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Abstract

There is accumulating evidence suggesting that a central deficit in developmental prosopag-

nosia (DP), a disorder characterized by profound and lifelong difficulties with face recogni-

tion, concerns impaired holistic processing. Some of this evidence comes from studies

using Navon’s paradigm where individuals with DP show a greater local or reduced global

bias compared with controls. However, it has not been established what gives rise to this

altered processing bias. Is it a reduced global precedence effect, changes in susceptibility

to interference effects or both? By analyzing the performance of 10 individuals with DP in

Navon’s paradigm we find evidence of a reduced global precedence effect: The DPs are

slower than controls to process global but not local shape information. Importantly, and in

contrast to previous studies, we demonstrate that the DPs perform normally in a compre-

hensive test of visual attention, showing normal: visual short-term memory capacity,

speed of visual processing, efficiency of top-down selectivity, and allocation of attentional

resources. Hence, we conclude that the reduced global precedence effect reflects a percep-

tual rather than an attentional deficit. We further show that this reduced global precedence

effect correlates both with the DPs’ face recognition abilities, as well as their ability to recog-

nize degraded (non-face) objects. We suggest that the DPs’ impaired performance in all

three domains (Navon, face and object recognition) may be related to the same dysfunction;

delayed derivation of global relative to local shape information.

Introduction

Developmental prosopagnosia (DP) is a disorder characterized by profound and lifelong diffi-

culties with face recognition in the absence of any sensory or intellectual deficits or known

brain injury [1]. Whether the disorder is selective for faces, or whether it may also affect the

visual processing of other categories of objects beside faces, is debated [2–4]. What does seem

clear, and what is a precondition for the diagnosis, is that everyday recognition of faces is far

more affected than recognition of other types of objects. Indeed, individuals with DP can

report numerous examples of experiences in which they were unable to recognize individuals

after exposure that would lead to recognition success in neurologically typical people [1].

In our experience, they do not report similar problems with other categories of objects.
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What can possibly be the underlying cause of this disorder? Given that all faces share the

same features (nose, eyes etc.), arranged in a similar manner (the nose is located under the

eyes and over the mouth; so called first-order relations), face recognition may depend on the

identification of the exact shape of these features, the metric relationship between these fea-

tures, so called second-order relations [5, 6], and probably in particular on the binding of these

two types of information. This suggests that efficient face recognition may necessitate some

sort of holistic processing wherein all these aspects are integrated. There are several lines of

evidence supporting the notion that DP may reflect a problem in holistic processing [7]. We

will briefly describe two of them here, the Garner interference effect [8] and The Composite

Face effect [9], before we turn to Navon’s paradigm which is the main focus of the present

investigation.

The Garner interference effect is based on Garner’s speeded-classification paradigm [10].

This paradigm examines whether an observer can attend to one dimension of an object with-

out experiencing interference from task irrelevant variation on another dimension. If they can,

these dimensions are separable. If they cannot, there will be an interference effect, suggesting

that the dimensions are integral (holistically processed). This paradigm has been used by

Amishav and Kimchi [8] to examine whether individuals can process the features in faces

without being affected by changes in the second-order relations of the same features and vice

versa. As an example; does a change in the spacing between the eyes (second-order dimension)

affect our judgment of potential changes in the features themselves (feature dimension)?

Apparently it does, as task irrelevant variation gives rise to symmetrical interference effects, so

that variation in features affects the judgment of variation in second-order relations and vice

versa. In comparison, individuals with DP exhibit no Garner interference along these dimen-

sions, suggesting a break-down of integral (holistic) processing [11].

In the Composite Face Task the observer is presented with two faces (either simultaneously

or delayed), and asked to decide whether the two top-halves are identical or not (ignoring

the bottom-halves of the faces). It turns out that people find this task difficult and often report

that the top-halves are different when in fact only the bottom-halves are. This is not merely a

Stroop like interference effect [12], reflecting that the stimuli are incongruent in some respects,

because the increase in error rate/reaction time disappears, or is greatly reduced, when the two

halves of the faces are spatially offset (misaligned). Hence, when the face-gestalt is disturbed by

misalignment, there is a release from interference even when the incongruent information is

still present. Like the Garner interference effect, the Composite Face effect also suggests that

people cannot refrain from processing parts of faces even when these parts are task irrelevant.

Regarding how individuals with DP perform on the Composite Face Task, the picture is

mixed. While some studies have found that individuals with DP show no or a reduced interfer-

ence effect [13], and that there may even be a positive correlation between the magnitude of

the interference effect and performance on standard face recognition tasks [2], others have

reported normal interference effects [14–17].

Despite some inconsistencies, the studies considered above seem to suggest that face recog-

nition is based on holistic processing, and that this type of processing may be impaired in indi-

viduals with DP [18]. This agreement regarding impaired holistic processing in DP, however,

may be more apparent than real as several different definitions of the construct ‘holistic’ can

be found in the literature [19]. On one account, holistic processing is thought to reflect that

faces cannot (easily) be decomposed into parts because faces are represented as undifferenti-

ated wholes where the parts do not have a distinct representation (e.g., Tanaka and Farah

[20]). A more liberal version of this proposition has been advanced by Rossion [21]. He argues

that parts of faces are processed simultaneously, guided by stored representations which are

inherently holistic (templates). However, the parts in these holistic representations do not
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need to have the same weight in the recognition process. As an example, people may be more

affected by changes to the eye than the nose region even if both regions are processed simulta-

neously. Accordingly, in this liberal version, parts must to some extent be represented dis-

tinctly even if the representation acts as a whole. A different view has been expressed by

Behrmann, Avidan [22]. They seem to equate ‘holistic’ with representations placing special

weight on (second-order) configural relations among the features. In later writings, this

emphasis on second-order relations has been downplayed somewhat by giving equal weight to

features and second-order relations. Thus, these authors now reserve the term ‘holistic’ to the

integration of features and their configuration [11].

Common for the interpretations of holistic processing considered thus far is their percep-

tual nature; they primarily concern the representational substrate of face recognition. How-

ever, the deficit underlying DP could in principle be strictly attentional in nature. Imagine for

example that the visual processing capacity is somehow reduced in DP, so that visual elements

can no longer be processed in parallel. In this case, attentional allocation would take on a more

serial mode in which single features (or small groups of nearby features) have to be processed

in turn. An individual with such a disorder would clearly be less susceptible to the Composite

Face effect or Garner interference effects, and this regardless of whether face representations

in visual long-term memory are stored as (holistic) templates or not. In line with this, Richler,

Palmeri [19] have stated that: “At present, holistic processing as a failure of selective attention

seems the strongest candidate” (p. 4). While we agree with these authors’ point that neither

the Composite Face effect or the Garner interference effect in themselves point to a specific

impairment (or version of ‘holistic’), we do find it to be a misnomer calling such effects the

result of a failure of selective attention. Taken literally, it would imply that it is the individuals

with DP who have normal ‘selective’ attention, whereas individuals with normal face recogni-

tion—who are susceptible to interference effects—have impaired selective attention.

The main point made by Richler, Palmeri [19] still highlights the need for examining visual

attention proper in individuals with DP; just as it is important to examine their general visual

object recognition abilities. Without information concerning how individuals with DP per-

form in these (related) domains, it will be difficult to come closer to an understanding of why

face recognition fails in DP.

The relationship between Navon performance and face recognition

As opposed to the studies considered above, the results to be presented here are based on

Navon’s paradigm. For this reason we will briefly discuss how findings based on this paradigm

may relate to face processing.

Navon’s paradigm [23] involves the presentation of compound stimuli; typically large let-

ters (global level) composed of smaller letters (local level) in which the global and the local let-

ters may be the same (consistent) or different (inconsistent). While different effects may be

obtained with this paradigm depending on exposure duration, masking, letter spacing, stimu-

lus clarity, eccentricity, or attentional demands (divided or selective) [24–26], three effects are

usually found: (i) a global precedence effect with faster judgements of the identity of the global

shape compared with the local elements, (ii) an interference effect with slower responses to

inconsistent than consistent stimuli, and (iii) an inter-level interference effect with greater inter-

ference effects on local compared with global identity trials.

If failures in face recognition reflect not only impaired processing of features but also

impaired processing of the configuration of these features, it is probable that individuals with

DP may also experience difficulties in this paradigm. After all, the global precedence effect sug-

gests that the overall configuration of the local elements is derived and recognized before the
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identity of the local elements is resolved. Hence, difficulties in deriving the relationship

between features may be reflected in the Navon paradigm as a reduced global precedence effect

or even a local precedence effect [2, 22].

While not all studies have found a correlation between face recognition ability and perfor-

mance in Navon’s paradigm in DP [27], some have. Behrmann, Avidan [22] reported a mar-

ginally significant correlation (r = .84, p = .07) between face discrimination performance and

a global/local index derived from the Navon paradigm [(Local-Global Inconsistent trials)–

(Local-Global Consistent trials)] in a small group of individuals (N = 5): The greater the local

bias, the poorer the performance in the face discrimination task. Using a larger sample of indi-

viduals (N = 13), Avidan, Tanzer [2] found a marginally significant correlation (r = .52, p =

.06) between the same Navon index and performance in the Composite Face paradigm: The

greater the local bias, the less effect of interference in the Composite Face task. Duchaine,

Yovel [28] examined how a variety of indexes derived from the Navon paradigm correlated

with performance on the Cambridge Face tests in a relatively large sample of individuals with

DP (N = 14). While most of these indexes did not correlate with face recognition performance,

one did: Their measure of Global-to-local interference [(Local Consistent–Inconsistent trials)

/ (Local Consistent+Inconsistent trials)] correlated (r = .58, p = .03 uncorrected for multiple

comparisons) with performance on the Cambridge Face Memory Test (CFMT; Duchaine and

Nakayama [29]).

It is evident from this short review, that studies relating performance in Navon’s paradigm

to face recognition ability have been based on different indexes derived from the Navon

paradigm.

Some of these indexes are complex in that they tap inter-level interference effects [2] while

others are more simple in that they tap global/local precedence effects or interference effects

confined to a particular level [28]. Considering that global/local precedence effects and inter-

level interference effects reflect different mechanisms [30, 31], it is perhaps not surprising that

different results have been obtained. Furthermore, the indexes applied also seem to differ con-

siderably in reliability [30], which may have added further to the discrepancies.

In the present study we thus decided to use an index of global/local processing that was

both simple and reliable, and that would allow us to examine whether face recognition in DP is

systematically related with a reduced or even reversed global precedence effect. This index,

which we term the ‘Global-Local Precedence index’, is based on the standardized mean differ-

ence (Cohen’s d) between reaction times (RT) to Local and Global Consistent trials. The index

is simple because it measures differences in global and local processing unconfounded by

interference effects. Based on the data presented in Gerlach and Krumborg [30] we computed

the Spearman-Brown-corrected split-half reliability of this index to be .78.

We also tested the general visual attentional capacity of the DPs using a combination of psy-

chophysical experiments and mathematical data modelling based on the Theory of Visual

Attention (TVA) (Bundesen, 1990). This was done to examine whether potential abnormalities

on Navon’s paradigm might reflect attentional deficits.

The Navon experiment

Method

Participants. Background information on the group of individuals with DP (N = 10) we

test here has previously been reported by Gerlach, Klargaard [4]. All of these individuals per-

formed significantly outside the normal range on the Cambridge Face Memory Test and the

first part of the Faces and Emotion Questionnaire (29-items) [32] compared with a matched

control sample. The mean age of the DPs was 37 (range: 16–57). Six of them are females. All
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participants provided written informed consent according to the Helsinki declaration. The

Regional Committee for Health Research Ethics of Southern Denmark has assessed the proj-

ect, and ruled that it did not need formal registration. For the specific participant who was 16

years at the time of the investigation, both a parent and the participant were provided with

written information about the project, and the participant then signed the consent form with

the knowledge of the parent.

The DPs’ performance in Navon’s paradigm is compared with 20 control participants,

two for each individual with DP, matched for age and gender. We decided to exclude two of

the original 20 controls because they exhibited unusually high error rates in Navon’s para-

digm (14 and 23%). The excluded controls were replaced with two other matched controls

(Mean age in the adjusted control group = 37, range: 16–56). This did not alter the results to

be reported.

Design. The participants were presented with large letters, either ‘H’ or ‘S’, that could con-

sist of either smaller ‘H’s or ‘S’s. The experiment comprised four experimental blocks. In two

blocks, the participants were required to report the identity of the large (global) letter, whereas

they were to report the identity of the small (local) letters in the other two blocks (a selective

attention paradigm). The blocks were presented in an ABBA design beginning with global

identity judgements.

Stimuli. The large letters were 4.1 cm wide and 5.5 cm high (3.91˚ × 5.25˚) and the small

letters were 0.5 cm wide and 0.7 cm high (0.47˚ × 0.67˚). The fixation cross presented before

stimulus onset was 1 cm wide and 1 cm high (0.95˚ × 0.95˚). All stimuli were black presented

on a white background on a computer screen.

Procedure. Participants performed a total of 48 trials in each block, 24 consistent (same

identity of local and global elements) and 24 inconsistent (different identity of the local and

global elements). The stimuli were shown at either the right or the left side of the fixation

cross, with the centre of the global shape positioned 3.5 cm (3.34˚) from the fixation cross.

An equal number of stimuli within each block (n = 24: 12 consistent and 12 inconsistent)

were presented to the right and the left. The order of position and consistency (consistent vs.

inconsistent stimuli) was randomized. A trial began with a fixation cross presented in the

middle of the screen for 1 s, which the participants were instructed to look at when present.

This was followed by stimulus onset which was replaced after 180 ms. by a blank screen

which remained until response. Responses were recorded via a serial response box placed in

front of the participants’ right hand. Before each block, the participants performed 16 prac-

tice trials. Feedback was provided during the practice trials but not during the experimental

blocks.

Statistical analyses. Prior to statistical analysis data were trimmed excluding any RT fall-

ing 2.5 SD’s beyond or below the individual means for either consistent or inconsistent trials

at each presentation location (left and right) and at each level (global and local); i.e., trimming

was performed across a total of eight individual means for each participant. The trimming

resulted in an average of 3% trials removed for the DP group (range: 0.5–4.7%). This was

rather similar to the control participants (average = 2.2%; range: 0–4.2%). Both figures are well

within the recommended limits suggested by Ratcliff [33].

As described above, one of the objectives of the present study is to examine whether face

recognition in DP is systematically related to the Global-Local Precedence index derived

from Navon’s paradigm; an index which is based on the standardized mean RT to Local and

Global Consistent trials. Considering the relatively small sample size of the DP group we also

examined whether the DP group and control group differed reliably on this index using robust

statistics by estimating the 95% CI of the mean difference between groups based on bias cor-

rected bootstrap analysis (1000 samples).

Delayed global shape processing in developmental prosopagnosia
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Results

Error rates. The DP group made 1.8% errors on average (range: 0–4.2%) whereas the con-

trol participants made an average of 2.6% (range: 0–6.8%). Comparing the error rates for the

DP and the control groups for each of the four conditions (Global Consistent, Global Inconsis-

tent, Local Consistent, and Local Inconsistent) did not reveal any significant differences

(Mann-Whitney exact test, all p’s> .1) (See also S1 Dataset).

RT. The mean correct RTs were subjected to a mixed factorial ANOVA with the factors

Group (DPs vs. controls), Level (global [large letter] vs. local [small letter] shape judgments),

and Consistency (consistent vs. inconsistent trials). This analysis revealed a significant main

effect of Consistency (F(1,28) = 40.2, MSe = 80374, partial η2 = .59, p< .001), with faster

responses on consistent trials, and a significant three-way interaction between Group, Level

and Consistency (F(1,28) = 6.03, MSe = 9275, partial η2 = .18, p< .05). The three-way interac-

tion was further examined using separate within-subject ANOVA’s with Group as the separat-

ing variable.

The ANOVA for the DP group revealed a significant main effect of Consistency (F(1,9) =

8.9, MSe = 38378, partial η2 = .50, p< .05). No other effects were significant (all p’s> .6). In

comparison, the ANOVA for the control group revealed a significant main effect of Level (F
(1,19) = 44.9, MSe = 121368, partial η2 = .70, p< .001), with faster identity judgments of global

shapes, a significant main effect of Consistency (F(1,19) = 50.3, MSe = 45792, partial η2 = .73,

p< .001), and a significant interaction between Level and Consistency (F(1,19) = 14.6, MSe =

17111, partial η2 = .44, p< .01). Simple main effects analysis (paired samples t-test) of this

interaction revealed that all simple main effects were significant (all p’s< .01). See Table 1

and Fig 1 for details concerning mean correct RTs and SDs (see also S1 Dataset for additional

information regarding the individual scores on Navon’s paradigm).

Effect sizes. The mean standardized difference for the DP group between RTs to Local

and Global Consistent trials (the Global-Local Precedence index) was .08. In comparison it

was .54 for the control group. This difference was reliable (Mdif = .46, 95% CI [.09 - .93], p<
.05). As will be discussed below, one of the DPs (DP18) obtained an extreme score on the

Global-Local Precedence index (-1.76). Hence, we redid the analysis removing her and her

two controls from the analysis. This did not alter the results as the difference between the DP

and control group was still reliably different (Mdif = .35, 95% CI [.11 - .62], p< .05). For addi-

tional information regarding the individual scores on the Global-Local Precedence index see

S1 Dataset.

Discussion

The results from the Navon paradigm seem clear: While both groups exhibit a consistency
effect, with faster responses on consistent compared with inconsistent trials, only the control

group exhibits the typical: (i) global precedence effect, with faster responses to global than to

local identity judgments, and (ii) the inter-level interference effect, with greater effects of

Table 1. Performance in Navon’s paradigm.

Global Consistent Global Inconsistent Local Consistent Local Inconsistent

DPs 594 (144) 664 (241) 602 (132) 656 (107)

Controls 529 (144) 547 (142) 577 (148) 654 (164)

Mean correct RT and SD (in brackets) for the group of individuals with developmental prosopagnosia (DP) and the control group in the four conditions of the

Navon paradigm.

https://doi.org/10.1371/journal.pone.0189253.t001
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consistency on local compared with global identity trials. In fact, for the DP group there is

hardly any difference between local and global consistent trials (8 ms), and their global-to-

local interference effect is not larger than the local-to-global interference effect. Hence, there

are two aspects where the DP group differs from the control group: (i) they show no global

precedence effect, and (ii) they exhibit local-to-global and global-to-local interference effects

of similar magnitudes. The former effect was also reflected in the Global-Local Precedence

index where the DP group obtained reliably lower scores than the control group.

If the lack of a global precedence effect in the DP group reflects delayed derivation of global

shape information, what then is the cause of this impairment? We see two possibilities; an

attentional and a perceptual one. If attention is not evenly spread across visual space, but is

somehow restricted, local shape information may be derived as quickly as global shape infor-

mation. We will examine this possibility more stringently in the next experiment. If we find

no evidence of restricted allocation of attention in the DP group, this will suggest that the

impaired derivation of global shape information reflects a perceptual rather than an attentional

deficit.

TVA-based assessment of attentional functions

The Theory of Visual Attention (TVA) [34] is a formal computational framework offering a

quantitative analysis of individual differences in attentional functions. TVA assumes that

visual categorizations of objects in the visual field compete (race) for access to a visual short-

term memory (VSTM) with a limited storage capacity of K objects. The processing rate at

which an object x races toward VSTM is given by,

vx ¼ C
wxP
z2S wz

where C is the total processing capacity and wx=
P

z2S wz is the relative attentional weight of

object x (i.e., the attentional weight of object x divided by the sum of attentional weights across

all objects in the visual field, S). That is, objects with high attentional weights will be more

likely to access the limited VSTM storage than objects with low attentional weights.

Fig 1. Illustration of the performance for the DP group and the control group in the four conditions of

the Navon paradigm.

https://doi.org/10.1371/journal.pone.0189253.g001
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Depending on the specific TVA-based experimental paradigm used, different parameters

quantifying attentional functions can be derived. Here, we employed the CombiTVA para-

digm (a combination of a whole report and a partial report paradigm; Vangkilde, Bundesen

[35]) from which five distinct components of attention can be estimated: (1) K, the capacity of

VSTM measured in number of letters; (2) C, the total processing capacity measured in letters

per second; (3) t0, the temporal threshold of conscious perception measured in milliseconds;

(4) α, the top–down controlled selectivity defined as the ratio between the attentional weight

of a distractor wD and the attentional weight of a target wT (i.e., α = wD/wT); and finally (5)

windex, the laterality index of attentional weights defined as the ratio between the sum of atten-

tional weights assigned to objects in the left hemifield and the sum of attentional weights

across the entire visual field.

K is assumed to vary on a trial-by-trial basis. Thus, the K value is the expected K given a par-

ticular probability distribution (i.e., the probabilities that on a given trial K = 1, 2,. . ., 6). The

windex is based on six attentional weights, one for each letter position.

An α value close to zero reflects efficient selection of targets whereas a value close to 1 indi-

cates no prioritizing of targets compared with distractors. Thus, if individuals with DP have a

problem in attentional selection this will result in a larger α value for these individuals com-

pared with control subjects. The laterality index, windex, will help to assess if individuals with

DP spread attention differently across the visual field than control subjects. A laterality index

of 0.5 indicates an equal weighting of the left and right visual field, whereas a value closer to 0

reflects a right-sided bias and a value closer to 1 reflects a left-sided bias. To further quantify

the participants’ spatial distribution of attention, we also calculate the standard deviations of

the relative attentional weights, SDweight [36] where a value of zero indicates that attention is

distributed equally on all the six positions in the experimental paradigm, whereas a value

approaching
ffiffiffiffiffiffiffiffi
1=6

p
reflects a very unequal distribution of attention weights.

Method

Participants. The DPs’ performance in the CombiTVA paradigm was compared with 20

control participants, two for each individual with DP, matched for age and gender. These con-

trol participants were the same as the ones who served as control participants in Gerlach, Klar-

gaard [4].

Stimuli. For a given trial, stimuli were chosen randomly without replacement from a set

of 20 capital letters (ABDEFGHJKLMNOPRSTVXZ) written in the font Arial (broad) with a

letter point size of 68 corresponding to 2.7˚ × 2.3˚ of visual angle. Target stimuli were in red

and distractors were in blue. Masks were made from red and blue letter fragments completely

covering the letters.

Procedure. Fig 2 shows the trial outline of the CombiTVA paradigm. A trial was initi-

ated by a red fixation cross presented in the middle of a black screen for 1200 ms. After a

100-ms blank screen, either six red target letters, two red target letters, or two red target let-

ters and four blue distractor letters were presented briefly on an imaginary circle with a

radius of 7.5˚ of visual angle. Letter displays containing six target letters were presented for

10, 20, 50, 80, 140, or 200 ms, whereas all other types of letter displays were presented for 80

ms. Letter displays were terminated by pattern masks presented for 500 ms on all possible

stimulus positions, where after participants made an unspeeded report of all the red target

letters they were ‘fairly certain’ of having seen. Participants reported by typing the letters in

any order on a standard keyboard. After each block, participants were informed about the

accuracy of their responses and were instructed to aim for response accuracy between 80 and

90%. The paradigm was presented on a 19” CRT monitor running at a refresh rate of 100 Hz.

Delayed global shape processing in developmental prosopagnosia
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One individual with DP and one control performed the paradigm with a refresh rate of 85

Hz resulting in slightly longer presentation durations (e.g., 11.76 ms instead of 10 ms). These

data were included in the analysis because the applied modeling procedure took the actual

presentation duration into account, so that estimations of the attentional components should

not be affected.

Design. The CombiTVA paradigm comprised 24 practice trials and nine experimental

blocks of 36 trials. Within an experimental block, 18 trials contained six target letters (three tri-

als for each of the six exposure durations), nine trials contained two target letters, and nine tri-

als contained two target letters and four distractor letters.

Results and discussion

For each participant, TVA-parameters were estimated by a maximum-likelihood procedure

using the LibTVA toolbox [37]. Table 2 shows the mean of the estimated parameters for indi-

viduals with DP and control participants. No significant differences were found for any of the

five estimated parameters or the error rate when comparing the two groups (all p’s> .11; see

Table 2), thus top–down controlled selectivity quantified by the α parameter does not seem to

differ between individuals with DP and control participants making it unlikely that the deviant

performance of the DP group in Navon’s paradigm is related to a problem in attentional selec-

tion. Neither did we observe any difference in how individuals with DP allocate spatial atten-

tion in comparison with control participants, which was quantified by the laterality index,

Fig 2. Illustration of the trial outline of the CombiTVA paradigm used to test attentional functions.

https://doi.org/10.1371/journal.pone.0189253.g002
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windex (p =. 11), and the standard deviation of the relative attentional weights, SDweights (p = .41).

Together, these findings suggest that the impaired derivation of global shape information

observed in individuals with DP reflects a perceptual rather than an attentional deficit. For addi-

tional information regarding the individual TVA parameters see S2 Dataset.

The relationship between local/global processing and recognition

of faces and objects

Having established that the DP group do exhibit an unusual performance (no global prece-

dence effect) in Navon’s paradigm compared with the control group, we next examined

whether this deficit might be systematically related to the DPs’ face and object recognition

performance.

Face recognition

Method. To examine whether face recognition performance varied systematically with

the DPs’ performance in the Navon paradigm, we performed a correlation analysis based on

the Global-Local Precedence index derived from the Navon paradigm (the standardized mean

difference (Cohen’s d) between RTs to Local and Global Consistent trials) and face recognition

performance in the CFMT (number of correct responses). This was done by means of Pear-

son’s correlation coefficient (r). We report one-tailed statistics because we test a directional

hypothesis: The lower the values on the Global-Local Precedence index, the poorer the perfor-

mance on the CFMT.

Results. The analysis revealed a significant correlation between the Global-Local Prece-

dence index and performance on the CFMT (r = .63, p = .026); the lower the score on the

Global-Local Precedence index the poorer the performance on the CFMT (see Fig 3 and also

Dataset S2 Dataset for information regarding the individual scores on the CFMT). To examine

the credibility of the correlation we estimated the one-tailed lower bound of the 95% CI of the

correlation by means of bias corrected bootstrap analysis (1000 samples). This yielded a value

of -.06, suggesting that the sample correlation is not a reliable estimate of the relationship in

the population of DPs at large. Because of this we ran additional regression diagnostics on

the relationship between the Global-Local Precedence index and CFMT performance. This

revealed that none of the standardized residuals had a value larger than 1.52 suggesting that

the regression model fitted the data well. Also, for no case was Cook’s distance larger than .18

which also suggests that no single case had a critically high influence on the model as a whole.

However, PP18’s score on the Global-Local Precedence index did deviate significantly from

the others (Mahalanobis distance = 6.5, p< .01). In sum, PP18 clearly departs from the other

Table 2. TVA-parameter estimates of attentional functions.

K C t0 α windex SDweights Error rate

DPs 3.04 (0.66) 54.8 (16.6) 19.4 (13.3) 0.88 (0.35) 0.61 (0.13) 0.15 (0.06) 0.25 (0.08)

Controls 3.06 (0.90) 58.9 (20.6) 15.6 (8.2) 0.76 (0.38) 0.54 (0.10) 0.13 (0.05) 0.2 (0.11)

p-value .94 .60 .42 .42 .11 .41 .22

Mean TVA-parameter estimates and SD (in brackets) for the group of individuals with developmental prosopagnosia (DP) and the control group (Controls).

Also given are the p-values associated with the difference between DPs and Controls for the TVA-parameter estimates (based on independent samples t-

tests).Units for the individual parameters are t0 (ms), C (letters/second), K (letters), α ranges from perfect selection at 0 to non-selectivity at 1, windex ranges

from complete rightward bias at 0 to complete leftward bias at 1 with 0.5 indicating equal weighting between the two visual fields, SDweights ranges from

equal weighting on all six locations at 0 to all weight on a single location at
ffiffiffiffiffiffiffiffi
1=6

p
.

https://doi.org/10.1371/journal.pone.0189253.t002
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DPs in her Global-Local Precedence effect (Z = -2.68), but it is not the case that she influences

the model unduly because she also scores comparably lower on the CFMT (Z = -1.65). As

such, she seems to occupy the extreme end of a continuum. This raises the question of whether

she should be excluded from the analysis altogether. Considering that we have no reason to

doubt the validity of her data—both the CFMT and the Global-Local Precedence Index have

been shown to be reliable measures, and PP18 performed the Navon task quite accurately

(97% correct)–we also find no reason to exclude her. Nevertheless, if she is excluded the corre-

lation is reduced and no longer significant (r = .37, p = .17); an aspect also reflected by the

lower bound of the 95% CI being -.06. In conclusion, while we have no reason to doubt the

correlation observed in the present sample, it does not provide a reliable estimate of the rela-

tionship between global/local processing and face recognition in the population of DPs at

large. Accordingly, the generalisability of this particular finding must await confirmation by

other studies.

Discussion. We find a systematic relationship between the Global-Local Precedence

index and face recognition performance; the lower the global precedence effect the poorer the

face recognition performance. This suggests that differences in the global precedence effect

may be sufficient to drive the relationship between performance in the Navon paradigm and

face recognition performance; it does not necessarily reflect interference effects.While this pat-

tern was significant for the present sample of DPs, we note that the sample correlation is not a

reliable estimate of the relationship in the population of DPs at large.

Object recognition

Given the relationship found between face recognition ability and differences in the Global-

Local Precedence index in the present sample of DPs, we next examined if such a relationship

might extend to their visual object recognition performance. Our motivation for examining

Fig 3. Scatterplot showing the relationship between performance on the Cambridge Face Memory

Test (number of correct responses) and the Global-Local Precedence index in the DP group.

https://doi.org/10.1371/journal.pone.0189253.g003
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this aspect is that we have previously found a high correlation between performance on the

CFMT and performance on visual object recognition tasks for all the DPs examined here [4].

Of special interest in the present context was the finding that the group of DPs was more

affected by stimulus degradation (presenting objects as silhouettes and fragmented forms)

than the control group (for data from the individual DPs and controls in the object decision

tasks we refer to the supplementary material provided in [4]). This relates to the present obser-

vations based on the Navon paradigm because recognition of silhouettes and fragmented

forms is assumed to be particularly dependent on global shape processing [38, 39]. Based on

this we thus predicted a positive correlation between the Global-Local Precedence index and

recognition performance with silhouettes and fragmented forms in our group of DPs.

Method. Gerlach, Klargaard [4] assessed visual object recognition performance by means

of object decision tasks, where participants had to decide whether the stimuli depicted real

objects or nonobjects. In these tasks, the nonobjects are chimeric, consisting of parts of two

real objects, which makes the task quite demanding in terms of perceptual differentiation.

There were three versions: One with regular line drawings, one with silhouette drawings, and

one with fragmented drawings (for further details see Gerlach, Klargaard [4]). Performance

was measured in terms of A [40] which is a bias-free measure that varies between 0.5 and 1.0

with higher scores indicating higher sensitivity, that is, better discrimination between objects

and nonobjects. We performed correlation analyses based on the scores on the Global-Local

Precedence index and performance with silhouettes and fragmented drawings respectively.

We report one-tailed statistics as we test a directional hypothesis; the lower the values on the

Global-Local Precedence index, the poorer the discrimination sensitivity on the object deci-

sion tasks with silhouettes and fragmented forms. Two of the DPs did not contribute to the

analysis based on object decision with silhouettes (PP16 did not perform the task and PP04’s

data could not be interpreted due to chance level performance with extreme hit and false

alarm rates, see Gerlach, Klargaard [4]).

Results. The comparison of scores on the Global-Local Precedence index and perfor-

mance with silhouette drawings revealed a significant correlation (r = .72, p = .022; one-tailed

lower bound of the 95% CI = .13 estimated by means of bias corrected bootstrap analysis (1000

samples)), as did the comparison between scores on the Global-Local Precedence index and

performance with fragmented drawings (r = .72, p = .01; one-tailed lower bound of the 95%

CI = .28 estimated by means of bias corrected bootstrap analysis (1000 samples)). In both

cases, lower values on the Global-Local Precedence index were associated with poorer recogni-

tion of degraded stimuli.

From Fig 4, showing scatterplots of the relationship between scores on the Global-Local Pre-

cedence index and performances in the object decision tasks with silhouettes and fragmented

forms, it can be seen that PP18 again sticks out, just as in the former analysis involving face

recognition performance. This is not surprising considering that the Global-Local Precedence

index is the same. While PP18 clearly do add to the variability in the data, the lower bounds of

the 95% CIs associated with the correlation did not include 0. Hence, while the observed corre-

lations between the Global-Local Precedence index and performance with silhouettes and frag-

mented forms are not very precise estimates of what can be expected in the general population

of DPs, the findings do seem generalizable. See also S3 Dataset for additional information

regarding the individual scores on object decision with silhouettes and fragmented forms.

Discussion. The positive correlations between the Global-Local Precedence index and

object recognition performance with silhouettes and fragmented drawings suggest that delayed

global shape processing (a reduced global precedence effect) impacts negatively on the recog-

nition of degraded material. Accordingly, the prediction regarding an important role of global

shape processing in recognition of degraded material [38, 39] was confirmed.
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General discussion

There seems to be a growing consensus that a central deficit underlying the face recognition

impairment in developmental prosopagnosia (DP) reflects deficient holistic processing. Evi-

dence supporting this notion comes from several lines of inquiry, and in particular from stud-

ies showing that individuals with DP perform abnormally in paradigms taken to reflect holistic

processing in normal participants: The Garner speeded-classification task with faces [11], and

the Composite Face Task [2, 13]. Common for both paradigms is that individuals with DP

often do not exhibit the same interference effects as normal participants. This suggests that

individuals with DP do not simultaneously or holistically process the various types of informa-

tion contained in faces (features and the configuration of these features). A related paradigm,

which has also been used in the study of DP, is that of Navon [23]. Even though this paradigm

is typically used with compound letters rather than faces, it also measures configural process-

ing (the formation of a global shape based on local elements). It is thus a reasonable hypothesis

that individuals with DP may also exhibit impaired performance in the Navon paradigm; at

least if their face recognition problem reflects impaired configural processing [22]. Consistent

with this, a correlation between face processing performance and performance on the Navon

paradigm in individuals with DP has been reported [2, 22, 28]. However, because these studies

have used different indexes of global/local processing, it is not clear which mechanism(s) has

(have) been driving the observed correlations; is it global/local precedence effects, which tell us

something about which type of information is processed first (global or local), or is it interfer-

ence effects, which reflect what level of information is weighted the most when shape informa-

tion from different spatial scales are compared?

To answer this question we examined the relationship between face recognition perfor-

mance, as measured with the Cambridge Face Memory Test (CFMT), and a simple index of

Global-Local precedence bias based on the standardized mean difference (Cohen’s d) between

RTs to Local and Global Consistent trials in 10 individuals with developmental prosopagnosia

(DP). This analysis revealed a systematic relationship (r = .63); the lower the global precedence

effect, the poorer the face recognition performance.

It was not the case, however, that the DPs could not derive the global shape at all. Indeed,

they did not make more errors than the control participants, and they also exhibited a global-

to-local interference effect. This would not be expected if the individuals with DP were unable

to identify the configuration of the local elements; i.e. the global shape, at all. Hence, the

Fig 4. Scatterplots showing the relationship between scores on the Global-Local Precedence index and

performance with recognition of silhouettes and fragmented forms in the DP group.

https://doi.org/10.1371/journal.pone.0189253.g004
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problem for the DPs seems to be a delay in the derivation of global shape information. For the

DPs the average difference between Local and Global Consistent trials was 8 ms whereas it was

48 ms for the control participants. It is important to note, that this difference between DPs and

control participants does not reflect a general attentional deficit, as the attentional capacities of

our sample of DPs were found to be normal. Accordingly, the problem exhibited by the DPs is

likely to reflect a perceptual rather than an attentional deficit.

We have also examined the visual object recognition ability in our group of DPs using

demanding object decision tests (deciding whether pictures represent real objects or nonob-

jects) with regular line-drawings, silhouettes, and fragmented drawings [4]. The DP group was

impaired on these tasks when the stimuli were degraded (silhouettes or fragmented drawings).

In addition, their face recognition performance, as assessed with the CFMT, correlated signifi-

cantly with their object recognition performance with both silhouettes (r = .87) and frag-

mented forms (r = .78) [4].

The relationship between performance in Navon’s paradigm and performance on the

CFMT on the one hand, and the close relationship between performance on the CFMT and

performance with degraded material in the visual object recognition tasks on the other,

prompted us to examine here whether the DPs’ visual object recognition performance with

degraded material would also correlate with the Global-Local Precedence index of the Navon

paradigm. We deemed such a relationship likely because recognition of silhouettes and frag-

mented forms is assumed to place particular demands on global shape processing [38, 39].

This prediction was borne out as we find reliable relationships between scores on the Global-

Local Precedence index and performance with silhouettes and fragmented forms. The lower

the global precedence effect (low values on the Global-Local Precedence index), the poorer the

performance with silhouettes and fragmented forms.

The systematic relationships between impaired performance in Navon’s paradigm, the

CFMT, and object recognition tasks with degraded material in the same group of individuals

with DP, suggest that these deficits could very well reflect dysfunction of the same underlying

mechanism. As shown above, these impairments are observed in DPs who have no general

visual attentional deficits, which can explain their impaired performance. This leads us to con-

clude that the common underlying deficit is perceptual in nature, and that it reflects delayed

derivation of global relative to local shape information.

Even though the present findings suggest a common denominator, the pieces of evidence

presented in favour of it are not equally strong. While the relationship between the Global-

Local Precedence index and object recognition performance with both silhouettes and frag-

mented forms were robust, as was the reduction in the global precedence effect in the DP

group, the relationship between the Global-Local Precedence index and face recognition per-

formance was not. Hence, while the regression model provided a good fit of the data, and with

none of the cases having undue influence on it, the correlation observed was not a reliable esti-

mate of such a relationship in the population of DPs at large. This was due to one of the DPs

(PP18) scoring extremely low on the Global-Local Precedence index (but also rather low on

the outcome variable). Whether the performance of this particular case represents a valid

observation from the extreme end of a continuum, or whether it represents an anomaly, can

only be settled by future studies. We note, however, that both the CFMT and the Global-Local

Precedence Index have been shown to be reliable measures, and PP18 performed the Navon

task quite accurately (97% correct), which suggests that PP18 represents a valid case. Despite

the uncertainty regarding this particular aspect of our results, we argue that when the pieces of

evidence presented here are considered as a whole, they fit together both theoretically and with

other lines of evidence.
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The suggestion that DPs may exhibit delayed processing of global shape information is con-

sistent with recent findings by Awasthi, Friedman [41]. They have shown that interference

effects—owing to incongruent information originating from low and high spatial frequency

components—occur much later in time in individuals with DP compared with control partici-

pants in a face gender identification task. While these authors could not conclude for certain

whether this performance pattern was due to an integration deficit or to slower processing of

low spatial frequency components, our findings support the latter interpretation; granted of

course that global shape is mediated by low spatial frequency components. What our results

show in addition is that this deficit: (i) is perceptual rather than attentional, (ii) seems to be

directly related to face recognition performance (individuation), and (iii) also affects recogni-

tion of other non-face stimuli for which global shape is critical. The present interpretation also

fits with a recent demonstration that the EEG-based event-related N250 component, taken to

be a marker of the matching between a seen face and visual long-term memory (VLTM) repre-

sentations, was delayed by approximately 40 ms in a group of DPs compared with controls

[42]. In comparison, the earlier N170 component, which is enhanced to faces compared with

non-face objects, and believed to reflect early perceptual encoding, have not been shown to be

delayed in DP [43]. Even so, the N170 is atypical in DP (being just as large to inverted as to

upright faces), and it has been implied that the delayed N250 in DPs may in fact reflect early

face processing abnormalities associated with the atypical N170 component; a problem with

encoding facial features relative to the spatial layout of canonical (upright) face templates [43].

An explanation of why delayed global shape processing may cause impaired recognition—

and in particular impaired recognition of faces—can be found in the PACE (Pre-semantic

Account of Category-effects) model proposed by Gerlach [38]. This model assumes the exis-

tence of two operations in visual object recognition: shape configuration and selection. Shape

configuration refers to the binding of visual elements into elaborate shape descriptions corre-

sponding to whole objects or large object parts; descriptions in which relationships between

the parts are specified. The configured shape representation is a description that can be

matched with structural representations of whole objects or large object parts stored in VLTM.

The matching process is thought of as a race among VLTM representations that compete for

selection. The VLTM representation that matches the configured representation the best will

win the competition; hence be selected. The match criterion is task dependent. If the task

requires fine-grained discrimination, a strict match criterion will be in place. If the task only

requires gross perceptual processing, a more lax match criterion will be sufficient. When the

configured representation is successfully matched with VLTM representations according to a

given criterion, the object is classified as a particular sort of instance. In PACE, shape configu-

ration does not precede access to stored visual knowledge. Rather, shape configuration follows

a first pass access to VLTM representations based on processing of global shape information

(outline shape) in the visual input. This first pass yields initial hypotheses concerning the likely

identity of the stimulus. These hypotheses are then used in a top-down manner to augment the

buildup of a more detailed description of the stimulus (i.e. shape configuration), which again

serves as input for a more specific match with VLTM representations [38, 39, 44]. The greater

the demand placed on perceptual differentiation, the more loops comprising VLTM access!

shape configuration may be required to reach a successful match between the visual input and

VLTM representations (i.e. recognition). From this description it is clear that fast derivation

of global relative to local shape information is rather important in the recognition process

because it facilitates the matching process by narrowing down the scope of likely VLTM candi-

dates, but also because it provides the initial frame in which local details can later be embedded

[45, 46]. Hence, when interpreted in the PACE framework it makes good sense that delayed

derivation of global shape will not only slow down performance, but also lead to recognition
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problems. In particular, we have previously made the case that derivation of global shape is

especially important for recognizing objects characterized by a high degree of visual similarity

when the demand for perceptual differentiation is high [38, 39]. Face recognition seem to be

characterized by both of these aspects: Faces are highly visually similar and they are typically

recognized at a subordinate level which requires more perceptual differentiation than for

example basic level recognition. With regards to visual similarity we note that the DPs exam-

ined here have previously been shown to be more affected by increasing levels of visual similar-

ity than control subjects when processing faces [4]. Finally, given that degraded objects are

also likely to place high demands on global shape processing [38, 39] it may not be a chance

finding that recognition of faces and degraded objects are found to be systematically related

with each other and with a reduced global precedence effect in our DP sample.

As argued above, the individuals with DP that we have studied do not necessarily have a

problem with the integration of features per se; indeed they are able to derive the overall con-

figuration of elements that are spatially separated (they can identify letters at the global level in

the Navon paradigm; it just happens more slowly than in controls). At first glance this may

seem at odds with the observation that DPs often do not exhibit interferences effect in the

Composite Face Task and in Garner’s speeded-classification paradigm. This, however, could

be a consequence of their reduced global precedence effect. If global shape representations are

not accessed early in the recognition process it is likely that this will also affect the matching of

the visual input to VLTM representations so that matches based on features or individual sec-

ond-order relations (e.g., the distance between the eyes) are weighted more heavily than is the

overall gestalt. Consequently, it may be easier for individuals with DP to selectively process

face parts—a sort of release from global binding—making them less susceptible to interference

effects in the Garner and the Composite Face paradigms. The idea that a reduced global prece-

dence effect may also cause local shape information to be weighted just as much as—or even

more than—global shape information in the matching process is in accord with the Navon

performance of the DPs we have examined here. They showed global-to-local and local-to-

global interference effects of similar magnitude whereas the control participants showed a sig-

nificantly larger global-to-local than local-to-global interference effect.

The PACE hypothesis concerning the importance of global shape based top-down process-

ing effects in face recognition bears some resemblance to the Perceptual field hypothesis sug-

gested by Rossion [47] to explain the Composite Face effect and other phenomena in face

recognition. According to Rossion “. . .a holistic (upright) face representation acts as a tem-

plate and is necessary to guide the perception of the simple elements of an incoming visual

face stimulus, in a top–down manner. Hence, the features of an upright and an inverted face

would not be perceived the same way, because the inverted face could not benefit from this

template matching.” (Rossion [48], p. 308). Also, like in the PACE model, what characterizes

face recognition according to the Perceptual field hypothesis is that faces are processed “. . .at a

sufficiently fine-grained level of resolution to individualize members of the face class” (Rossion

[21], p. 153). What seems to differ between the hypotheses is that PACE makes no assumption

regarding a qualitative difference in the type of processing that faces and objects undergo. The

difference is quantitative and depends on the visual similarity of the objects and the level of

recognition required (superordinate! subordinate).

Even though the assumption of delayed derivation of global shape in DP seems to offer

good explanatory power in accounting for face recognition problems in DP, we do not suggest

that this impairment is the sole explanation for the severely disrupted face recognition abilities

of people with DP. After all, the Global-Local Precedence index could ‘only’ account for 40%

of the variance in the face recognition performance in the DPs studied here. The same is true

of the relationship between Navon performance and visual object recognition performance
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with degraded stimuli. Here, the Global-Local Precedence index could explain approximately

52% of the variance in recognition of silhouettes and fragmented forms. Accordingly, even in

the DP group studied here, not all of the variance in face and object recognition performance

can be accounted for by differences in global precedence effects. Nevertheless, we do believe to

have demonstrated that delayed global shape processing may contribute significantly to face

recognition problems, and that the PACE model offers a fruitful framework for understanding

why this may be the case.
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