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Abstract: With climate change increasing global temperatures, more workers are exposed to hotter
ambient temperatures that exacerbate risk for heat injury and illness. Continuously monitoring
core body temperature (TC) can help workers avoid reaching unsafe TC. However, continuous TC

measurements are currently cost-prohibitive or invasive for daily use. Here, we show that Kenzen’s
wearable device can accurately predict TC compared to gold standard TC measurements (rectal
probe or gastrointestinal pill). Data from four different studies (n = 52 trials; 27 unique subjects;
>4000 min data) were used to develop and validate Kenzen’s machine learning TC algorithm, which
uses subject’s real-time physiological data combined with baseline anthropometric data. We show
Kenzen’s TC algorithm meets pre-established accuracy criteria compared to gold standard TC: mean
absolute error = 0.25 ◦C, root mean squared error = 0.30 ◦C, Pearson r correlation = 0.94, standard
error of the measurement = 0.18 ◦C, and mean bias = 0.07 ◦C. Overall, the Kenzen TC algorithm is
accurate for a wide range of TC, environmental temperatures (13–43 ◦C), light to vigorous heart rate
zones, and both biological sexes. To our knowledge, this is the first study demonstrating a wearable
device can accurately predict TC in real-time, thus offering workers protection from heat injuries
and illnesses.

Keywords: heat illness; heat injury; heat stress; heart rate; extended Kalman filter; machine learning

1. Introduction

As climate change is not only increasing average temperatures globally, but also the
frequency of extreme heat events [1], an increasing number of workers (e.g., military,
construction, agriculture, etc.) will be exposed to these hotter temperatures on a more
frequent basis [2–7]. Workers experience a 2% loss in productivity for each 1 ◦C increase in
wet bulb globe temperature (WBGT) ≥ 24 ◦C [6], and in addition to productivity losses,
the number of heat-related injuries and illnesses at job sites is on the rise. For example,
in construction settings, the risk of heat-related deaths has increased since the 1990s, and
is predicted to continue to increase unless heat-mitigation strategies are adopted at these
sites [7]. One such heat-mitigation strategy is to monitor core temperature (TC) and alert
workers when they reach temperature thresholds that predispose workers to heat-related
injuries and illnesses (i.e., 38.2–38.5 ◦C; [8]). While these TC thresholds are ~1 ◦C lower
than the TC at which heat injuries and illnesses typically surface, research shows that if
workers stop and rest to hydrate and cool down at these lower TC thresholds, they will
be able to work for prolonged periods of time in the heat without ever reaching these
detrimental TC [6,8,9]. However, accurately monitoring individuals’ TC on a daily basis at
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the job site is prohibitively invasive (i.e., rectal and esophageal probes) or expensive (i.e.,
gastrointestinal pill). Thus, it has been a long-standing goal of many entities to develop a
way to non-invasively estimate TC using other physiological parameters like heart rate,
skin temperature, and heat flux [10–18].

As computational and machine learning approaches have become faster and more
accessible over the last decade, there has been a renewed interest in algorithms designed
to continuously predict TC (in real-time) based on various environmental and physiolog-
ical parameters [17]. Various research groups have published TC algorithms that meet
field-established accuracy standards through the use of easily obtainable physiological mea-
surements (e.g., heart rate and skin temperature) collected during physical activity [10–18].
However, while model accuracy is high, many of these algorithms were trained and
validated on datasets involving primarily young fit males [11–14,16,18,19], or only hot
conditions [19], or with minimal data for ground truth TC ≥ 38.5 ◦C [10,14,16,19]—the
temperatures above which heat injuries and illnesses are most prevalent, and thus accuracy
is of utmost importance.

Another important factor to consider is that many of the previous TC algorithms have
been designed using various laboratory-grade physiological monitoring devices like chest
straps for monitoring heart rate or thermocouples for measuring skin temperature [10–16].
While these physiological measurements using laboratory-grade equipment are highly
accurate, these sorts of measurements are typically cumbersome to implement daily as they
can interfere with worker comfort. Additionally, each physiological parameter being mea-
sured often has a separate device and output (e.g., one device for heart rate and a separate
device for skin temperature), which makes real-time integration of these measurements into
a TC prediction difficult. As such, a core temperature-monitoring algorithm implemented
in occupational settings must generally meet the following criteria: (1) small enough not to
interfere with the individual’s work tasks, (2) waterproof/sweat proof, (3) continuously
(non-invasively) monitor various physiological parameters throughout the day from a
single location, (4) be intrinsically safe, and (5) meet the field-established accuracy criteria
across a range of body temperatures and environmental conditions [9,17]. While it has
been suggested that such TC algorithms could be implemented in a wearable device [17],
we are only aware of one recent study that reported the reliability and validity of a TC
algorithm to be implemented in a wearable device using heat flux sensors [20]. The authors
concluded that while this wearable device provided reliable TC measurements, it did not
provide accurate TC measurements [20]. Consequently, we are unaware of any studies
showing TC can be accurately implemented into a commercially available wearable device.

Thus, the purpose of this study was determine whether the Kenzen wearable device
could accurately predict TC continuously during physical activity across a range of envi-
ronmental conditions. The Kenzen device is a wearable device worn on the upper arm,
attached by Velcro straps, and is designed to meet the wearable device criteria for the
occupational settings listed above. Equally important, another goal of this study was to
address some of the limitations of previous studies by developing a non-invasive estimate
of TC that meets field-established accuracy criteria for (a) men and women, (b) physical
activity in a wide variety of environmental conditions, and (c) TC ≥ 38.5 ◦C.

2. Materials and Methods
2.1. Subject Characteristics and Experimental Design

The Kenzen device is a sweatproof and waterproof wearable device worn on the
upper arm. The device has a photoplethysmography (PPG) sensor to measure heart rate
(HR), along with temperature and relative humidity sensors on the inner and outer side
of the device to measure skin-side and ambient-side temperatures and relative humidity
(RH), respectively. Additionally, a 3-axis accelerometer provides step rate measurements.
Temperature and humidity measurements are collected from the same single sensor, and
accurately measure temperature and relative humidity within ranges of 0–90 ◦C and 0–100%
RH, respectively, with a reported accuracy of ±0.2 ◦C and 2% RH, respectively.
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For each trial, subjects set up a user profile through the Kenzen application (iOS and
Android), where the onboarding process involves inputting their age, height, body mass,
and biological sex, and answering a brief medical history questionnaire about previous
heat-related injuries and/or illnesses and current medications they are taking to treat
cardiovascular and/or neurological conditions. In this dataset, all subjects were free from
any diseases or conditions that would affect thermoregulation, sweating, and/or core body
temperature. Subjects were also free from any heat-related injuries or illnesses in the last
six months. All subjects’ data were de-identified (via the universities and/or through
the Kenzen platform) before being used retrospectively for the algorithm development
in this manuscript; thus, according to the Advarra IRB, the research project did not meet
the DHHS definition of human subjects research under 45 CFR 46, and therefore, did not
require IRB oversight.

Twenty-seven subjects (19 males and 8 females) completed 52 exercise trials (14 trials
completed by females; subjects’ mean ± SD (range) for age = 28.9 ± 7.8 y (21–62 y), body
mass = 75.2 ± 9.9 kg (53–96 kg), height = 176.1 ± 9.1 cm (149–191 cm), body surface
area = 1.9 ± 0.17 m2). On average, subjects completed ~2 trials (mean ± SD = 1.92 ± 1.17;
median = 2); however, depending on the study and experimental design, several subjects
completed only one trial, while one subject completed a total of six trials in various
environmental conditions. Body surface area was calculated according to Dubois and
Dubois equation [21]. None of the subjects were heat acclimatized or heat acclimated.

Data to train and test the Kenzen TC algorithm comprised 52 trials from four different
studies (i.e., Study 1–4), where subjects wore the Kenzen device on their upper arm during
physical activity while ground truth TC was collected either via a gastrointestinal pill (19 tri-
als) or rectal probe (33 trials) according to standard protocols [22]. Specifically, studies
involving the rectal probe used a standard depth of >10 cm, and those involving the gas-
trointestinal pill required subjects to take the pill right before going to sleep the night before
the morning trial (i.e., >8 h but <12 h before trial start). Of these 52 trials, a total of 4036 min
of data were collected from subjects during low- to high-intensity physical activity, ranging
from 32–110% of the subject’s age-predicted maximum HR (mean ± SD = 71 ± 16% [23]),
in a variety of environmental conditions from 13.4–43.2 ◦C (mean ± SD = 28.5 ± 7.2 ◦C),
and trial lengths spanning 40 to 107 min (mean ± SD = 77 ± 19 min).

Study 1 (n = 5) involved 10 min seated rest, followed by two 25 min cycling bouts at
50–65% of age-predicted maximum HR, with a 5 min seated rest after each bout, and then
a 15 min high-intensity cycling bout at >76% of age-predicted maximum HR followed by
a 15 min seated rest. Study 2 (n = 14) involved 60 min of running on a treadmill, where
for the first 45 min subjects ran at 70% of their ventilatory threshold and the last 15 min
were a self-paced work trial. Study 3 (n = 15) involved a 10 min seated baseline followed
by 60 min walking on a treadmill at 6 km/h with a 3% gradient, a 10 min rest, 15 min
walking at 6 km/h with a 3% gradient, and a final 10 min seated recovery. Study 4 (n = 18)
involved walking (on a treadmill) for 5 min at 3 mph with a 1% gradient, followed by
two 15 min periods of running at a moderate intensity (64–76% age-predicted maximum
HR), with 5 min of walking at the same speed and gradient in between periods. Subjects
then sprinted (rating of perceived exertion of 17–19) for 15 s with 30 s recovery in between,
continuing this sprint-recovery cycle until TC exceeded at least 38.25 ◦C (with a goal of
reaching 39.0 ◦C). For Study 1–3, subjects wore minimal clothing layers (i.e., a t-shirt and
shorts, or just shorts and sports bra/no shirt). For Study 4, subjects wore impermeable
clothing to assist in elevating core temperature faster.

2.2. Data Preprocessing

Python version 3.8 with Jupyter Notebook were used for all data processing, algorithm
development, statistical analyses, and graphics (including the built-in packages of pandas,
matplotlib, glob, scikit-learn, scipy stats). The de-identified data were collected from all
four studies (i.e., Kenzen data and ground truth TC), parsed, and time-aligned so that
sampling rates were similar across variables. Data from the Kenzen device has sampling



Int. J. Environ. Res. Public Health 2021, 18, 13126 4 of 14

rates as follows: skin and ambient temperatures, along with skin and ambient relative
humidity are collected every 5 s, while HR and step rate are collected every second. After
the trials were completed, Kenzen device data were queried from an autonomous database
where Kenzen data are stored. The ground truth TC values were collected at different
sampling rates based on each study design (see above), ranging from 5 to 300 s apart. Due
to variable sampling rates for the ground truth and Kenzen data, an interval of 1 min (60 s)
was selected for aggregation and time alignment of all data. This meant that the Kenzen
data were aggregated each minute, where the one-minute aggregation for temperature and
relative humidity comprised 12 samples, and the one-minute aggregation for HR and step
rate comprised 60 samples. For ground truth TC data where the sampling rate of the study
exceeded 60 s, the Python interpolate() function was used to interpolate ground truth TC
values to obtain a value each minute that would time-align with the Kenzen physiological
data for that minute. These one-minute values were used to build the Kenzen TC model,
and therefore, to calculate the model accuracy metrics (presented below) which compared
the Kenzen TC vs. ground truth TC.

Once data were time aligned, we began feature engineering on the physiological
data as inputs to the models. Kenzen HR, skin and ambient temperatures, skin and
ambient relative humidity, and step rate were engineered in different ways for each one-
minute aggregation, including transformations such as higher-degree polynomials, variable
interactions, log transformations, rolling averages, minimum, maximum, median, standard
deviation, etc. In order to select the best features for the Kenzen TC algorithm, an iterative
process of feature engineering and feature selection were performed on each of these
variables and tested separately for each model listed below (see below for details).

2.3. Algorithm Development and Accuracy Criteria

Previous research has used a variety of accuracy criteria to conclude that their algo-
rithm is accurate compared to ground truth TC measurements, including a mean absolute
error (MAE) ≤ 0.3 ◦C, mean bias < 0.1 ◦C, root mean squared error (RMSE) ≤ 0.35 ◦C,
standard error of the measurement (SEM) ≤ 0.2 ◦C, limits of agreement (LOA) ± 0.58 ◦C,
and/or a Pearson r correlation r ≥ 0.7 [12,14,19,24]. For algorithm development purposes
(i.e., to identify which algorithm was performing best during the training phase), we used
the criteria of MAE ≤ 0.3 ◦C to determine whether iterative modifications of our algorithm
were improving model accuracy. However, all accuracy metrics were evaluated in the final
model and are presented in the results below.

We used a common machine learning approach called leave one out cross validation
(LOOCV) to split our dataset into training and test datasets and avoid overfitting [25].
Briefly, in the LOOCV method, one trial or subject is left out of the training dataset and
used as the test dataset; the model is created on the training dataset and then tested on
the one dataset that was left out. This process continues in an iterative manner, where
each iteration leaves out a different trial. In this case, there were 52 iterations for any given
model that was created (e.g., multiple regression with heart rate, skin temperature, and
skin relative humidity). The MAE and mean bias from the 52 iterations of the test datasets
are then averaged to give an overall model accuracy. In this manner, different models can
be tested fairly quickly, where the best model has the lowest MAE. Once the best model
was selected, the coefficients of all training iterations were averaged to get the overall TC
model. Then, this overall model was implemented on all 52 datasets to obtain the accuracy
metrics outlined in the results below.

Note that as each subject completed a different number of trials (ranging from 1–6,
with a median of 2 trials), we completed this LOOCV process by leaving a single trial out
each time or by leaving out an entire subject’s set of trials for each iteration (i.e., LOPO,
leave one participant out). In doing so, we found no difference in the performance of the
algorithm with either method; thus, we used the coefficients for the model based on the
LOOCV where each trial was left out.
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2.4. Machine Learning Models

The primary purpose of the algorithm was to predict the ground truth TC given the
physiological data collected by the Kenzen wearable device and the physical characteristics
of the subjects that were collected through the Kenzen app when subjects created a user
profile. Several different machine learning models (described below) were trained and
tested on the dataset using the LOOCV method (using sklearn LeaveOneGroupOut, where
the groups input was the trials), and the accuracy criteria listed above were used to
determine whether each model’s performance was better or worse than the previous model.
This iterative model selection phase continued until a model met the key accuracy criteria
(outlined above); in particular, we wanted to ensure that these accuracy criteria were met
when TC was ≥38.5 ◦C, because temperatures above these TC predispose workers to heat
injuries and illnesses.

First, all features were checked for multicollinearity (using python’s statsmodels
variance_inflation_factor (VIF)), where features with VIF > 5 were excluded. For each of
the models that were tested, feature selection was completed using python packages
and functions like the ordinary least squares (OLS) statsmodel package, where variable
coefficients with p ≤ 0.05 were selected as being significant predictors in the models (e.g.,
backward regression). After obtaining the features from the OLS package, the SelectKBest
function from the sklearn package was used with the f_regression scoring to further validate
that these features should be implemented in the model moving forward. Additionally,
we tried other types of machine learning models, such as Lasso and Ridge regressions,
XGBoost regressor, Random Forest regressor, and an Extended Kalman Filter (EKF) model,
all using the LOOCV method to obtain the model accuracy and select the best model.

It should be noted that while this problem may be approached using deep learning
models, there were two main limitations in taking this approach. First, in the field, many
workers do not carry phones with them and/or are not near Wi-Fi throughout the day, and
so the Kenzen TC algorithm must be implemented on the device firmware and utilize as
little memory as possible. Deploying the algorithm on the device firmware ensures that
workers will be alerted in real-time when their TC is too high. Second, many of the workers
at these sites have inconsistent work schedules (e.g., work for 2 weeks, off for 2 weeks),
and so traditional deep learning models that rely on 24 h wear time for continual learning
were not possible, and therefore these models would likely not be as accurate compared to
simpler machine learning models.

2.5. Statistical Analyses

To evaluate the performance of different Kenzen TC models compared to ground truth
TC, different statistical metrics and plot-based representations were used to identify the
best-performing model. These statistics were first calculated on each one-minute datapoint
for each individual trial (e.g., calculated MAE for a given subject’s trial for a specific
category), and then all the one-minute values were averaged across that subject’s trial.
Next, the averages from all 52 trials were averaged to give an overall performance value
for that model. Each metric—MAE, RMSE, SEM, Pearson r correlation, and mean absolute
percent error—were all calculated in the same manner, and the details of these calculations
are described below.

The MAE was calculated by taking the absolute value of the difference between the
Kenzen TC and the ground truth TC for each minute, and then obtaining the mean from all
minutes for that trial. The RMSE was calculated by squaring each minute-based residual,
and then calculating the square root of the mean of the residuals for that trial. The Pearson
r correlation coefficient was also used to compare the ground truth TC with the predicted
Kenzen TC using the pearsonr function from the scipy.stats package in python to obtain a
Pearson r correlation coefficient for each trial. The mean absolute percent error (MAPE)
was calculated by taking the mean absolute error for each one-minute timepoint and
dividing this value by the ground truth TC at that minute, and then taking the average of
all one-minute values and multiplying by 100 to obtain a percentage for each trial. Then,
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all 52 trials’ MAPE was averaged to obtain a final percent error value. The standard error
of measurement (SEM) was calculated by taking the standard deviation of all residuals for
all minutes in each trial; the SEM from each trial was averaged to get an overall mean SEM.

A modified Bland Altman plot was used to identify any patterns or biases in the
residuals across the range of ground truth TC. The mean bias was calculated by taking the
mean of all of the one-minute errors overall, where ground truth TC was subtracted from
Kenzen TC. Thus, a positive mean bias indicates the Kenzen TC overestimated ground
truth TC, and a negative mean bias indicates the Kenzen TC underestimates ground truth
TC. The 95% LOA were calculated as 1.96 × standard deviation of all errors.

3. Results
3.1. Model Selection

The best-performing models were the random forest regressors and the EKF. However,
given the feasibility of implementing the EKF (vs. the random forest model) on the device
firmware, the EKF model was selected. In the EKF model, the initial seed value (i.e., initial
core temperature value) can be set at a standard TC value (e.g., 37 ◦C), or it can be set based
on the learning for that specific person. Through various iterations of seed values, and
then evaluating the model performance, we found that the seed values that led to the most
accurate EKF models were based on a separate linear regression model where biological
sex was the sole input. Thus, the final Kenzen TC algorithm is an EKF which includes
a combination of each individual’s real-time physiological data (collected through the
Kenzen device) and their user profile data (entered initially into the Kenzen application).
The algorithm continuously predicts TC each minute the person is wearing the device.

To implement the final algorithm into the device firmware, the model coefficients were
rounded down to five floating points to minimize the complexity and optimize the memory
requirements of the device. Before implementation, we re-ran the statistical analyses
to confirm that the rounding of coefficients to five decimal places did not affect model
accuracy. The model was then translated into an assembly level C code to be implemented
on the device firmware.

3.2. Model Accuracy Based on Ground Truth TC Ranges

The data outlined below demonstrate Kenzen’s TC algorithm accuracy for the 52 tri-
als. Table 1 shows the Kenzen TC algorithm is accurate at each core temperature bin
ranging from 36.24–40.20 ◦C, as it meets the field-established accuracy criteria where
MAE ≤ 0.3 ◦C. From TC > 37.0 ◦C, the Kenzen TC meets the accuracy criteria for mean
bias, LOA, and RMSE (<0.1 ◦C, ±0.58 ◦C, and ≤0.35 ◦C, respectively). The MAPE is also
<1%, SEM < 0.2 ◦C, and r > 0.7 for all TC bins. Figures 1 and 2 further demonstrate Kenzen
TC algorithm accuracy.

Table 1. Kenzen TC algorithm accuracy metrics binned by 1 ◦C increases in ground truth TC.

Ground
Truth TC

Range (◦C)

Total Min of
Activity

Pearson r
Correlation
Coefficient

RMSE (◦C) MAE (◦C) Mean Bias ± LOA
(◦C) SEM (◦C) MAPE (%)

36.2–37.0 355 0.71 0.20 0.19 0.23 ± 0.55 0.02 0.52
>37.0–38.0 2040 0.89 0.32 0.29 0.07 ± 0.53 0.09 0.78
>38.0–39.0 1331 0.88 0.26 0.24 0.04 ± 0.57 0.03 0.62
>39.0–40.2 310 0.79 0.16 0.15 −0.03 ± 0.41 0.01 0.38

All data 4036 0.94 0.30 0.25 0.07 ± 0.62 0.18 0.67

Note: n = 52 trials. TC bins are based on ground truth TC ranges and errors represent the difference between ground truth vs. Kenzen
TC. Accuracy metrics were calculated by binning each minute (independent of trial) into one of the four TC bins, and then the minutes
comprising each bin were averaged first by trial, and then for all trials within that bin.
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Figure 2. Kenzen TC algorithm performance vs. ground truth TC. (a) Correlation between ground
truth and Kenzen TC for all 52 trials (4036 min of data; r = 0.94, p < 0.001). Dotted line represents a
correlation of 1.0, showing that the Kenzen algorithm tends to slightly overestimate TC at higher core
temperatures. (b) Histogram showing the mean error distribution for all data based on one-minute
averages of Kenzen TC minus ground truth TC (rounded to one decimal place). ~70% of data had
an MAE ≤ 0.30 ◦C, the pre-established accuracy criteria. The histogram also shows that the Kenzen
TC tends to slightly overestimate (vs. underestimate) ground truth TC to protect workers from
heat-related injuries and illnesses.

Figure 1 shows the modified Bland-Altman plot, where data fall within acceptable
LOA, and the overall mean bias is <0.1 ◦C (i.e., 0.08 ◦C). In designing the algorithm, we
purposefully chose to slightly overestimate TC (versus underestimate TC), as the goal is
to protect workers from heat-related injuries and illnesses and alert them when their TC
is exceeding safe levels (Figures 1 and 2). Thus, alerting a worker too soon is preferable
to missing an alert or underestimating TC. That being said, the errors are similar across
TC ≥ 37 ◦C (i.e., there is no pattern in the residuals in the Bland–Altman plot); and espe-
cially at higher core temperatures (≥38.5 ◦C), the algorithm remains accurate and is well
within the field-established standards for MAE, RMSE, LOA, and mean bias. Thus, at high
TC where heat injuries and illnesses are most prevalent, the Kenzen TC is highly accurate.

3.3. Model Accuracy for Each of the Four Studies

Each of the four studies had different experimental protocols which involved varying
combinations of walking, jogging, running, sitting, and stationary cycling across a range of
environmental conditions. This variability in experimental design led to different mean
ground truth TC and exercise intensities for each of the four studies. Based on the accuracy
criteria of RMSE, MAE, and Pearson r correlation, Table 2 shows that the Kenzen TC
algorithm meets the accuracy criteria for Studies 2–4 but just misses the criteria for Study 1.
This is likely because Study 1 had a small sample size (n = 5) and involved cycling instead
of walking/jogging/running. Still, Study 1 still shows strong accuracy as the mean bias is
<0.1 ◦C, the SEM < 0.1 ◦C, and Pearson r = 0.90. Figure 3 shows representative plots from
each study.
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Table 2. Kenzen TC algorithm accuracy for Studies 1–4.

Study
Total Min of
Activity in

Range

Mean Ground
Truth TC

(◦C)

Mean %
Max
HR

Pearson r
Correlation
Coefficient

RMSE
(◦C)

MAE
(◦C)

Mean
Bias (◦C)

SEM
(◦C)

MAPE
(%)

1 492 37.54 59.9 0.90 0.36 0.33 −0.06 0.04 0.88
2 836 38.40 88.4 0.98 0.27 0.23 0.16 0.27 0.60
3 1454 37.53 60.7 0.94 0.29 0.25 0.06 0.08 0.67
4 1254 38.09 76.8 0.95 0.31 0.25 0.08 0.24 0.66

Note: n = 52 trials total; Study 1, n = 5 trials; Study 2, n = 14 trials; Study 3, n = 15 trials; Study 4, n = 18 trials. Each Study had different
exercise intensities (based on percentage of age-predicted maximum HR) and mean ground truth TC. For each study, the average statistical
metrics for each trial were first calculated, and then these metrics were averaged across all trials.
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3.4. Model Accuracy across Heart Rate Zones and Environmental Temperatures

It was also important to ensure that the Kenzen TC algorithm met the field-established
accuracy criteria during a range of low- to high-intensity physical activities typical of
manual labor jobs. Table 3 shows that the Kenzen TC algorithm is accurate for light to
vigorous HR zones; however, during lighter HR zone activities (e.g., sitting), Kenzen TC
slightly underestimates ground truth TC, as the mean bias, MAE, and Pearson r correlation
coefficient slightly exceed the pre-determined accuracy criteria.

Table 3. Kenzen TC algorithm accuracy binned by age-predicted maximum HR zones.

HR Zone % of Max
HR

Total Min
of Activity

Pearson r
Correlation
Coefficient

RMSE
(◦C)

MAE
(◦C)

Mean Bias ± LOA
(◦C)

SEM
(◦C)

MAPE
(%)

Lighter ≤57 737 0.58 0.30 0.28 −0.15 ± 0.59 0.03 0.76
Light >57 to ≤64 687 0.89 0.28 0.27 0.00 ± 0.65 0.03 0.72

Moderate >64 to ≤75 979 0.87 0.27 0.25 0.12 ± 0.65 0.04 0.67
Vigorous >75 1633 0.94 0.27 0.24 0.16 ± 0.50 0.12 0.63

Note: n = 52 trials. HR = heart rate. Percentage of age-predicted maximum HR calculated according to Tanaka et al., 2001 [26]. Accuracy
metrics were calculated by binning each minute (independent of the trial) into one of the four heart rate zones, and then the minutes
comprising each zone were averaged first by trial, and then for all trials within that bin.

Moreover, it was important that the Kenzen TC algorithm also passed all accuracy
criteria during activities spanning a wide range of environmental conditions. In this case
the temperatures and relative humidity ranged from 13–43 ◦C and 11–75%, respectively.
Table 4 shows that the accuracy criteria are met for MAE, RMSE, mean bias, and Pearson r
correlation coefficients across a wide range of temperatures, demonstrating that the Kenzen
TC algorithm is accurate in a range of environmental temperatures and humidity.

Table 4. Kenzen TC algorithm accuracy binned by environmental temperature.

Ta Range
(◦C)

Ta Mean
± SD
(◦C)

RH Mean
± SD (%)

Total Min
of

Activity

Pearson r
Correlation
Coefficient

RMSE
(◦C)

MAE
(◦C)

Mean
Bias ±

LOA (◦C)

SEM
(◦C)

MAPE
(%)

≤20.0 17.3 ± 2.2 30.4 ± 15.2 645 0.91 0.30 0.25 0.05 ± 0.64 0.20 0.65
20.1–30.0 27.2 ± 2.5 40.7 ± 15.3 2121 0.95 0.27 0.23 0.10 ± 0.56 0.21 0.61

>30.1 37.2 ± 3.7 33.4 ± 11.2 1147 0.91 0.34 0.31 0.06 ± 0.69 0.07 0.81

Note: n = 52 trials. Ta = environmental temperature; RH = environmental relative humidity. Accuracy metrics were calculated by first
obtaining the statistic for each trial within each bin, and then all obtaining all 52 trials’ average within that bin.

3.5. Model Accuracy When Comparing Gastrointestinal Pill vs. Rectal Probe Measurements

As there were two types of equipment used to collect ground truth TC measurements
(i.e., 19 trials with the gastrointestinal pill and 33 trials with the rectal probe), it was
important to demonstrate the Kenzen TC algorithm was accurate when compared to
both methods of the gold-standard TC measurements. Table 5 shows that the Kenzen TC
algorithm is accurate compared to both types of ground truth measurements based on the
MAE, mean bias, Pearson r, and RMSE criteria.

3.6. Model Accuracy Based on Biological Sex

Although there was not an equal number of males and females in this study, a large
percentage of trials were completed by females (i.e., 27% or 14 out of 52 trials). The
comparisons for males vs. females were as follows: mean bias ± LOA = 0.07 ± 0.60 vs.
0.07 ± 0.69 ◦C, MAE = 0.24 vs. 0.28 ◦C, RMSE = 0.29 vs. 0.32 ◦C, and Pearson r = 0.96 vs. 0.92.
Thus, the Kenzen TC algorithm met the pre-established accuracy criteria for both sexes.
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Table 5. Kenzen TC accuracy compared to both gold standard measures of TC.

Type of Ground
Truth TC
Measure

Total Min of
Activity in

Range

Pearson r
Correlation
Coefficient

RMSE
(◦C)

MAE
(◦C)

Mean Bias ± LOA
(◦C)

SEM
(◦C)

MAPE
(%)

Rectal Probe 2708 0.94 0.30 0.25 0.06 ± 0.63 0.17 0.67
GI Pill 1328 0.96 0.29 0.26 0.07 ± 0.62 0.21 0.67

Note: n = 19 trials for the gastrointestinal (GI) pill and n = 33 trials for the rectal probe. Accuracy metrics were calculated first by obtaining
the average for all of the minutes in each individual trial, and then taking the average for all trials in that specific category.

4. Discussion

The aim of this study was to demonstrate that an algorithm to predict core body
temperature could successfully be implemented on a wearable device and produce accurate
non-invasive TC estimates in real-time. Here, we show that the Kenzen wearable device
can accurately predict TC compared to gold-standard measurements of TC via a rectal
probe or gastrointestinal pill. Importantly, the Kenzen algorithm maintains high accuracy
as TC increases above the point at which heat injuries and illnesses become more prevalent
(i.e., ≥38.5 ◦C). To maintain strong accuracy at higher TC (when workers are at greatest
risk of heat-related problems), accuracy is slightly comprised at lower core temperatures,
where TC is underestimated (i.e., at rest, TC range of 36–37 ◦C). Furthermore, the Kenzen
TC algorithm remains accurate throughout a wide range of environmental conditions, for
both biological sexes, and for physical activity spanning light to vigorous HR zones.

Overall, Kenzen’s TC accuracy is similar to, and in some cases, more accurate than
previously reported TC algorithms. Seng et al. (2016) also used an EKF model to predict TC
and reported a mean bias of 0.11 ◦C (vs. Kenzen = 0.08 ◦C) and an RMSE of 0.29 ◦C (vs.
Kenzen = 0.30 ◦C) [19]. Seng et al. reported that ~87% of their data fell within ≤0.3 ◦C MAE,
while we show that ~70% of Kenzen data fall within MAE ≤ 0.3 ◦C (Figure 2). This slightly
higher accuracy reported by Seng et al. may be due to the fact that they built and tested
their algorithm only on men and within a tight ambient temperature range (30–35 ◦C),
whereas Kenzen’s dataset included women and a much wider temperature range (13–
43 ◦C). Moreover, Kenzen’s algorithm demonstrates a slightly stronger correlation with
ground truth TC than Seng et al. (2016): 0.94 vs. 0.89, respectively [19]. Although the
Kenzen TC algorithm and Seng et al.’s (2016) algorithm are not the same, they both use an
EKF to predict TC from commonly measured physiological variables. The performance is
similar between these two algorithms; however, the Kenzen algorithm was built and tested
on a wider variety of environmental conditions, women, and a larger range in ground
truth TC.

Buller et al. (2013) also have a TC algorithm that uses an EKF model. However,
different to Seng et al. and Kenzen’s model, Buller et al.’s model only uses heart rate
as the single input variable [12]. Buller et al. reported an overall mean bias ± LOA of
–0.03 ± 0.63 ◦C, which is similar to Kenzen’s mean bias of 0.07 ± 0.62 ◦C. Buller et al.’s
reported RMSE was 0.30 ± 0.13 ◦C, which is comparable to that of Kenzen (Table 1), and
they reported a correlation coefficient of 0.84 for the observed vs. predicted TC, which is
slightly lower than Kenzen’s correlation coefficient of 0.94. Although Buller et al. had a
much larger test dataset (vs. Kenzen’s), which included a variety of clothing layers and
acclimatization states, the training and test datasets only included one female whereas
Kenzen’s train/test dataset was comprised of 27% females and a wider range in ages. The
environmental conditions for the datasets from Buller et al. (2013) and Kenzen are similar:
13–43 and 9–45 ◦C, respectively, with slightly colder temperatures in the test dataset for
Buller et al. (2013). As the Buller et al. algorithm only uses one input variable, HR, one
question that might arise is why it would be necessary to incorporate more variables
into the model if the accuracy is similar (between the Buller and Kenzen algorithms). As
HR is susceptible to many acute physiological changes (e.g., caffeine, stress and anxiety,
drugs and medications, fatigue, etc.), a model that incorporates multiple input variables
(especially when they are easily measured simultaneously in a wearable device) will
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help minimize false alerts and therefore more accurately identify workers that are at core
temperature limits where a break is required.

Kenzen’s overall MAE is 0.25 ◦C throughout a range of exercise intensities and en-
vironmental conditions, for both sexes, and a wide range in TC. Importantly though, the
Kenzen TC algorithm maintains its accuracy (and even becomes more accurate) as the
ground truth core temperature exceeds 38.5 ◦C. This is important because NIOSH recom-
mends workers stop and take a break (to avoid heat injury and illness) at 38.2 and 38.5 ◦C
if workers are unacclimatized or acclimatized, respectively [8]. In the case of manual labor
work settings, where workers typically endure 8+ hour shifts and must stay safe in the
heat, it is preferable to slightly overestimate TC (vs. underestimate) in order to protect these
workers from heat-related injuries and illnesses throughout the day. As such, Kenzen’s TC
algorithm was designed to slightly overestimate (vs. underestimate) TC at these dangerous
TC ranges in order to protect workers, whereas previous algorithms or wearable devices
have been shown to underestimate TC at these higher temperatures [20], which can put
workers at even greater risk for heat injury and illness if solely relying on the wearable
device for safety feedback. Another point to note is that this slight overestimation of core
temperature at TC ≥ 38.5 ◦C may be even greater when compared to the gold-standard TC
measurement of esophageal temperature, since gastrointestinal and rectal temperatures
tend to be ~0.24–0.28 ◦C higher than esophageal temperatures during lower body exercise
in the heat which causes a heat sink [22]. Of course, the magnitude of error between
esophageal TC and Kenzen TC would also be dependent on the environmental conditions,
type and duration of exercise, and therefore further research is needed to better understand
how Kenzen TC compares to esophageal TC at these higher TC.

There are many strengths of the current study where the Kenzen TC algorithm was
trained and tested. These strengths include an adequate sample size (52 trials with
27 unique subjects including females), a variety of exercise intensities within and among
trials, a wide range of environmental conditions, and a dataset where ~40% of ground
truth TC data were ≥38.0 ◦C. As a result, the Kenzen TC algorithm is equally accurate for
both biological sexes, for a range of cool to hot environmental conditions, and maintains
accuracy at higher TC which predispose workers to heat injuries and illnesses. Some
limitations of the current Kenzen TC model include minimal clothing layers for most of the
studies and a relatively younger subject population. Many of the worksites include older
individuals (e.g., >50 y) and workers often wear 2–3 layers of clothing [3–6,9,27]. Thus,
future research should validate the Kenzen TC algorithm in older adults and individuals
wearing heavy clothing layers while working in the heat. Further research should also
explore a core temperature algorithm that accounts for subjects being heat acclimatized vs.
non-heat acclimatized. Based on previous research [28], if using an EKF model, it is likely
that the seed value may need to be shifted to a lower starting point in heat-acclimatized
(vs. unacclimatized) individuals.

5. Conclusions

In summary, this is the first study we are aware of to show that an EKF model can be
successfully implemented in a wearable device worn on the upper arm to non-invasively
and accurately predict TC continuously throughout work or exercise. We demonstrate that
the Kenzen TC algorithm accurately predicts TC compared to ground truth measurements
of TC via a gastrointestinal pill or rectal probe throughout a range of environmental
conditions, exercise intensities, TC ranging from 37.0–40.2 ◦C, and for both biological
sexes. Thus, the Kenzen device can be used to accurately monitor TC during work in cool
to hot environments so that individuals can avoid heat-related injuries and illnesses via
personalized alerts when an individual’s TC reaches unsafe levels.
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