room-temperature susceptibility values
compared to the free-ion due to the ligand field effect; a notable
11% reduction was found for Ho(III).27 Apart from the
reduction of the average magnetic susceptibility, the ligand
field also induces magnetic anisotropy that is the origin of
paramagnetic NMR shifts and dramatically alters nuclear spin
relaxation.

■ OVERVIEW OF FACTORS DETERMINING LIGAND
FIELD SPLITTING

The spectral behavior of several series of macrocyclic
lanthanide(III) complexes [LnL1−9] has been studied, owing
to their interest as emissive probes in optical spectroscopy and
microscopy28−30 or contrast agents in magnetic resonance
imaging.13,17,18

Design of complexes with desired optical and magnetic
properties requires an understanding of correlations between
molecular structure and the electromagnetic susceptibility
tensors.31 These correlations are often assumed to follow simple
models. However, Judd−Ofelt−Mason theory fails to offer
guidelines for the design of emissive lanthanide optical
probes,32−34 and similarly Bleaney’s theory of magnetic
anisotropy11,35,36 has been widely used for NMR spectral fitting
but provides no guidance for paramagnetic shift reagent
design.37,38

Figure 2. Europium emission spectra (295 K, MeOH, λexc 270 nm of
[EuL8b] (lower) and [EuL9]+ (upper) highlighting different splittings of
the ΔJ = 1 manifold for 5D0 →

7F1; in the spherical operator formalism

B3
10 0

2Δ = − , B6
5 2

2δ = − .15,16

Chart 1
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Examination of the emission spectral properties of the
[LnL1−9] series permits a dissection of the key factors
determining the most important contribution to the ligand
field. The size and sign of B0

2 varies widely across these series of
complexes (Chart 1 and Table 2).

Variation of Complex Constitution and Symmetry

(i) In the series of C3-symmetric complexes, [EuL1−3], the
triacetate, triphosphinate, and triamide ligands gave
values for B0

2, [EuL2] = [EuL1] < [Eu.L3]3+. The sign is
negative for [EuL1] but positive for the other two in
methanol.39 The polarizability of the oxygen donor atoms
can be hypothesized to determine the multipolar ion−
oxygen interaction energy.

(ii) In the series of square antiprismatic complexes,
[LnL4(S)]3+, the axial donor, S, can be permuted.40−43

When S is MeCN, B0
2 = −630 cm−1 and replacement of

MeCN by a more polarizable oxygen donor is energeti-
cally favorable in the sequence: H2O < DMF < DMSO <
HMPA (B0

2, −470 < −340 < −150 < −85 cm−1),
correlating with the dipole moment change.44 When the
axial donor is replaced by fluoride, B0

2 inverts sign causing
a large change inmagnetic susceptibility anisotropy, as the
order of the mJ sublevels switches.

31 The importance of
the “axial component” of the ligand field was highlighted
by Di Bari,45 examining spectral behavior of [YbL5]−

complexes. Another example of switching sign in B0
2 for

Yb(III) complexes combined NMR, EPR, and computa-
tional studies to track changes in the anisotropy of the
magnetic susceptibility tensor.46

(iii) For [EuL1a−e] (Chart 1), B0
2 changes as the para

substituent in the pyridine ring varies. A linear correlation
between the Hammett parameter, σp, and B0

2 (R2 = 0.97, in
acetonitrile), is consistent with the strongly dipolar nature
of the Ln−Npy interaction.46 The variation of overall
ligand polarizability and its directionality, involving the
electrostatic interaction between induced dipoles on the
ligand and the quadrupole moment on the Ln3+ ion, is
important in determining the “allowedness” of f−f

electronic transitions.47,48 Thus, it is the overall ligand
molecular polarizability that is important in determining
the ligand field.

(iv) Other examples of switches in the sign of B0
2 can be

identified when complex constitution and local symmetry
vary. The difference between the emission spectra of
[EuL8b] and [EuL9]+ (Figure 2) is consistent with a
change in sign, as symmetry changes from C1 to C2.

3,14

Other cases have been reported, including systems
involving reversible coordination of a polarizable N
atom, which following protonation is replaced by
water.49−51

Polyhedral Distortion

In point-charge ligand field theory, the geometric position and
charge of each atom determine contributions to the ligand field
potential. An axial anionic donor gives a positive contribution to
B0
2, which becomes negative if it is in an equatorial position

(switching at the “magic angle” θ ≈ 54.7° or 125.3°),52−55

leading to sensitivity of the ligand field potential to polyhedral
distortion. The tricapped trigonal prismatic geometry is
particularly sensitive, as noted by Binnemans, if all nine ligands
are equivalent and the two sets of axial donors have polar angles
45° and 135°, leading to exact cancellation of all contributions
and hence B0

2 = 0.56

The situation with [LnL1−3] is different. The first coordina-
tion sphere has three sets of donors: nitrogen atoms from the
macrocycle (Nax) lie in axial positions (polar angle θ ≈ 142°);
pyridyl N atoms in equatorial positions (Neq, θ ≈ 90°);
carboxylate oxygens in axial sites (θ≈ 50°).2 In [LnL1a], the two
sets of N donors (Nax, Neq) give contributions to B0

2 of similar
magnitude but opposite sign and cancel out; this is because the
opposite of a ligand in an axial position is a ring of donors in the
equatorial plane, and here the 3-fold equatorial disposition of
Neq balances the Nax contribution. However, the oxygen donors
lie close to the magic angle, and thus the ligand field is almost
entirely ascribed to the oxygen atoms, resulting in an exquisite
sensitivity of ligand field and magnetic anisotropy to very small
variations in their angular position (Figure 3).2 Emission studies
with [EuL1a] showed a pronounced dependence of B0

2 on
solvent, suggesting that hydrogen bonding interactions with the
oxygen donors could alter their effective polar angle θ. Indeed,
the X-ray structure of [YbL1b] shows hydrogen bonding of water
to the coordinated carboxylate oxygen, demonstrating this
“tugging” on the donor oxygen. For [YbL1b], [YbL1e], and
[EuL1e], both carbonyl and carboxylate oxygen atoms served as
hydrogen bond acceptors to the water hydrogen atom.46

In 9-coordinate lanthanide complexes based on 12-N4 (e.g.,
DOTA18), the most common geometries are a monocapped
square antiprism (SAP) and a twisted version (TSAP). The twist
angle between upper and lower planes of four donor atoms
found in X-ray analyses vary around 40° and 25°, respectively.
Values of B0

2 for [EuL10−15(OH2)] (Chart 2, Table 3) show
larger parameters in the SAP series.40−44,57 These variations
relate to polyhedral distortion but may also be ascribed to
changes in the axial water distances that are systematically longer
(<0.3 Å) in the TSAP series due to increased steric demand.
Such behavior is consistent with the concept of nonintegral
metal ion hydration states, reducing in value between unity (Eu)
and zero (Yb), through certain TSAP series, as the bond length
to the water oxygen increases.40−43,58

Table 2. Values of Second Order Crystal Field Terms for
Eu(III) Complexesa

complex B0
2, cm−1 B2

2, cm−1

[EuLla] <−200d 0
[EuL2a] <+200d 0
[EuL3]3+ +230d 0
[EuL4(H2O)]

3+ −470b 0
[EuL5a]− −700 0
[EuL5b]− −650 0
[EuL6] −550 −145
[EuL7] −455 −120
[EuL8a] −660 −122
[EuL8b] −650 −80
[EuL9]+ +735c −220c

aFrom emission spectra at 295 K in H2O. Ligand field parameter
values quoted in the spherical tensor formalism. bWith different axial
donors, values changed dramatically, for example, MeCN (−630),
DMF (−340), DMSO (−150), and HMPA (−85), and with fluoride
replacing the coordinated water molecule, B0

2 has a positive sign. cIn
methanol, values were +920 and −153 cm−1. dData recorded in
methanol, not water, where values are smaller; the value for [EuL2a]
represents an upper limit, owing to the lack of spectral resolution.
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Supramolecular Effects: Solvation and the Degree of
Aggregation

The nature of the solvent and the state of complex aggregation
are supramolecular effects. For [EuL1b] and [EuL1a] where no
solvent is bound, emission spectra change significantly with
solvent, highlighted in the ΔJ = 1 manifold (Figure 4).46 The
variation can be attributed to differing time-averaged
orientations of solvent dipoles, perturbing the Ln−O and Ln−
Npy dipolar and quadrupolar interactions, consistent with
solvent multipolar effects.47,48,59−61 DOSY NMR studies of
the diamagnetic analogue [YL1b] revealed clear evidence for
aggregation that was greatest in chloroform and was positively

correlated with the ligand field splitting.62 With [YL1a], in water
only the monomer was evident, whereas in CD3CO2D and
CF3CO2D, the aggregation state was 4 to 5.
In summary, ligand field splitting of lanthanide complexes is a

sensitive function of several factors: the nature and polarizability
of the ligand and its donors; the type and degree of polyhedral
distortion; the presence and extent of solvent dipolar
interactions; hydrogen bonding effects and the degree of
supramolecular order. Each factor may be non-negligible in
defining the ligand field, and their relative importance varies for
different lanthanides.

■ PSEUDOCONTACT SHIFT AND BLEANEY’S
THEORY OF MAGNETIC ANISOTROPY

When a lanthanide is treated as a point with second-rank
magnetic susceptibility and infinitely fast magnetic relaxation, an
additional isotropic shielding experienced by nearby nuclei is
given by63

r
1

12
(3 cos 1) 3 sin cos 2PCS

3 ax
2

rh
2δ

π
χ θ χ θ φ= [ − + ]

(2)

where θ,ϕ, and r are nuclear coordinates in the eigenframe of the
magnetic susceptibility tensor. The eigenvalues of the traceless
susceptibility tensor are labeled to satisfy the relation |χx| < |χy| <
|χz|, with axiality χax = 3χz/2 and rhombicity χrh = (χx − χy)/2.
Below we also use terms of χav = Tr(χ)/3 and χ∥ = χz + χav.
Bleaney’s theory of magnetic anisotropy11,35,36,64 shows that

for a well-isolated J multiplet in the high temperature
approximation, the anisotropy of the susceptibility tensor
depends only on the second rank B0

2 and B2
2 ligand field

parameters:

C B

kT

C B

kT10( )
;

30( )
J J

ax
0 B

2
2
0

2 rh
0 B

2
2
2

2χ
μ μ

χ
μ μ

= − = −
(3)

where CJ is Bleaney’s constant, defined for each lanthanide(III)
ion (CJ = −158 (Tb), −181 (Dy), −71.2 (Ho), +58.8 (Er),
+95.3 (Tm), and +39.2 (Yb)), and μB is the Bohr magneton.
Approximations and Their Limits

Assuming that the ligand field parameters do not vary between
lanthanide ions, eq 3 suggests that χax/χrh remains constant
within the series and PCS only varies due to the change in the
value of CJ.However, if the overall ligand field splitting is greater
than kT (Figure 5),28,63,65 the Bleaney formula is no longer valid,
and χax/χrh and the eigenframe of the susceptibility tensor will
depend on temperature.66 It is evident from low temperature
measurements of [LnL10](H2O)]− that the principal axis
changes direction by up to 90° from Tb to Yb.67−69

Wave function calculations accounting for orbital degeneracy
and correlation among the 4f electrons, as well as spin−orbit
coupling (CASSCF-SO method), are used to determine ligand
field splittings in lanthanide complexes.70,71 Such calculations
(e.g., for [LnL8a], Figure 5) clearly show that in all cases the
splitting is larger than kT. Thus, if eqs 2 and 3 are used to
determine B0

2 and B2
2 from PCS data, the parameters may appear

to be very different for each lanthanide simply because Bleaney’s
approximations do not hold.72

Equation 2 also assumes a point magnetic source at the
nuclear position of the lanthanide ion; a revised approach has
recently emerged where the distribution of 4f electron density
can be accounted for.73 There are two distinct reasons for such a
distribution to occur: (i) spin delocalization and (ii) fast tag

Figure 3. (A) X-ray crystal structure of [YbL1b], showing hydrogen
bonding of water, tugging at the ligand oxygen atoms. (B) Schematic
representation of the change in the polar angles θ for the oxygen, Neq
(py) and Nax (ring) donor atoms in [DyL1a]. (C) Calculated room
temperature magnetic susceptibility anisotropy arising from distortion,
where Δθ is the deviation from the lowest energy structure.2
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mobility. Disregarding the nature of the distribution, the
mathematical formulation is the same. The effect of spin
delocalization across ligands can be easily accounted for by ab
initio calculation of the dipolar hyperfine tensors, but the tag
mobility is often ignored despite the possible ∼30% deviation
from a point model for nuclei close to the tag.74

Chart 2

Table 3. Values of B0
2 (Spherical Tensor Formalism)

Determined by Emission Analysis for [EuL10−15(OH2)]

B0
2, cm−1

complex SAP isomer TSAP isomer

[EuL10] −630 −400
(RRRR)-[EuL11]5− −760 −425
(RRRS)-[EuL12]5− −780 −445
(SSSS)-[EuL13]5− −700 −410
[EuL14]3+ −475 −205
[EuL15]3+ −450 −185

Figure 4. (left) ΔJ = 1 manifold for [EuL1a] in the stated solvents revealing the sign change of B0
2 in CF3CO2H. (right) Related emission spectra for

[EuL1b] in the given solvents (298 K, λexc = 268 nm).46,62

Figure 5. Energy splitting of the ground terms of [LnL8a] due to the
ligand field, computed with CASSCF-SO in MOLCAS 8.0.1
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Contact Contribution to Paramagnetic Shift

Inmost of the cases considered in this review, the proton contact
shift is negligible compared to the PCS, and the point-dipole
approximation in eq 2 is valid. The contact shift is proportional
to the isotropic hyperfine coupling (itself related to spin density
at the nucleus) and the isotropic magnetic moment of the
lanthanide ion. Accounting for admixture of excited states with
different J to the ground term, the isotropic magnetic moment
can be corrected,75 and the ratio of contact contribution to the
PCS can be estimated for different lanthanides provided that all
other parameters in the series stay the same.76 Such estimations
suggest that in the Tb−Yb series themost pronounced effect of a
contact contribution is expected for Ho/Er.

■ NMR SHIFT BEHAVIOR OF SYSTEMS WITH LARGE
MAGNETIC ANISOTROPY

Detailed analyses of PCS data have been undertaken for
isostructural complexes, with known solution specia-
tion.28,38,77−81 A semiautomated combinatorial assignment
procedure using PCS data, XRD structure and NMR relaxation
rates to limit the combinatorial space (in Spinach82) was
deployed for [LnL8a], enabling assignment of almost every
proton resonance.1 Subsequently, the traceless part of the
magnetic susceptibility tensor was obtained by fitting eq 2 to
experimental data, giving excellent agreement (R2 > 0.99).
The experimentally determined susceptibility tensor can be

displayed as a PCS field (Figure 6), revealing significant
variations in the amplitude, shape, and orientation for the
[LnL8a] series. Bleaney’s theory predicts that only the amplitude
and sign should vary. However, the tensors change from almost
fully rhombic (Dy and Tb; PCS field resembles dxz orbital) to
near axial (Tm, PCS field resembles dz2 orbital). Critically the tilt
angle β of the main anisotropy axis, relative to the molecular
pseudosymmetry axis, varies significantly between complexes:
Tb 8°; Dy 20°; Ho 22°; Er 8°; Tm 6°; Yb 23°.
To illustrate the sensitivity of magnetic susceptibility

anisotropy to structural change, consider PCS shifts for
[YbL8b] and [YbL9]+ (Chart 3). The tBu NMR chemical shifts
vary markedly across the series but appear in the same order,
notwithstanding the B0

2 sign inversion (Figure 7 and Figure 2);3

Bleaney’s theory predicts the shift sense should be inverted.
The explanation lies in the magnetic susceptibility tensors,

expressed in their very different PCS shift fields. While the
second-order magnetic anisotropy changes sign, the negative
PCS lobe is still oriented in the “equatorial plane”, because along
with the change in sign of B0

2, there is a 90° rotation in
orientation of the principal magnetic axis. Thus, the combined
effect of the change in sign and orientation of the ligand field
were shown to give rise to similar PCS fields for the tBu protons,
explaining the “hidden” changes in PCS behavior.3

■ NMR SHIFT BEHAVIOR OF SYSTEMS WITH SMALL
LIGAND FIELD SPLITTINGS

Complexes [LnL1−3] adopt tricapped trigonal prismatic
structures and possess small ligand field splittings close to kT.
Yet, their PCS values do not conform to Bleaney’s theory.31,37,38

Both the sign and magnitude of their ligand field parameters are
sensitive to local polarity changes and polyhedral distortion.
They are particularly sensitive to perturbation of the polar angle
of oxygen donor atoms, θ, defining the angle subtended by the
Ln−O vector compared to the C3 axis. As θ lies close to the

“magic” angle, small variations cause major changes in magnetic
susceptibility anisotropy.2,46

Figure 6. Pseudocontact shift fields for [LnL8a], reconstructed using
Spinach81 with the “best-fit” magnetic susceptibility tensor. Positive
PCS, red; negative, blue. Note changes in the orientation, size, and tilt
of fields between [LnL8a] complexes1 and how the change in
coordination in [YbL7(H2O)] vs [YbL

8a] affects the PCS field.83

Chart 3

Accounts of Chemical Research pubs.acs.org/accounts Article

https://dx.doi.org/10.1021/acs.accounts.0c00275
Acc. Chem. Res. 2020, 53, 1520−1534

1526

https://pubs.acs.org/doi/10.1021/acs.accounts.0c00275?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00275?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00275?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00275?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00275?fig=cht3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00275?fig=cht3&ref=pdf
pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00275?ref=pdf


For [YbL1b], DFT was used to determine a pseudosolution
structure with imposed C3 symmetry and CASSCF-SO
calculations gave the anisotropy of the susceptibility tensor
(squares, Figure 8). The experimental values of χ∥ − χav were
determined assuming a fixed structural model based on
experimental PCS, referenced to the diamagnetic Y(III)
complex. A comparison was then made with the CASSCF-SO-
calculated susceptibility anisotropy, to determine the “spectro-
scopic” average value of θ in solution. In [YbL1b], the
diastereotopic methyl groups of the isopropyl substituent
serve as a local probe of magnetic anisotropy. The PCS fields
in acetone, water, and methanol highlight the sensitivity to
solvent. The PCS field changes sign as the magnetic
susceptibility anisotropy switches from “easy axis” to “easy
plane” in D2O.

46 Similar solvent dependences were found for
[LnL1a] (Dy, Er, Eu).2

The sensitivity of magnetic anisotropy in these lanthanide
complexes with small ligand field splittings was shown to have a
major impact on solid-state EPR behavior.84 The magnetic and
spectroscopic properties depend upon a number of factors that
cannot be disentangled: a distribution of structural parameters
generates a range of B0

2 values; an electronic structure sensitive to
thermal changes of the ligand structure; thermally accessible
EPR-active excited states; disordered solvation influencing the
local ligand field. Each effect is present across the [LnL1−3]
series, making interpretation of EPR spectra very difficult for
systems with small magnetic anisotropy.84

■ NMR SHIFT BEHAVIOR OF MOBILE LANTHANIDE
TAGS ON PROTEINS

Complexes with large magnetic anisotropies are often used as
tags in proteinNMR to provide structural constraints,85,86 where
large magnetic anisotropy is preferred so that PCS is measurable

even at distances of 40 Å. The tag is often attached by a flexible
linker, but mobility results in big deviations from the point-
dipole approximation, at <15 Å.
A generalization of McConnell’s expression, eq 4, was derived

for lanthanide tag mobility in protein NMR:73,74,87
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where ∇⃗ is the gradient operator, ρ(r) is the probability
distribution of the spatial position of the lanthanide tag, and
subscript t indicates the traceless part of the magnetic
susceptibility tensor. The susceptibility is assumed to be the
same in every point of the probability density.74 The latter
assumption may be lifted, but the corresponding equation is
considerably harder to solve. The partial differential eq 4 can be
solved using three-dimensional Fourier transforms:74
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where FFT+ refers to the forward fast-Fourier transform and
FFT− the inverse. If the probability density is defined on a grid,
numerical solution of eq 5 gives the PCS values. The solution of
the inverse problem is possible; one can extract probability
density from PCS data. Numerical solvers for both direct and
inverse problems are available.82 The resulting lanthanide
probability densities from PCS are in agreement with Double
Electron−Electron Resonance (DEER) spectroscopy, and PCS
fits are significantly improved near the tag (Figure 9).87

Figure 7. (top) Schematic representation of tBu NMR shifts: [LnL8b] (upper), [LnL9]Cl (lower) (CD3OD, 11.7 T, 295 K) (yellow, Tm; green, Er;
magenta, Yb; black, Ho; red, Dy; blue, Tb). (bottom) Pseudocontact shift fields for [YbL8b] (left) and [YbL9]+ (right). Positive PCS, red (+200 ppm);
negative, blue (−200 ppm). Twist angles of each TSAP complex were 26.4° and 18.5°, that is, greater distortion in the cationic complex.3
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■ LANTHANIDE RELAXATION AND ITS ANISOTROPY

Common MRI contrast agents contain magnetically isotropic
Gd3+ ions. Their long electron relaxation times mean that PCS is
absent, and the effect is only to accelerate nuclear relaxation.88

Likewise, relaxation enhancement experiments in NMR often
use magnetically isotropic Mn2+ or Gd3+ complexes to maximize
the volume affected by the metal and minimize PCS.89

Following nuclear relaxation enhancement models designed
for these ions, it has often been assumed that the enhancements
show a simple 1/r6 dependence on the electron−nuclear
distance, without angular terms in the molecular frame of
reference.
Nuclear relaxation enhancement by unpaired f electrons of

lanthanide complexes has two principal components. One
(“dipolar relaxation”) comes from stochastic modulation of the
electron−nuclear dipolar interaction and the other (“Curie
relaxation”) from rotational modulation of extra nuclear
shielding caused by the presence of the unpaired electron. The
angular dependence in non-Gd lanthanides4 was first acknowl-
edged for Curie relaxation.90 The reasons are twofold. First,
magnetic susceptibility tensor anisotropy can be as large as the
isotropic part, contradicting the assumption made by Gueron

Figure 8. (left) Schematic representation of PCS (295 K, 4.7 T) for pyridyl H3, H5, and iPr resonances of [YbL1b] and variation in the susceptibility
anisotropy with θ: D2O (blue); CD3OD (green); CD3CN (purple), DMSO-d6 (red), acetone-d6 (orange); diastereotopic methyl resonances are
isochronous in D2O. (right) PCS fields for [YbL

1b], (using Spinach82): positive PCS, red; negative, blue.46

Figure 9. Tm3+ ion distribution (red) in a DOTA-M8 tagged S50C
mutant of human carbonic anhydrase II (blue), extracted from PCS
data. The red cube indicates the volume where the probability density
can vary during fitting. The source code is available in Spinach;82 axes in
Å.
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when he derived Curie relaxation theory.91 Second, zero field
splitting can be much stronger than the electron Zeeman
interaction, the opposite limit from the classical Solomon−
Bloembergen−Morgan theory of lanthanide-induced dipolar
relaxation.92

Experimental proof came from relaxation rate measurements
in complexes where all nuclei in the ligand cages could be
unambiguously assigned, and atomic coordinate estimates were
available from DFT calculations28,37,38,93−95 (Chart 1 and
Figure 10).
It is obvious from Figure 10 that nuclear relaxation

enhancements at low magnetic field (1 T) do not depend simply
on the distance to the lanthanide ion. The relaxation rates also
appear to depend on the sign of the magnetic anisotropy: in
complexes with easy-plane anisotropy (Tb, Dy, Ho), ligand arm

protons relax faster than macrocyclic ring protons; the opposite

is true for the complexes with easy-axis anisotropy (Er, Tm, Yb).
Encouraged by these findings, we updated the dipolar

relaxation theory4 to include the direction of the Ln−H vector

in the molecular frame:
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Figure 10. Longitudinal relaxation rates in [LnL8a] complexes as functions of Ln−H distance (r−6, D2O, 295 K, 1 T), for 12-N4 ring protons (blue
circles), ligand arms (red triangles), and pyridine protons (black squares). In the Yb set, axial and equatorial protons are indicated. A pure r−6

dependence is a straight line.4
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where the spectral power densityG(ω) is no longer a scalar but a

tensor accommodating stochastic dynamics of the electron spin

as well as molecular accommodating stochastic dynamics of the

electron spin as well as molecular rotation, and r ̂ is the unit

vector pointing in the same direction as r;⃗ further details may be

found in the paper cited above.
Similar observations were made at higher field 9.4 T for

[LnL8a] complexes (Ln = Tb−Yb), where the Curie

contribution dominates. For Curie relaxation, it turned out to

be essential to account for the antisymmetric component in the

total nuclear shielding tensor

D0σ σ χ= − · (8)

that includes diamagnetic shielding tensor σ0 and paramagnetic

shielding tensor, which is proportional to the dipolar matrix D

and magnetic susceptibility tensor χ. This is necessary because

the antisymmetric part is significant here; the product of two

symmetric matrices is only symmetric when they commute.

With the relevant extra terms in place, the Curie relaxation rates

become
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here, Λσ
2 is the first and Δσ

2 the second rank invariant of the
chemical shielding tensor. These equations have been
incorporated into Spinach;82 for [LnL8a], the modifications
yielded a much better agreement with experiment (Figure 11).4

In summary, the presence of magnetic anisotropy required a
fundamental update of the relevant nuclear relaxation theories.
These updates revealed strong molecular-frame angular depend-
encies in paramagnetic relaxation enhancements. In systems
with large magnetic anisotropy and at short electron−nuclear
distances, the classical Solomon−Bloembergen−Morgan and
Gueron expressions should not be used.

■ SUMMARY AND CONCLUSIONS
The ligand field for a lanthanide complex varies with the nature
of the ligand, metal ion, and its environment. The size and sign of
ligand field parameters are difficult to determine experimentally,
but information can be gained using optical spectroscopy with
Eu(III) complexes.9 They are sensitive to several factors
including the nature and polarizability of the overall ligand
and donor atoms, the type and degree of geometric distortion,
the extent of solvent dipolar interactions, and specific hydrogen
bonding effects and the degree of supramolecular order.
Bleaney’s magnetic anisotropy theory provided guidance in

rationalizing NMR PCS data. However, its crude approxima-
tions and limitations are apparent. In explaining the nature and
magnitude of PCS data, both the ligand field splitting and the
type, size, and orientation of the principal component of the
magnetic susceptibility tensor are key. The latter can be
determined by careful magneto-structural correlations27,31,2,46

Figure 11. Experimental longitudinal relaxation rates (black dots) for the ligand cage nuclei of [LnL8a] in D2O at 295 K and 1 T. The calculated rates
are shown as bars and color-coded by the mechanism.4
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assessed by VT magnetic susceptibility measurements, low
temperature EPR studies, and modern computational methods.
Considerable caution is needed using PCS data for structural

refinement. Such methods are used in biomolecular analyses but
may fail when the lanthanide ion is permuted. Delving more
deeply, the ordering, nature, and relative Boltzmann population
of the mJ sublevels for a given lanthanide ion complex is key to
understanding the overall magnetic susceptibility and its
directional dependences.
The nuclear relaxation induced by lanthanide ions can be

anisotropic in the molecular frame, and accounting for this
anisotropy can drastically improve agreement between experi-
ment and theoretical models. Analyses based only on distance
variations are a crude approximation for both dipolar and Curie
relaxation mechanisms. Biomolecular structural refinement
using lanthanide spin tags must account for this anisotropy or
risk significant errors; any work using simple 1/r6 models for
lanthanide labeled systems should be considered with
appropriate caution.
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